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Abstract. In this work, numerical solutions are presented for turbulent flow in a channel containing 
fins made with porous material. The condition of spatially periodic cell is applied longitudinally 
along the channel. A macroscopic two-equation turbulence model is employed in both the porous 
region and the clear fluid. The equations of mass continuity, momentum and turbulence transport 
equations are written for an elementary representative volume yielding a set of equations valid for 
the entire computational domain. Results are presented for the velocity field as a function of 
Reynolds, porosity and permeability of the fins. Pressure drop along the channel is compared with 
the case of solid material.  
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1. INTRODUÇÃO 

 
Turbulent fluid flow in channels containing porous and solid obstacles is found in a number of 

engineering equipment such as shell-and-tube heat exchangers, chemical reactors, etc. Several other 
applications are found in the chemical and petroleum industries, leading to a great interest by many 
research groups in order to mathematically model and realistic describe this type of flow Hwang 
(1997), Yang and Hwang (2003)  and Ko and Anand (2003).  

In the works Rocamora and de Lemos (2000a-c) presented numerical solutions for laminar and 
turbulent flow in hybrid (clear/porous) media. Those works did not consider a stress jump at the 
interface between the porous media and the clear fluid. In the literature, for laminar flow, Ochoa 
and Whitaker  (1995a-b) proposed an adjustable coefficient for modeling the stress jump at the 
interface. Kuznetsov (1996a-b) and Kuznetsov (1997) presented analytical solutions for velocity 
profiles in channel partially filled with porous material, taking into consideration such a jump 
condition. Recently, Silva and de Lemos (2002) presented numerical solutions for this same 
geometry, also considering the jump at the interface. For turbulent flow in permeable structures, de 
Lemos and Pedras (2000a)-b) and de Lemos and Pedras (2001) developed a macroscopic two-
equation turbulence model. 

More recently, laminar flow in channel containing porous fins was investigated in Tofaneli and 
de Lemos (2002a), where the effects of the inlet Reynolds number and jump coefficients were 
considered. There, use was made of the numerical methodology proposed in Silva and de Lemos 
(2002). Later, Tofaneli and de Lemos (2002b-c) investigated the influence of porosity and 
permeability on the flow pattern in the channel. 

The objective of this work is to extent the results in Tofaneli and de Lemos (2002c); de Lemos 
and Tofaneli (2003a) considering now turbulent flow. Here, the model of Tofaneli and de Lemos 
(2002b), de Lemos and Pedras (2001) is applied. 



 
2. MATHEMATICAL MODEL 
 
2.1- Geometry 

 
The flows here investigated are schematically shown in Figure 1. 

 

 

Figure 1: Channel baffles in one of the plates with a fin. 

 
2.2- Governing Equations 

 
The mathematical model here employed has its origin in the works of Pedras and de Lemos 

(2000), Pedras and de Lemos (2001a-b), Pedras and de Lemos (2003). The implementation of the 
jump condition at the interface was considered in Silva and de Lemos (2002) based on the theory 
proposed in Ochoa and Whitaker  (1995a-b). Therefore, these equations will be here just reproduced 
and details about their derivations can be obtained in the mentioned works. These equations are: 

 

0=⋅∇ Du             (1) 

 

where, Du  is the average surface velocity (‘seepage’ or Darcy velocity). Equation (1) represents the 
macroscopic continuity equation for an incompressible fluid. The Macroscopic momentum equation 
is given as: 
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where the last two terms in Eq. (2), represent the Darcy-Forchheimer contribution. The symbol K  
is the porous medium permeability, Fc  is the form drag coefficient (Forchheimer coefficient), 

ip is the intrinsic average pressure of the fluid, ρ  is the fluid density, µ  represents the fluid 



viscosity and φ  is the porosity of the porous medium. The macroscopic Reynolds stress 
i〉′′〈− uuρφ  is given as, 
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where 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, k  
and 

φ
µ t , is the turbulent viscosity which is modeled in Rocamora and de Lemos (2000a) similarly to 

the case of clear flow, in the form, 
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Transport equations for ik  and its dissipations rate ( ) ρµε iTi 〉′∇′∇〈=〉〈 u:u  are proposed in 
Tofaneli and de Lemos (2002c) as: 
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where 1c , 2c  and kc  are model constants, D
iiP uuu ∇:〉′′〈−= ρ  and 
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generation rates of ik  due to gradients of Du  and due to the action of the porous matrix. At the 
interface, the conditions of continuity of velocity, pressure, turbulent kinetic energy k  and its 
dissipation rate ε , in addition to their respective diffusive fluxes, are given by, 
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The jump condition at the interface is given by, 
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The non-slip condition for velocity is applied to all of the four walls. 
 
3. NUMERICAL MODEL 
  

The numerical method utilized to solve the flow equations is the Finite Volume method applied 
to a boundary-fitted coordinate system, can be seen in Pedras and de Lemos (2001a). Equations (1)-
(2) subjected to boundary and interface conditions Eq. (7)-(13), were discretized in a two-
dimensional control volume involving both clear and porous media. The numerical method used in 
the resolution of the equations above was the SIMPLE algorithm of Patankar (1980). The interface 
is positioned to coincide with the border between two control volumes, generating, in such a way, 
only volumes of the types 'totally porous' or 'totally clear'. The flow equations are then resolved in 
the porous and clear domains, being respected the interface conditions mentioned earlier. In the 



implementation herein, a system of generalized coordinates was used although all simulation to be 
shown employed only Cartesian Coordinates. Nevertheless, the use of a general system εη −  for 
discretizing the equations was found to be adequate for future simulations. Details of the numerical 
implementation can be seen in Silva and de Lemos (2002) and Pedras and de Lemos (2001a). Here, 
all computations were carried out until normalized residues of the algebraic equations were brought 
down to 510− , where the residue was defined as the difference between the right and left sides of the 
discretized equations. The permeability of the porous way in all of the cases was esteemed being 
respected the correlation proposed for Kameyama, Yamashita and Nakayama (1998) for half 
porous, in the way,  
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4. RESULTS AND DISCUSSION 
 

 Figure 2 and Figure 3 show velocity fields obtained with uniform velocity at entrance a) as well 
as for a periodic cell b). For solid fins, Figure 2, we can observe that there is a recirculation zone 
right after the obstacle, whereas for the porous fin such recirculation doesn’t occur (Figure 3). 
 
 
 

            
a)                                                                                   b) 

Figure 2: Velocity field for solid fin, 000,30Re =H : a) uniform profile at the entrance; b) periodic 
channel. 

 

 
a)                                                                            b) 

Figure 3: Velocity field for 000,30Re =H : a) uniform profile at the entrance; b) periodic 
channel ( )27105;9.0 mK −×==φ . 



 
Figure 4 and Figure 5 show the distribution of  turbulent kinetic energy  for solid and porous 

fins respectively. For the porous fin case, the largest level of turbulence intensity is inside and 
around  the fin. However for the solid fin case, it  at the top of the fin. For solid fins, the largest 
velocity gradients, must responsable for turbulence generation, are located at the top of the fins. On 
the other hand, for porous baffles, generation of k occurs inside the fins. 
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a)                                                                             b) 

Figure 4: Distribution of 
max

min

kk
kk

k
−
−

=+  for solid fin ( 000,30Re =H ): a) uniform profile at the 

entrance, b) periodic channel. 
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a)                                                                            b) 

Figure 5: Distribution of 
max

min

kk
kk

k
−
−

=+  for ( 000,30Re =H , 27105 mK −×= , 9.0=φ ): a) porous 

fin, uniform profile, b) porous fin, periodic channel. 

 
Tables (1) and (2) show calculated pressure drop in a periodic section using the high Reynolds 
ε−k  model. The average pressure drop along the periodic section is numerically obtained as: 
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The percent difference in relation to the solid fin case is calculated as: 
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where the subscripts in  and ex  indicate inlet and outlet areas, respectively.  
Table (1) shows the results for the pressure loss for the case of uniform flow at the inlet of the 

cell in Figure 1. It can be noticed that using porous fins implies in less energy losses (less head loss) 
when compared to the solid fin case. 

Table (2) shows the results for the pressure loss for the condition of periodic flow, that is, the 
follow condition at the entrance of the channel is the same as in the exit. As it can be seen, the 
pressure drop is lower the channel in the condition of periodic drainage, than for the case where the 
profile of uniform velocity is imposed at the channel entrance. However, the pressure drop 
difference between porous and solid fins is larger for the periodic case. 
 
 

Table (1): Percent pressure loss in relation to solid fins for turbulent flow and profile 
of uniform speed, grid=210×50, 000,30Re =H . 

φ  2HK  
εP= 100×

∆

∆−∆

s

sp

P

PP
 Calculated ∆P 

Solid  98.223 * 

5104 −×  - 57.5  49.211  
0.6 4102 −×  - 55.20  94.177  

5104 −×  - 56.4  75.213  
0.7 4102 −×  - 30.19  74.180  

5104 −×  - 33.3  51.216  
0.8 4102 −×  - 66.17  41.184  

5104 −×  - 65.1  27.220  
0.9 4102 −×  - 48.15  29.189  

* Reference value given in 2mN  for calculating Pε  for porous fins 
 
 

Table (2): Percent pressure loss in relation to solid fins for turbulent flow in periodic 
channel, grid=70×50, 000,30Re =H . 

φ  2HK  
εP= 100×

∆

∆−∆

s

sp

P

PP
 Calculated ∆P 

Solid  61.46 * 
5104 −×  - 82.34  38.30  

0.6 4102 −×  - 65.48  93.23  
5104 −×  - 40.33  04.31  

0.7 4102 −×  - 77.46  81.24  
5104 −×  - 76.31  80.31  

0.8 4102 −×  - 51.44  86.25  
5104 −×  - 07.28  52.33  

0.9 4102 −×  - 00.40  96.27  
* Reference value given in 2mN  for calculating Pε  for porous fins 

  



5. CONCLUDING REMARKS 
 

This work presented results for the numerical solution of turbulent flow in a channel containing 
porous obstructions. The effect of the permeability of the porous material on the flow pattern was 
considered. Also taking into consideration was the jump condition of the shear stress at the 
interface. Discretization of the governing equations used the finite volume method of and the set of 
algebraic equations was solved by the SIMPLE method. Results indicated an prominent effect of 
the jump condition coefficient modifying the flow patter within the periodic cell. 
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