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Abstract. In this work, numerical solutions are presented for turbulent flow in a channel containing
fins made with porous material. The condition of spatially periodic cell is applied longitudinally
along the channel. A macroscopic two-equation turbulence model is employed in both the porous
region and the clear fluid. The equations of mass continuity, momentum and turbulence transport
eguations are written for an elementary representative volume yielding a set of equations valid for
the entire computational domain. Results are presented for the velocity field as a function of
Reynolds, porosity and permeability of the fins. Pressure drop along the channel is compared with
the case of solid material.
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1. INTRODUCAO

Turbulent fluid flow in channels containing porous and solid obstacles is found in a number of
engineering equipment such as shell-and-tube heat exchangers, chemical reactors, etc. Several other
applications are found in the chemical and petroleum industries, leading to a great interest by many
research groups in order to mathematically model and realistic describe this type of flow Hwang
(1997), Y ang and Hwang (2003) and Ko and Anand (2003).

In the works Rocamora and de Lemos (2000a-c) presented numerical solutions for laminar and
turbulent flow in hybrid (clear/porous) media. Those works did not consider a stress jump at the
interface between the porous media and the clear fluid. In the literature, for laminar flow, Ochoa
and Whitaker (1995a-b) proposed an adjustable coefficient for modeling the stress jump at the
interface. Kuznetsov (1996a-b) and Kuznetsov (1997) presented analytical solutions for velocity
profiles in channel partialy filled with porous material, taking into consideration such a jump
condition. Recently, Silva and de Lemos (2002) presented numerical solutions for this same
geometry, also considering the jump at the interface. For turbulent flow in permeable structures, de
Lemos and Pedras (2000a)-b) and de Lemos and Pedras (2001) developed a macroscopic two-
equation turbulence model.

More recently, laminar flow in channel containing porous fins was investigated in Tofaneli and
de Lemos (2002a), where the effects of the inlet Reynolds number and jump coefficients were
considered. There, use was made of the numerical methodology proposed in Silva and de Lemos
(2002). Later, Tofaneli and de Lemos (2002b-c) investigated the influence of porosity and
permeability on the flow pattern in the channel.

The objective of this work is to extent the results in Tofaneli and de Lemos (2002c); de Lemos
and Tofaneli (2003a) considering now turbulent flow. Here, the model of Tofaneli and de Lemos
(2002b), de Lemos and Pedras (2001) is applied.



2. MATHEMATICAL MODEL

2.1- Geometry

The flows here investigated are schematically shown in Figure 1.
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Figure 1: Channel bafflesin one of the plates with afin.

2.2- Governing Equations

The mathematical model here employed has its origin in the works of Pedras and de Lemos
(2000), Pedras and de Lemos (2001a-b), Pedras and de Lemos (2003). The implementation of the
jump condition at the interface was considered in Silva and de Lemos (2002) based on the theory
proposed in Ochoa and Whitaker (1995a-b). Therefore, these equations will be here just reproduced
and details about their derivations can be obtained in the mentioned works. These equations are:

N>t, =0 (1)

where, up isthe average surface velocity (‘seepage’ or Darcy velocity). Equation (1) represents the
macroscopic continuity equation for an incompressible fluid. The Macroscopic momentum equation
isgiven as.
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where the last two terms in Eq. (2), represent the Darcy-Forchheimer contribution. The symbol K
is the porous medium permesability, c- is the form drag coefficient (Forchheimer coefficient),

<p>i is the intrinsic average pressure of the fluid, r is the fluid density, n represents the fluid



viscosity and f is the porosity of the porous medium. The macroscopic Reynolds stress
- rf &b isgiven as,
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is the macroscopic deformation tensor, & = &6u® /2 istheintrinsic turbulent kinetic energy, k
and m , isthe turbulent viscosity which is modeled in Rocamora and de Lemos (2000a) similarly to
the case of clear flow, in the form,

&l
m =rCn
&

Transport equations for (k)i and its dissipations rate Zefi = maNu¢: (Nug' A / r areproposed in
Tofaneli and de Lemos (2002c) as:
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generation rates of (k)' due to gradients of up and due to the action of the porous matrix. At the

interface, the conditions of continuity of velocity, pressure, turbulent kinetic energy k and its
dissipation rate e, in addition to their respective diffusive fluxes, are given by,

where ¢, ¢, and ¢, are model constants, P' =-ra@®:Nu, and G' =c,r are
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The jump condition at the interface is given by,
(m, +m )ﬂ:; L (m+m)ﬂ:%f:1 =(m+ m)%ﬁoi e (13)

The non-dlip condition for velocity is applied to all of the four walls.
3.NUMERICAL MODEL

The numerical method utilized to solve the flow equations is the Finite VVolume method applied
to a boundary-fitted coordinate system, can be seen in Pedras and de Lemos (20014). Equations (1)-
(2) subjected to boundary and interface conditions Eq. (7)-(13), were discretized in a two-
dimensional control volume involving both clear and porous media. The numerical method used in
the resolution of the equations above was the SIMPLE algorithm of Patankar (1980). The interface
is positioned to coincide with the border between two control volumes, generating, in such a way,
only volumes of the types 'totally porous or 'totally clear'. The flow equations are then resolved in
the porous and clear domains, being respected the interface conditions mentioned earlier. In the



implementation herein, a system of generalized coordinates was used athough all simulation to be
shown employed only Cartesian Coordinates. Nevertheless, the use of a general system h - e for
discretizing the equations was found to be adequate for future smulations. Details of the numerical
implementation can be seen in Silva and de Lemos (2002) and Pedras and de Lemos (2001a). Here,
all computations were carried out until normalized residues of the algebraic equations were brought
down to 10°°, where the residue was defined as the difference between the right and |eft sides of the
discretized equations. The permeability of the porous way in all of the cases was esteemed being
respected the correlation proposed for Kameyama, Yamashita and Nakayama (1998) for half
porous, in the way,
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4. RESULTS AND DISCUSSION

Figure 2 and Figure 3 show velocity fields obtained with uniform velocity at entrance a) as well
as for a periodic cell b). For solid fins, Figure 2, we can observe that there is a recirculation zone
right after the obstacle, whereas for the porous fin such recirculation doesn’t occur (Figure 3).
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a)
Figure 2: Velocity field for solid fin, Re,, = 30,000: &) uniform profile at the entrance; b) periodic
channel.
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Figure 3: Velocity field for Re,, =30,000: a) uniform profile at the entrance; b) periodic
channel f =0.9,K =5~ 107" m?).



Figure 4 and Figure 5 show the distribution of turbulent kinetic energy for solid and porous
fins respectively. For the porous fin case, the largest level of turbulence intensity is inside and
around the fin. However for the solid fin case, it at the top of the fin. For solid fins, the largest
velocity gradients, must responsable for turbulence generation, are located at the top of the fins. On
the other hand, for porous baffles, generation of k occursinside the fins.
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Figure 4: Distribution of k, = % for solid fin (Re,, =30,000): &) uniform profile at the
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entrance, b) periodic channel.

1.25x10™

-02
6.25x10 6.25x10%

9.38x10™ 9.38x10™
8.75x10™ 8.75x10™
8.13x10™ 8.13x10™

— 7.50x10* 1 7.50x10%
— 6.88x10™ — 6.88x10™
— 6.25x10* I 6.25x10™
— g.ggxig’z — 5.63x10™
F— 5.00x10" | il
| 4.38x10:$ i iig%g‘”
= | 3.75X10701 | 3‘75)(10'01
| 310> — 3.13x10™
250x10™ 2.50x10™

I a0 I eadon

a)

Figure 5: Distribution of k, :% for (Re, =30,000, K =5"10"m?, f =0.9): a) porous
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fin, uniform profile, b) porous fin, periodic channel.

Tables (1) and (2) show calculated pressure drop in a periodic section using the high Reynolds
k - e model. The average pressure drop along the periodic section is numerically obtained as.

_ 1 .
DP = K dpin - pex)jy

A (15
The percent differencein relation to the solid fin case is calculated as:
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where the subscripts in and ex indicate inlet and outlet areas, respectively.

Table (1) shows the results for the pressure loss for the case of uniform flow at the inlet of the
cell in Figure 1. It can be noticed that using porous fins impliesin less energy |osses (less head |10ss)
when compared to the solid fin case.

Table (2) shows the results for the pressure loss for the condition of periodic flow, that is, the
follow condition at the entrance of the channel is the same as in the exit. As it can be seen, the
pressure drop is lower the channel in the condition of periodic drainage, than for the case where the
profile of uniform velocity is imposed at the channel entrance. However, the pressure drop
difference between porous and solid finsis larger for the periodic case.

Table (1): Percent pressure lossin relation to solid fins for turbulent flow and profile
of uniform speed, grid=210" 50, Re, =30,000.

f K/H? e= 20" O 0 Calculated DP
DP,
Solid 22398+
06 4" 10°° 5,57 211.49
2" 10* -2055 177.94
07 4" 10°° _4.56 213.75
2°10° 219.30 180.74
08 4" 10°° -3.33 21651
2" 10* -17.66 184.41
05 4" 10°° _1.65 220.27
2°10* -15.48 189.29

* Reference value givenin N/m2 for calculating e, for porousfins

Table (2): Percent pressure loss in relation to solid fins for turbulent flow in periodic
channel, grid=70" 50, Re,, =30,000.

f K/H? @:M 100 Calculated DP
DP,
Solid 46.61*
06 4 10° -34.82 30.38
210" -48.65 23.93
07 4 10° -33.40 31.04
210" -46.77 24.81
08 4 10° -31.76 31.80
210" -44.51 25.86
09 4 10° -28.07 33.52
210" -40.00 27.96

* Reference value givenin N/m? for calculating e, for porousfins




5. CONCLUDING REMARKS

This work presented results for the numerical solution of turbulent flow in a channel containing
porous obstructions. The effect of the permeability of the porous material on the flow pattern was
considered. Also taking into consideration was the jump condition of the shear stress at the
interface. Discretization of the governing equations used the finite volume method of and the set of
algebraic equations was solved by the SIMPLE method. Results indicated an prominent effect of
the jJump condition coefficient modifying the flow patter within the periodic cell.
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