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Resumo. A secagem é um processo transiente que envolve a transferência simultânea de calor e 
massa. O estudo da difusão de massa na forma de água na fase líquida geralmente é aplicado a 
corpos com geometrias bem conhecidas tais como: paralelepípedo, cilindro e esfera, sendo assim, 
existe a necessidade de estudos que envolvam outras formas geométricas tais como esferóides 
prolato e oblato (elipsóides de revolução), formas estas tão comuns na natureza. Neste sentido, 
visando dar uma contribuição na área de transporte de calor e massa em sólidos com geometria 
complexa, este trabalho apresenta uma solução analítica para o problema de difusão transiente em 
corpos com geometria esferoidal. Para a obtenção da solução analítica da equação de difusão 
considera-se coeficiente de difusão constante e condição contorno de primeira espécie na superfície 
do sólido. A solução é obtida usando o método de Galerkin. A solução formal é aplicada para 
predizer o teor de umidade médio e a distribuição do teor de umidade e temperatura dentro de 
esferóides durante o processo de secagem. Vários resultados sobre os efeitos dos números de 
Fourier e da razão de aspecto na taxa de secagem, teor de umidade médio e distribuição do teor de 
umidade e temperatura, durante o processo, são apresentados e analisados. O modelo proposto é 
versátil podendo ser utilizado para resolver problemas de difusão tais como secagem, 
umidificação, aquecimento e resfriamentos de sólidos com forma que variam de um disco circular 
até um cilindro infinito, inclusive esfera. 
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1. INTRODUÇÃO 
 

Na industria química, um dos processos mais importantes utilizados no processamento de 
alimentos e na estocagem de grãos é o processo de secagem. Este processo consiste na separação 
parcial da parte líquida (geralmente a água) da sólida de um determinado material. Em relação a 
outras técnicas de separação, a secagem se diferencia devido à retirada das moléculas que, neste 
caso, é obtida por uma movimentação do liquido, provocada por uma diferença de pressão parcial 
do vapor d’água entre a superfície do produto a ser secado e o ar que o envolve. No caso dos 
alimentos, a remoção de água do material úmido é realizada até um nível onde a deterioração 
provocada por microorganismos possa ser minimizada. 

Soluções analíticas ou numéricas da equação de difusão, com coeficiente de difusão constante 
ou variável e condições de contorno constante (equilíbrio) ou do tipo convectivo, para várias 
geometrias (paralelepípedo, cilindro e esfera), podem ser encontradas em Crank (1992) e 



 

 

Gebhart(1993). Para corpos de forma elíptica podem ser citados, entre outros, Payne et al (1986); 
Alassar (1999), Carmo (2000), Oliveira (2001), Lima et al. (2002a); Lima et al. (2002b), Farias 
(2002), Cardoso et al. (2003). 

Neste sentido, visando dar uma contribuição na área de transporte de calor e massa em sólidos 
com geometria complexa, este trabalho apresenta uma solução analítica para o problema de difusão 
transiente em corpos com geometria esferoidal, usando o método integral baseado em Galerkin. 

 
2. MODELAGEM MATEMÁTICA 

 
A equação geral da difusão é dada por: 
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Em coordenadas cilíndricas, para o caso bidimensional, a equação (1) pode ser escrita por: 
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 Para a solução da equação (2), as condições iniciais e de contorno podem ser usadas: 
( )z,rΦ=Φ   para t = 0           (3a) 

eΦ=Φ   na superfície do sólido para  t > 0        (3b) 
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Definindo os seguintes parâmetros adimensionais: 
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considerando o coeficiente de transporte ΦΓ e λ  constantes, sem geração da grandeza Φ , tem-se a 
seguinte equação de difusão na forma adimensional: 
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 Nas Equações (4a-e), “a ” é uma dimensão característica do sólido. 
A solução da Eq. (5) pode ser escrita da seguinte forma (Payne et al., 1986): 

( ) ( )∑
=

γ−ψ=Φ
N

1n

*t
nn

*** ne*z*,rCt,z,r*          (6) 

onde nγ  é o n-ésimo autovalor (independente da posição) e nC  é uma constante a ser determinada. 
Por conveniência, assume-se que o sólido tem dimensões finitas. 

Utilizando-se o método integral baseado em Galerkin (Método GBI) (Beck et al., 1992), a 
função ( )*z*,rnψ  é selecionada de forma que as condições de contorno homogêneas são satisfeitas 
e que a equação (6) seja a solução da Eq. (5). Esta ultima condição é satisfeita substituindo-se a 
equação (6) na equação (5). Então, após a substituição e uma série de manipulações algébricas, 
pode-se escrever: 

( ) ( ) 0*z*,r*z*,r nnn
2 =ψγ+ψ∇           (7) 

 Assim sendo, a equação de difusão agora será um problema de autovalor e a função 
( )*z*,rnψ  é a autofunção. A função ( )∗∗Ψ z,rn  é obtida pela combinação linear de um conjunto de 

funções. Seus membros são linearmente independentes, de maneira que a condição de contorno 
imposta seja satisfeita. Esta função é dada por: 
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onde ( )∗∗ z,rf j  é um elemento de um conjunto de funções de base e njd  são constantes a serem 
determinadas. 

A função jf  é chamada função de Galerkin e é obtida pela multiplicação de uma função 

( )∗∗ϕ z,r  por um elemento de um conjunto completo de funções. A função ( )∗∗ϕ z,r  é selecionada 
para que a condição de contorno homogênea seja satisfeita. A função jf  com j variando de 1 até N 
constituem um conjunto de funções de base. 

O método para selecionar funções de base para condições de contorno de 1ª espécie (condição 
de equilíbrio na fronteira do corpo) é dado na literatura (Kantorovich e Krylov; Ozisik; Hagi-Sheikh 
e Mashena; citados por Beck et al., 1992). Cada função de base deve tender para zero na fronteira 
do sólido. Algumas, mas não todas as funções de base podem ser zero em algum ponto no interior 
do sólido. 

Usando o procedimento de Galerkin, que consiste em multiplicar ambos os lados da Eq. (7) 
por *

idVf  e integrar o resultado sob o volume do sólido, obtém-se: 
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Substituindo, a Eq. (8) na Eq. (9) e dividindo-se pelo volume do sólido, obtêm-se: 
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em que i=1,2,...,N. Na forma matricial pode-se reescrever a equação (10) por: 
( ) 0dBA nn =γ+              (11) 

onde A  e B  são matrizes quadradas de N x N elementos. Os elementos das matrizes A  e B  são 
dados por: 
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Os coeficientes nN2n1n d,...,d,d  na Eq. (8) são elementos do vetor nd  na Eq. (11). Observa-

se que a matriz B  é simétrica, isto é, jiij bb = . A matriz A  também é simétrica. 
Desde que as equações lineares originadas da Eq. (11) são homogêneas, N21 ,...,, γγγ  podem 

ser obtidas de tal forma que o determinante da matriz ( )BA γ+  seja igual a zero. Determinando-se os 
autovalores nγ , os valores dos coeficientes njd  correspondendo a um valor nγ  podem ser obtidos. 
Novamente, devido a que as equações simultâneas resultante da Eq. (11) serem homogêneas, um 
dos coeficientes njd  pode ser arbitrariamente selecionado igual a 1, sem qualquer perda de 
generalidade. Portanto, para um dado nγ , um sistema de N-1 equações deve ser resolvido para 
obtenção de nN3n2n d,...,d,d . 

Para obtenção dos coeficientes nC  da Eq. (6) utiliza-se a condição inicial dada pela equação 
(3a). Então, quando t = 0, tem-se, a partir da Eq. (6) que: 
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Multiplicando ambos os membros da Eq. (13) por *dVfi  e integrando sob o volume do 
sólido obtêm-se: 
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O resultado da Eq. (14) será um conjunto de N equações algébricas lineares que permite a 
determinação de n21 C,...,C,C , o que completa a solução do problema. 

O valor médio da grandeza ∗Φ  é dado por (Whitaker, 1980) : 
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onde *V  é o volume do sólido em estudo. 
Neste trabalho a metodologia GBI é usada para resolver o problema de transporte de massa no 

interior de sólidos esferoidais (prolatos, oblatos e esferas). Neste caso,  M=Φ , D=Γ φ e λ=1. A 
Figura (1) ilustra um elipsóide de revolução. O contorno do sólido é definido por: 
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Figura 1. Elipsóide de revolução e suas características. 

 
Desde que 222 yxr += , pode-se escrever: 
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Sendo assim, a seguinte condição inicial e de contorno são obtidas: 
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Usando os parâmetros adimensionais definidos nas Eqs. (4a-e), tem-se que: 
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e as condições inicial e de contorno na forma adimensional assumem a forma: 
( ) 10t,z,rM ==∗∗∗∗             (20a) 
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As funções de base jf  são dadas por: 
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ou ainda, na forma adimensional por: 
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Sendo p = 0, 2, 4,..., NP e q = 0, 2, 4,...,p. Neste trabalho utilizou-se 10 funções de base, que 
corresponde a NP = 6. Estas funções de base não são ortogonais, no entanto Payne et al. (1986) 
mostram em seu trabalho que as funções nΨ ’s são ortogonais. 
 
3. RESULTADOS E DISCUSSÕES 
 
3.1. Validação 
 

Para obtenção dos resultados, um programa computacional, codificado no ambiente 
Mathematica , foi implementado. Para validar a metodologia apresentada, a Fig. (2) apresenta 
alguns resultados do teor de umidade adimensional em função do número de Fourier no centro do 
esferóide ( )0*z,0*r ==  obtidas neste trabalho comparados com resultados reportados por Payne et 
al. (1986) para um esferóide de razão de aspecto 00,2ab =  (esferóide prolato) e para um esferóide 
de razão de aspecto 50,0ab =  (esferóide oblato) e também com resultados reportados por Luikov 
(1968) para uma esferóide de razão de aspecto 00,1ab =  (esfera). Analisando a Fig. (2), pode-se 
perceber a perfeita concordância nos três casos apresentados. 
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Figura 2. Comparação entre os resultados do teor de umidade no centro de três esferóides, obtidos 

neste trabalho e aqueles reportados na literatura. 



 

 

3.2. Aplicação 
 
 Utilizando o modelo apresentado neste trabalho pode-se traçar o comportamento do teor de 
umidade médio adimensional dentro do esferóide em função do número de Fourier. A Fig. (3) 
ilustra o teor de umidade médio adimensional para razões de aspectos que variam de 25,0ab =  à 

00,5ab = . Analisando esta figura, pode-se observar que para uma razão de aspecto 25,0ab = , o 
teor de umidade médio adimensional dentro do esferóide decresce bem mais rápido do que para uma 
razão de aspecto de 00,5ab = , ou seja, quanto menor for a razão de aspecto do esferóide, mais 
rápido o teor de umidade médio decresce, isso quer dizer que o processo de secagem deste sólido 
será mais rápido. Portanto, pode-se escrever que a razão de aspecto do esferóide influência 
diretamente no seu processo de secagem. Este fato está ligado diretamente a relação área/volume 
(S/V). Numa análise detalhada, pode-se afirmar que quanto maior a relação área/volume de um 
sólido, mais rápida será a secagem, fixado as mesmas condições experimentais.  
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Figura 3. Teor de umidade médio adimensional em função do número de Fourier para várias razões 

de aspectos. 
 

Observa-se ainda nas Fig. (3), que para uma razão de aspecto de 0,25, o teor de umidade 
decresce rapidamente para uma pequena variação do número de Fourier. Enquanto que para uma 
razão de aspecto de 5,00, o teor de umidade decresce mais suavemente para esta mesma variação do 
número de Fourier. Verificou-se, a partir da análise de outros resultados, que no centro do esferóide, 
o comportamento das curvas é mais suave, em relação ao comportamento das curvas do teor de 
umidade médio adimensional. Isto permite escrever que, no centro do esferóide é o local onde 
ocorrem os menores gradientes de umidade durante o processo de secagem, para uma mesma razão 
de aspecto e um mesmo número de Fourier. 
 A Figura (4), apresenta a distribuição do teor de umidade adimensional dentro de um 
esferóide oblato com razão de aspecto 5,0ab =  em função das coordenadas cilíndricas ( )*z*,r  
para o número de Fourier 05,0*t = . Analisando esta figura, pode-se notar que a distribuição do teor 
de umidade apresenta elevados gradientes de umidade, principalmente no eixo *z  e nas 
proximidades da superfície do sólido. As linhas de iso-concentração são apresentadas em formas de 
linhas elípticas tendendo a acompanhar a forma do esferóide oblato. É observado um fenômeno que 



 

 

ocorre na extremidade do esferóide, nas proximidades da coordenada 00,1*r = , o teor de umidade 
adimensional é muito baixo. Isto quer dizer que, a secagem ocorre rapidamente nessa região, 
gerando altos gradientes de umidade. Sendo assim, esta região é mais propicia a sofrer efeitos 
termo-mecânicos, tais como trincas, deformações e podendo chegar até a ruptura do sólido, efeitos 
estes que comprometem a qualidade do produto pós-secagem. Vários autores também reportam este 
efeito de ponta, por exemplo, Lima (1999), Carmo (2000), Oliveira (2001) e Nascimento (2002). 
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Figura 4. Distribuição do teor de umidade adimensional com 5,0ab =  em função das coordenadas 

cilíndricas para 05,0*t = . 
 

 A Figura (5) apresenta a distribuição do teor de umidade adimensional dentro de um esferóide 
oblato com razão de aspecto 5,0ab =  (esferóide oblato) em função das coordenadas cilíndricas 
( )*z*,r  para o número de Fourier igual a 0,10. A analise da figura demonstra que a distribuição do 
teor de umidade adimensional apresenta gradientes de umidade baixos, ou seja, a distribuição do 
teor de umidade adimensional já se apresenta quase que por igual dentro do esferóide. Também se 
nota as formas elípticas das linhas de iso-concentração dentro do esferóide. A comparação das Figs. 
(3) e (4) indica que o fluxo de umidade ocorre do centro do sólido para a superfície do mesmo, e 
que os maiores gradientes de umidade ocorrem em baixos números de Fourier, tendendo a zero no 
final do processo, quando então o sólido atinge seu teor de umidade de equilíbrio. 
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Figura 5. Distribuição do teor de umidade adimensional com 5,0ab =  em função das coordenadas 

cilíndricas para 10,0*t = . 
 

 A Figura (6) apresenta a distribuição do teor de umidade adimensional dentro de um esferóide 
com razão de aspecto 0,1ab =  (esfera) em função das coordenadas espaciais para o número de 



 

 

Fourier t*=0,05. Nota-se que ocorrem altos gradientes de umidade dentro do esferóide, ou seja, 
enquanto que na região próximo da superfície do esferóide o produto está praticamente seco no seu 
centro ele está muito úmido. As linhas de iso-concentração se apresentam em formas circulares, 
acompanhando a forma do esferóide. Nota-se também que nessa forma esférica não aparece 
nenhuma região que apresente o fenômeno de efeito de ponta. 
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Figura 6. Distribuição do teor de umidade adimensional com 0,1ab =  em função das coordenadas 

cilíndricas para 05,0*t = . 
 

A Figura (7), apresenta a distribuição do teor de umidade adimensional dentro de esferóide em 
função das coordenadas cilíndricas ( )*z*,r  com razão de aspecto 5,1ab =  (esferóide prolato) para 
t*=0,05. A analise desta figura mostra que neste tempo de processo, ocorrem altos gradientes de 
umidade dentro do esferóide, principalmente nas proximidades de z*=1,00. Percebe-se que as linhas 
de iso-concentração possuem formas elípticas que acompanham a forma do esferóide prolato. 

Para finalizar, as regiões onde aparecem altos gradientes de umidade e temperatura são as 
regiões de maior perda de água e aquecimento do sólido, e são mais propicias a existências de 
choques térmicos e conseqüentemente trincas, fraturas e deformações, que comprometem a 
qualidade do produto. 
 
4. CONCLUSÕES 
 
 De acordo com a análise dos dados obtidos com a simulação do processo de secagem em 
corpos com geometria elipsoidal, pode-se concluir de maneira geral que: a modelagem matemática e 
o método integral baseado em Galerkin utilizados para a obtenção da solução analítica do problema 
de transporte de umidade em sólidos que variam de um disco circular até um cilindro infinito, 
passando por esfera, foi adequada. De maneira semelhante, a solução pode ser utilizada para 
descrever outros fenômenos transientes, tais como: umidificação, resfriamento e/ou aquecimento; a 
forma e/ou a razão de aspecto do esferóide influência diretamente no seu processo de secagem, e 
este fato está ligado diretamente à relação área/volume, ou seja, quanto menor for a relação 
área/volume, mais rápido ocorrerá o processo de secagem, para um mesmo número de Fourier 



 

 

fixado; os menores gradientes de umidade durante o processo de secagem ocorrem próximo do 
centro do esferóide e bastante elevado próximo a superfície, principalmente para tempos curtos, 
para qualquer razão de aspecto; os esferóides oblatos e prolatos apresentam um fenômeno chamado 
de efeito de ponta, onde apresentam uma região com altos gradientes de umidade sendo mais 
expressivo para os esferóides prolatos. 
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Figura 7. Distribuição do teor de umidade adimensional com 5,1ab =  em função das coordenadas 

cilíndricas para o 05,0*t = . 
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HEAT AND MASS TRANSPORT IN ELLIPSOIDAL SOLIDS OF 
REVOLUTION: A THEORETICAL STUDY USING THE GALERKIN 
METHOD 
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Abstract. The drying is a transient process that involves the simultaneous heat and mass transfer. 
The study of the mass diffusion in the form of water in the liquid phase is usually applied well to 
bodies with geometries known such as: parallelepiped, cylinder and sphere, being like this, exists 
the need of studies that involve other geometric forms such as prolate and oblate spheroids   
(revolution ellipsoids), forms these so common ones in the nature. In this sense, to give a 
contribution in the area of heat and mass transport in solids with complex geometry, this work 
presents an analytical solution for the problem of transient diffusion in bodies with spheroidal 
geometry. For the obtaining of the analytical solution of the diffusion equation it is considered 
constant diffusion coefficient and boundary condition of first kind in the surface of the solid. The 
solution is obtained using the Galerkin method. The formal solution is applied to predict the 



 

 

average moisture content and the distribution of the moisture content and temperature inside of 
spheroids during the drying process. Several results on the effects of the Fourier numbers and of 
the aspect ratio in the drying rate, average moisture content and distribution of the moisture 
content and temperature, during the process, are presented and analysed. The proposed model is 
versatile could be used to solve diffusion problems such an as drying, wetting, heating and cooling 
of solids with form that vary from a circular disk to an infinite cylinder, besides sphere. 
 
Keywords: drying, spheroid, ellipsoid, exact solution, mass, heat. 


