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Resumo. A secagem € um processo transiente que envolve a transferéncia simultanea de calor e
massa. O estudo da difusdo de massa na forma de agua na fase liquida geralmente é aplicado a
corpos com geometrias bem conhecidas tais como: paralelepipedo, cilindro e esfera, sendo assim,
existe a necessidade de estudos que envolvam outras formas geométricas tais como esferdides
prolato e oblato (elipsdides de revolucdo), formas estas tdo comuns na natureza. Neste sentido,
visando dar uma contribuicdo na area de transporte de calor e massa em solidos com geometria
complexa, este trabalho apresenta uma solugdo analitica para o problema de difusdo transiente em
corpos com geometria esferoidal. Para a obtencdo da solucdo analitica da equagdo de difusdo
considera-se coeficiente de difusdo constante e condigdo contorno de primeira espécie na superficie
do solido. A solucéo é obtida usando o método de Galerkin. A solucdo formal € aplicada para
predizer o teor de umidade médio e a distribuicdo do teor de umidade e temperatura dentro de
esferides durante o processo de secagem. Varios resultados sobre os efeitos dos nimeros de
Fourier e da razdo de aspecto na taxa de secagem, teor de umidade médio e distribuicéo do teor de
umidade e temperatura, durante o processo, sdo apresentados e analisados. O modelo proposto é
versatil podendo ser utilizado para resolver problemas de difusdo tais como secagem,
umidificagdo, aquecimento e resfriamentos de solidos com forma que variam de um disco circular
até umcilindro infinito, inclusive esfera.
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1. INTRODUCAO

Na industria quimica, um dos processos mais importantes utilizados no processamento de
alimentos e na estocagem de gréos € o processo de secagem. Este processo consiste na separacao
parcial da parte liquida (geramente a dgua) da sdlida de um determinado material. Em relacéo a
outras técnicas de separacdo, a secagem se diferencia devido a retirada das moléculas que, neste
caso, é obtida por uma movimentacéo do liquido, provocada por uma diferenca de presséo parcial
do vapor d &gua entre a superficie do produto a ser secado e o ar que o envolve. No caso dos
alimentos, a remocdo de agua do material Uumido é realizada até um nivel onde a deterioracéo
provocada por microorgani Smos possa ser minimizada.

Solucdes analiticas ou numeéricas da equacdo de difusdo, com coeficiente de difusdo constante
ou variavel e condigbes de contorno constante (equilibrio) ou do tipo convectivo, para varias
geometrias (paralelepipedo, cilindro e esfera), podem ser encontradas em Crank (1992) e



Gebhart(1993). Para corpos de forma eliptica podem ser citados, entre outros, Payne et al (1986);
Alassar (1999), Carmo (2000), Oliveira (2001), Lima et al. (2002a); Lima et al. (2002b), Farias
(2002), Cardoso et al. (2003).

Neste sentido, visando dar uma contribuic¢éo na érea de transporte de calor e massa em solidos
com geometria complexa, este trabalho apresenta uma solucdo analitica para o problema de difuséo
transiente em corpos com geometria esferoidal, usando o método integral baseado em Galerkin.

2. MODELAGEM MATEMATICA

A equacdo geral dadifusdo é dada por:

_a(;\tqn) =0 [(r“’mq>)+ P 1)

Em coordenadas cilindricas, para o caso bidimensional, a equacéo (1) pode ser escrita por:
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Para a solugdo da equagéo (2), as condic¢les iniciais e de contorno podem ser usadas:

®=d(r,z) parat =0 (33)

D=, na superficie do solido para t >0 (3b)

%E:O . em r=0, paratodot (3c)
z

%ﬁ =0 em z=0; paratodot (3d)
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Definindo os seguintes parametros adimensionais:
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considerando o coeficiente de transporte I ®e A constantes, sem geracdo da grandeza @, tem-sea
seguinte equacao de difusdo naforma adimensional:
*
0% _ 2+ (5)
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Nas Equacles (4a-€), “ a” € uma dimensdo caracteristica do solido.
A solucdo da Eq. (5) pode ser escrita da seguinte forma (Payne et al., 1986):

N
O * (r*,z*,t*): chwn(r*,z*)e‘vnt* (6)
n=1

onde y,, €0 n-ésimo autovalor (independente da posicéo) e C,, € uma constante a ser determinada.
Por conveniéncia, assume-se que 0 solido tem dimensdes finitas.

Utilizando-se 0 método integral baseado em Galerkin (Método GBI) (Beck et a., 1992), a
fungdo Y, (r* , z*) € selecionada de forma que as condic¢des de contorno homogéneas sdo satisfeitas
e que a equacdo (6) sga a solucdo da Eg. (5). Esta ultima condicéo é satisfeita substituindo-se a
equacdo (6) na equacdo (5). Entdo, apoOs a substituicdo e uma série de manipulagbes algébricas,
pode-se escrever:

D%y (r,2%) + vaWn(*,2*)=0 Y

Assim sendo, a equacdo de difusdo agora sera um problema de autovalor e a fungdo
Wn (r* : z*) é aautofuncdo. A funcéo W, (rD, ZD) € obtida pela combinacdo linear de um conjunto de
funcBes. Seus membros sdo linearmente independentes, de maneira que a condi¢do de contorno
imposta sgja satisfeita. Estafuncéo é dada por:

(4a-e)
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onde f j( ,Z ) é um elemento de um conjunto de funcBes de base e d; sdo constantes a serem

determinadas.
A funcéo f- é chamada funcdo de Galerkin e é obtida pela multiplicacdo de uma funcéo

cl)(rD D) por um elemento de um conjunto completo de fungdes. A fungéo cl)( ) € selecionada
para que a condicao de contorno homogénea seja satisfeita. A fungdo f; comj variando de 1 até N

constituem um conjunto de funcdes de base.

O método para selecionar fungdes de base para condic¢des de contorno de 12 espécie (condigdo
de equilibrio nafronteira do corpo) € dado naliteratura (Kantorovich e Krylov; Ozisik; Hagi-Sheikh
e Mashena; citados por Beck et al., 1992). Cada funcéo de base deve tender para zero na fronteira
do sdlido. Algumas, mas néo todas as func¢bes de base podem ser zero em algum ponto no interior
do solido.

Usando o procedimento de Galerkin, que consiste em multiplicar ambos os lados da Eq. (7)

por f; dV" eintegrar o resultado sob o volume do sdlido, obtém-se:

Ifimzwndv* +yn [fiWadv’ =0 9)
Substituindo, aEqg. (8) naEg. (9) e dividindo-se pelo volume do sélido, obtém-se:
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em que |—1,2,...,N. Naformamatricia podese reescrever a equacado (10) por:

(A +v,BH, =0 (12)
onde A e B sdo matrizes quadradas de N x N elementos. Os elementos das matrizes A e B sio
dados por:

aij =

(12a-b)

Vo
Os coeficientes d,;,d5,...,d,, Na Eq. (8) sfo elementos do vetor d,, na Eq. (11). Observa-
Se que amatriz B ésimétrica, isto &, bjj =bj; . A matriz A também é simétrica
Desde que as equagdes lineares originadas da Eq. (11) sGo homogéness, yi,Y,,...,YN Podem
ser obtidas de tal forma que o determinante da matriz (K + yE) sgjaigua azero. Determinando-se 0s
autovalores y,,, os valores dos coeficientes d,; correspondendo aum valor y,, podem ser obtidos.

Novamente, devido a que as equagbes simultaneas resultante da Eq. (11) serem homogéneas, um
dos coeficientes d; pode ser arbitrariamente selecionado igual a 1, sem qualquer perda de

generalidade. Portanto, para um dado y,,, um sistema de N-1 equagOes deve ser resolvido para
obtengéo de d,5,dp3,.., A -

Para obtenc&o dos coeficientes C,, da Eq. (6) utiliza-se a condigéo inicial dada pela equagéo
(34). Entéo, quandot =0, tem-se, apartir da Eqg. (6) que:

(DD(D D) zc w (D D) (13)



Multiplicando ambos os membros da Eq. (13) por f; dV * e integrando sob o volume do
solido obtém-se:

\‘/[fidJD(rD,zD)iv* = J’

N *

f.C, ¥, (rD, zD)iv (14)
v© n=l
O resultado da Eq. (14) sera um conjunto de N equacOes algébricas lineares que permite a

determinagéo de C,,C,,...,C,,, 0 que completa a solugdo do problema.

O valor médio da grandeza ®" é dado por (Whitaker, 1980) :
U= 1* I(DD(r*,z*,t*)jV* (15)
Vo
onde V * € o volume do solido em estudo.
Neste trabalho a metodologia GBI € usada para resolver o problema de transporte de massa no

interior de sdlidos esferoidais (prolatos, oblatos e esferas). Neste caso, ®=M, F?=DeA=1 A

Figura (1) ilustraum elipsoide de revolugdo. O contorno do solido é definido por:
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Figura 1. Elipsoide de revolucéo e suas caracteristicas.

Desde que r? =x? +y?, pode-se escrever:

z=b1/1—5ﬁg (17)
a0

N T

M(r,z,t=0)=M, =cte (18a)

M =a,z=1/1—BﬁBZ,tH—Me (18b)
O

a—M:O; a—M:O em z=0e r=0, paratodo t (18¢c)
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Usando os parametros adimensionais definidos nas Egs. (4a-€), tem-se que:

zD=9\ll— (rD)2 (19)

a
e as condicOesinicial e de contorno naforma adimensional assumem aforma:

MY, 27t =0)=1 (20a)



MDED:LZD:E\/l—(rD)Z,tDE:O (200)
a

oM =0; oM =0 em z=0e r=0, paratodot (20c)
0z* or*

As funcoes de base f; so dadas por:

fj(r,z):E—;—Z—éE(p_Q)zq (21)

b
ou ainda, naforma adimensional por:
)-SR =

Sendop=0,24,..,NPeqg=0, 2, 4,..p. Neste trabaho utilizou-se 10 funcdes de base, que
corresponde a NP = 6. Estas fungbes de base ndo sdo ortogonais, no entanto Payne et al. (1986)
mostram em seu trabalho que as fungdes W,,’ s sdo ortogonais.

3. RESULTADOSE DISCUSSOES
3.1. Validagao

Para obtencdo dos resultados, um programa computacional, codificado no ambiente
Mathematicall, foi implementado. Para validar a metodologia apresentada, a Fig. (2) apresenta
alguns resultados do teor de umidade adimensional em funcdo do nimero de Fourier no centro do
esferéide (r* = 0,z* = 0) obtidas neste trabalho comparados com resultados reportados por Payne et

al. (1986) para um esferdide de razéo de aspecto b/a=2,00 (esferdide prolato) e para um esferéide
de razdo de aspecto b/a=0,50 (esferdide oblato) e também com resultados reportados por Luikov
(1968) para uma esferéide de razdo de aspecto b/a=100 (esfera). Analisando a Fig. (2), pode-se
perceber a perfeita concordancia nos trés casos apresentados.
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Figura 2. Comparacéo entre os resultados do teor de umidade no centro de trés esferoides, obtidos
neste trabalho e aquel es reportados na literatura.



3.2. Aplicacéo

Utilizando o modelo apresentado neste trabalho pode-se tragar 0 comportamento do teor de
umidade médio adimensional dentro do esferdide em funcdo do nimero de Fourier. A Fig. (3)
ilustra o teor de umidade médio adimensional para razdes de aspectos que variam de b/a=0,25 a
b/a=5,00. Analisando esta figura, pode-se observar que para uma razéo de aspecto b/a=0,25, o
teor de umidade médio adimensional dentro do esferdide decresce bem mais rapido do que parauma
razéo de aspecto de b/a=5,00, ou sgja, quanto menor for a razéo de aspecto do esfer6ide, mais
rapido o teor de umidade médio decresce, isso quer dizer que 0 processo de secagem deste solido
serd mais rapido. Portanto, pode-se escrever que a razdo de aspecto do esferdide influéncia
diretamente no seu processo de secagem. Este fato esta ligado diretamente a relacdo area/volume
(S/V). Numa andlise detalhada, pode-se afirmar que quanto maior a relacdo area/volume de um
solido, mais rapida sera a secagem, fixado as mesmas condi¢oes experimentais.
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Figura 3. Teor de umidade médio adimensional em funcdo do nimero de Fourier para varias razoes
de aspectos.

Observa-se ainda nas Fig. (3), que para uma razéo de aspecto de 0,25, o teor de umidade
decresce rapidamente para uma peguena variagdo do nimero de Fourier. Enquanto que para uma
razéo de aspecto de 5,00, o teor de umidade decresce mais suavemente para esta mesma variacéo do
numero de Fourier. Verificou-se, a partir da andlise de outros resultados, que no centro do esferdide,
0 comportamento das curvas € mais suave, em relacdo ao comportamento das curvas do teor de
umidade médio adimensional. Isto permite escrever que, no centro do esferéide € o local onde
ocorrem 0s menores gradientes de umidade durante o processo de secagem, para uma mesma razéo
de aspecto e um mesmo numero de Fourier.

A Figura (4), apresenta a distribuicdo do teor de umidade adimensional dentro de um
esferéide oblato com razéo de aspecto b/a=0,5 em fungéo das coordenadas cilindricas (r*,z*)

para o numero de Fourier t* =0,05. Analisando esta figura, pode-se notar que a distribuicdo do teor

de umidade apresenta elevados gradientes de umidade, principalmente no exo z* e nas
proximidades da superficie do solido. As linhas de iso-concentracdo sdo apresentadas em formas de
linhas €lipticas tendendo a acompanhar a forma do esferdide oblato. E observado um fendmeno que



ocorre na extremidade do esferdide, nas proximidades da coordenada r* =1,00, o teor de umidade

adimensional € muito baixo. Isto quer dizer que, a secagem ocorre rapidamente nessa regiao,
gerando altos gradientes de umidade. Sendo assim, esta regido é mais propicia a sofrer efeitos
termo-mecanicos, tais como trincas, deformagdes e podendo chegar até a ruptura do solido, efeitos
estes que comprometem a qualidade do produto pos-secagem. Varios autores também reportam este
efeito de ponta, por exemplo, Lima (1999), Carmo (2000), Oliveira (2001) e Nascimento (2002).
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Figura 4. Distribuicdo do teor de umidade adimensional com b/a = 0,5 em fung&o das coordenadas
cilindricas para t* = 0,05.

A Figura (5) apresenta a distribuicdo do teor de umidade adimensional dentro de um esferdide
oblato com razdo de aspecto b/a=0,5 (esfer6ide oblato) em fungdo das coordenadas cilindricas

(r* : z*) para o numero de Fourier igua a 0,10. A analise da figura demonstra que a distribui¢do do

teor de umidade adimensional apresenta gradientes de umidade baixos, ou sgja, a distribui¢cdo do
teor de umidade adimensional ja se apresenta quase que por igual dentro do esferéide. Também se
nota as formas elipticas das linhas de iso-concentracéo dentro do esferdide. A comparagéo das Figs.
(3) e (4) indica que o fluxo de umidade ocorre do centro do sdlido para a superficie do mesmo, e
gue os maiores gradientes de umidade ocorrem em baixos nimeros de Fourier, tendendo a zero no
final do processo, quando entdo o solido atinge seu teor de umidade de equilibrio.
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Figura 5. Distribuiggo do teor de umidade adimensional com b/a=0,5 em fungdo das coordenadas
cilindricas para t* =0,10.

A Figura (6) apresenta a distribuicdo do teor de umidade adimensional dentro de um esferdide
com razdo de aspecto b/a=10 (esfera) em fungéo das coordenadas espaciais para 0 nimero de



Fourier t*=0,05. Nota-se que ocorrem altos gradientes de umidade dentro do esferdide, ou seja,
enguanto que na regido proximo da superficie do esferdide o produto esta praticamente seco no seu
centro ele estd muito umido. As linhas de iso-concentracdo se apresentam em formas circulares,
acompanhando a forma do esferéide. Nota-se também que nessa forma esférica ndo aparece
nenhuma regido que apresente o fendmeno de efeito de ponta.
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Figura 6. Distribuiggo do teor de umidade adimensional com b/a =1,0 em fung&o das coordenadas
cilindricas para t* =0,05.

A Figura(7), apresenta a distribuic&o do teor de umidade adimensional dentro de esferéide em
funcéo das coordenadas cilindricas (r* , z*) com razéo de aspecto b/a =15 (esfer6ide prolato) para
t*=0,05. A analise desta figura mostra que neste tempo de processo, ocorrem atos gradientes de
umidade dentro do esferdide, principalmente nas proximidades de z*=1,00. Percebe-se que as linhas
de iso-concentragdo possuem formas elipticas que acompanham a forma do esferdide prolato.

Para finalizar, as regides onde aparecem atos gradientes de umidade e temperatura séo as
regides de maior perda de agua e aquecimento do sblido, e sGo mais propicias a existéncias de
chogues térmicos e consequentemente trincas, fraturas e deformacgles, que comprometem a
gualidade do produto.

4. CONCLUSOES

De acordo com a andlise dos dados obtidos com a simulagéo do processo de secagem em
corpos com geometria elipsoidal, pode-se concluir de maneira geral que: a modelagem mateméticae
o método integral baseado em Galerkin utilizados para a obtencdo da solugdo analitica do problema
de transporte de umidade em sblidos que variam de um disco circular até um cilindro infinito,
passando por esfera, foi adequada. De maneira semelhante, a solucdo pode ser utilizada para
descrever outros fendmenos transientes, tais como: umidificagao, resfriamento e/ou aguecimento; a
forma e/ou a razdo de aspecto do esferdide influéncia diretamente no seu processo de secagem, e
este fato esta ligado diretamente a relagdo arealvolume, ou sgja, quanto menor for a relacdo
arealvolume, mais rdpido ocorrera 0 processo de secagem, para um mesmo nuimero de Fourier



fixado; os menores gradientes de umidade durante o processo de secagem ocorrem proximo do
centro do esferdide e bastante elevado proximo a superficie, principalmente para tempos curtos,
para qualquer razéo de aspecto; os esferdides oblatos e prolatos apresentam um fenémeno chamado
de efeito de ponta, onde apresentam uma regido com altos gradientes de umidade sendo mais
expressivo para os esferéides prolatos.
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Figura 7. Distribuiggo do teor de umidade adimensional com b/a =15 em fung&o das coordenadas
cilindricas parao t* =0,05.
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REVOLUTION: A THEORETICAL STUDY USING THE GALERKIN
METHOD

Daniel Rebelo deLima

Suetony do Nascimento Farias

Antonio Gilson Barbosa deLima

Departamento de Engenharia Mecénica, Centro de Ciéncias e Tecnologia, Universidade Federal da
Campina Grande (UFCG), Caixa Postal 10069, CEP 58109-970, Campina Grande-PB, Brasil.
E-mail: gilson@dem.ufpb.br

Abstract. The drying is a transient process that involves the simultaneous heat and mass transfer.
The study of the mass diffusion in the form of water in the liquid phase is usually applied well to
bodies with geometries known such as. parallelepiped, cylinder and sphere, being like this, exists
the need of studies that involve other geometric forms such as prolate and oblate spheroids
(revolution élipsoids), forms these so common ones in the nature. In this sense, to give a
contribution in the area of heat and mass transport in solids with complex geometry, this work
presents an analytical solution for the problem of transient diffusion in bodies with spheroidal
geometry. For the obtaining of the analytical solution of the diffusion equation it is considered
constant diffusion coefficient and boundary condition of first kind in the surface of the solid. The
solution is obtained using the Galerkin method. The formal solution is applied to predict the



average moisture content and the distribution of the moisture content and temperature inside of
spheroids during the drying process. Several results on the effects of the Fourier numbers and of
the aspect ratio in the drying rate, average moisture content and distribution of the moisture
content and temperature, during the process, are presented and analysed. The proposed model is
versatile could be used to solve diffusion problems such an as drying, wetting, heating and cooling
of solids with form that vary froma circular disk to an infinite cylinder, besides sphere.

Keywords: drying, spheroid, ellipsoid, exact solution, mass, heat.



