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Resumo: Foi realizado neste trabalho uma formulação matemática, análise e solução do problema
de condução de calor tridimensional não-linear e transiente, definido no sistema de coordenadas
cartesianas. A Técnica da Transformada Integral Generalizada foi utilizada para transformar o
sistema de equações diferenciais parciais original em um sistema de equações diferenciais
ordinárias, o qual foi truncado em uma ordem suficientemente grande de acordo com a precisão
desejada e os recursos computacionais disponíveis. Foram obtidos e apresentados resultados
numéricos para a difusão de calor em um paralelepípedo de Aço Inoxidável Aisi 304.
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1. INTRODUÇÃO

Os processos de transferência de calor estão presentes em diversas aplicações. Na natureza,
animais e plantas não sobrevivem sem os processos vitais da transferência de calor que fazem parte
de seu metabolismo. Assim, a transferência de calor tornou-se, desde tempos remotos, um
importante campo de pesquisa teórica e aplicada.

Muitas aplicações na área de transferência de calor são representadas por modelos difusivos
não-lineares. Para o caso tridimensional, o modelamento matemático será representado por uma
equação diferencial parcial, não-linear de segunda ordem.

As técnicas analíticas tradicionais não abordam todos os problemas. Soluções aproximadas
foram propostas através de métodos numéricos. Técnicas de soluções híbridas analítico-numéricas
têm sido desenvolvidas e utilizadas em diversos trabalhos disponíveis na literatura. Uma família
destas técnicas são os métodos integrais, e entre eles há uma técnica chamada Transformada
Integral Generalizada (TTIG) que têm sido utilizada com sucesso na solução de problemas
difusivos ou convectivos-difusivos.

A Técnica da Transformada Integral Generalizada transforma a equação diferencial parcial
original em um sistema de equações diferenciais ordinárias acoplado e infinito, o qual é truncado e
resolvido numericamente através de sub-rotinas computacionais para problemas de valor inicial.
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Será realizado neste trabalho, uma formulação matemática, análise e solução para o problema de
difusão não-linear tridimensional e transiente. Resultados numéricos serão apresentados para a
difusão de calor em um cubo.

2. ANÁLISE MATEMÁTICA

O problema de condução de calor transiente no interior de um cubo com condutividade térmica
dependente da temperatura foi considerado, cuja formulação matemática é dada por
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Os parâmetros e variáveis presentes na Eq. (1) são adimensionais e estão relacionados com suas

dimensões pela formulação seguinte
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O tempo adimensional (t) é também conhecido na literatura como número de Fourier, Fo, assim
2** )L/(ttFo α=≡ . As condições inicial e de contorno para a Eq. (1) são representadas por
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A condutividade térmica é representada neste trabalho por uma função linear da temperatura,
como expressa a seguir
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A Eq. (4) quando substituída na Eq. (1) resulta
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No caso particular 0b = , o problema difusivo não linear se torna linear.



2.1 Problemas de Autovalores

Os problemas auxiliares de autovalor e suas respectivas condições de contorno para os três eixos
são escolhidos como sugerido em Aparecido (1997) e são expressos por
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As soluções dos problemas, Eqs. (6), (7) e (8), sujeitas às condições de contorno, Eqs. (6a,b),
(7a,b) e (8a,b) para os três eixos espaciais são efetuadas e portanto são obtidas as autofunções
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3. TRANSFORMADA INTEGRAL GENERALIZADA

A Técnica da Transformada Integral Generalizada aplicada na solução da equação diferencial
parcial, Eq. (1) transforma o problema investigado em um sistema infinito acoplado de equações
diferenciais ordinárias não-lineares de primeira ordem, o qual é truncado e resolvido
numericamente. Através da fórmula de inversão que esta técnica proporciona é possível reconstruir
o potencial original.

O par transformada-inversa associado aos três eixos é constituído seguindo a teoria da
Transformada Integral Generalizada, (Cotta, 1993), e é expresso pelas seguintes equações:



 ,,2,1 pm,i,     ,dxdydz)t,z,y,x(T)z()y()x()t(T~ x y z

0 0 0
)z(

p
)y(

m
)x(

i
)xyz(

imp ∞=ΨΨΨ= ∫ ∫ ∫ K
l l l

                (12)

)t(T~)z()y()x()t,z,y,x(T )xyz(
imp

1p,m,i

)z(
p

)y(
m

)x(
i∑

∞

=

ΨΨΨ=                                                                    (13)

O termo )xyz(
impT~  significa a transformação da variável dependente para os eixos x, y e z em
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Para transformar a equação diferencial parcial não linear, Eq.(5) multiplica-se esta equação
pelas respectivas autofunções; os problemas de autovalores são multiplicados por )t,z,y,x(T ; as
equações resultantes foram somadas e integradas sobre todo o domínio. Assim, um sistema de
equações diferenciais ordinárias acoplado é obtido, veja Neves (2003), e dado por
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onde o vetor )(~ t∞Τ  contém todos os infinitos termos, transformados para ∞= ,,2,1p,m,i K ,
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A Eq. (14) é um sistema não-linear de equações diferenciais ordinárias de primeira ordem
acopladas. Para que sua postulação fique completa é necessário prover uma condição inicial. Isto
pode ser efetuado, transformando a condição inicial original, Eq. (3a). Logo tem-se,
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Os coeficientes na Eq. (14) são resultantes da transformação dos termos lineares e não-lineares
da Eq. (5) e são representados por
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Os coeficientes envolvidos na Eq. (17) são expressos por:
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sendo que os coeficientes presentes nas Eqs. (19) e (20), são integrais que surgiram durante o
processo de transformação realizado pela TTIG. Seus resultados são
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nas quais os símbolos ijδ , mnδ  e pqδ  são conhecidos como delta de kronecker e são definidos por
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Os coeficientes presentes na Eq. (18) são expressões matemáticas que contém as não-
linearidades existentes no problema analisado. Essas contribuições foram resolvidas
numericamente.

3.1 Truncamento da Expansão de Funções em Séries Finitas

O sistema definido pela Eq. (14) possui um número infinito de equações diferenciais ordinárias
de primeira ordem sujeito à condição inicial transformada, dada pela Eq. (16). Para obter-se
resultados numéricos, o sistema infinito, Eq. (14), deve ser truncado em uma ordem finita
suficientemente grande de acordo com a precisão desejada e respeitando os recursos
computacionais disponíveis. Deste modo, truncando a expansão x em Nx termos, a expansão y em
Ny termos e a expansão z em Nz termos, o número total de termos será ( zyx NNN ), implicando no
sistema de equações diferenciais ordinárias, como segue
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sujeito à condição inicial
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A Eq. (21) é um sistema finito de equações diferenciais ordinárias não-lineares de primeira
ordem e pode ser escrito na forma matricial, como apresentado a seguir
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onde A  é a matriz dos coeficientes lineares ijmnpqA  e )TB( (t)~  a matriz dos coeficientes não-lineares
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Assim, a fórmula de inversão, Eq. (13), depois de truncada é utilizada para obter a distribuição
de temperatura
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4. RESULTADOS E DISCUSSÃO

Neste trabalho, foi considerado um paralelepípedo cartesiano, com comprimento unitário em
cada direção x, y e z, lx = ly = lz = 1. O material analisado é o Aço Inoxidável Aisi 304, o qual foi
submetido a um processo de resfriamento de uma temperatura inicial K1200T0 =∗  até uma
temperatura final K400T =∗

∞ . A ordem usada no truncamento da série foi de 5, 7 e 10 termos para
cada direção, resultando em sistemas diferenciais com 125, 343 e 1000 equações diferenciais,
respectivamente. Os resultados apresentados aqui se referem a 10 termos no truncamento da série.

O sistema finito não-linear, Eq. (23) foi resolvido através de um programa implementado em
Fortran 90/95 que simula a difusão tridimensional não-linear transiente para um corpo com o
formato de paralelepípedo cartesiano. Neste programa, a subrotina DIVPAG do IMSL (1994) foi



usada para resolver o sistema diferencial de equações. A precisão da subrotina foi fixada em
510−=ε . A condutividade térmica dimensional do Aço Aisi 304 foi obtida a partir dos dados

experimentais disponíveis em Incropera & de Witt (1992), para o intervalo de temperatura de 400K
a 1200K e é expressa por

*** T013,047,11)T(k += ,         ,K]T[ * =         =]k[ * )Km/(W × .

Partindo desse polinômio de primeira ordem, utilizou-se a Eq. (2f) para calcular a condutividade
térmica de referência *

refk  que possui valor igual a 22,42 )Km/(W ×  e então, através da Eq. (2g)
obteve-se a condutividade térmica adimensional .T489,0756,0)T(K +=

Para este caso, o tempo computacional necessário para se obter a solução aumenta
significativamente devido ao cômputo repetido dos coeficientes dependentes da temperatura. Para
reduzir o tempo de processamento, as matrizes A e B, presentes na Eq. (23) foram computadas na
forma de matrizes banda, sendo que os elementos das matrizes que estejam fora da banda são
desprezados. Quando o tamanho da banda aumenta, a aproximação para a solução é melhor, mas
também aumenta o custo computacional. O valor adotado para a largura da banda foi 21.

Para o caso que 0b = , a Eq. (5) torna-se linear, dependendo somente do parâmetro a. Adotou-se
três maneiras para analisar o problema linear gerado: a primeira consiste em tomar a condutividade
térmica igual ao valor médio *

refk  e assim 1k/k)T(K refref == ∗∗ ; as outras duas consistem em tomar

741,0k/k)T(K refmin == ∗∗  e 249,1k/k)T(K refmax == ∗∗ , onde )T(kk maxmax
∗∗∗ =  e )T(kk minmin

∗∗∗ =
são os respectivos valores da condutividade térmica nas temperaturas máxima e mínima. Para este
caso, K400Tmin =

∗  e K1200Tmax =
∗ .

Na Fig. (1), são apresentadas as distribuições de temperatura máxima (Tmax) e temperatura
média (Tmédia), respectivamente, em função do tempo adimensional, Fo. Como esperado, as curvas
de temperatura tendem para zero mais rapidamente nos casos em que a condutividade térmica é
maior. É importante salientar que, apesar das distribuições de temperatura estarem próximas, os
resultados obtidos, para um dado instante Fo, se diferenciam bastante para os três casos analisados.
Como exemplo, para 2,0Fo = , tem-se para o caso que 741,0)T(K = , uma temperatura

652,0Tmax =  e para 249,1)T(K = , a temperatura 322,0Tmax = , acarretando uma diferença de
temperatura da ordem de 100% em relação ao menor valor. Para a temperatura média, essa
diferença é superior a 100%. O tempo que o paralelepípedo gasta para resfriar até uma temperatura

1,0Tmax =  é de aproximadamente 54,0Fo ≈  para 741,0)T(K = ; e quando calculada para
249,1)T(K = , o tempo é de 32,0Fo ≈  levando a uma diferença superior a 60%, relativamente, ao

menor valor. Com respeito à temperatura média, essa diferença é da ordem de 70%.
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Figura 1: (a) Distribuição da temperatura máxima e (b) temperatura média, em função do número de
Fourier, para o Aço Inoxidável Aisi 304.



Nas Figs. (2) e (3) apresentam-se resultados obtidos para o caso não linear onde a condutividade
térmica foi modelada como uma função linear da temperatura, T489,0756,0)T(K += , para o aço
Aisi 304. Pode-se observar nessas figuras pequenos picos no início das curvas que representam as
distribuições de temperatura máxima. Isso acontece, pois para tempos adimensionais próximos de
zero, existe uma insuficiência de autovalores necessários para obter o processo adequado de
convergência. Ao se aumentar a quantidade de termos na série, a precisão irá melhorar, no entanto
sempre haverá um valor suficientemente pequeno do tempo para o qual um número fixo de termos
na série será insuficiente. Em termos práticos a quantidade total de termos utilizados é dependente
da capacidade computacional disponível em termos de memória e tempo de processamento. Na
Fig. (3) apresenta-se uma medida da convergência da solução, através do cômputo da diferença das
distribuições de temperatura para diferentes quantidades de termos nas expansões em série. A
solução com 10 termos em cada direção, 1000 no total, foi tomada como referência. Na figura estão
as diferenças dos resultados para as temperaturas máximas e médias, obtidas com expansões de 5 e
7 termos em cada direção, com aqueles providas na solução de referência. Percebe-se por inspeção
da figura que os resultados para a temperatura média apresentam menor diferença e portanto uma
maior convergência do que aqueles para a temperatura máxima. Quando o tempo (Fo) aumenta a
diferença de um modo geral diminui. As maiores diferenças são da ordem de 10-2 e as menores da
ordem de 10-5.
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Figura 2: Distribuição das temperaturas máxima

e média, em função do número de Fourier, para
o Aço Inoxidável Aisi 304.

Figura 3: Erro de convergência para diferentes
quantidades de termos na série, em função do
número de Fourier, para o Aço Aisi 304.

Os resultados obtidos através do equacionamento não-linear com aqueles obtidos utilizando o
equacionamento linear para o Aço Inoxidável Aisi 304 também foram comparados, conforme
apresentado na Fig. (4). Observa-se na Fig. (1) para o problema linear, que os dois que mais se
aproximam dos resultados do caso não-linear são aqueles correspondentes a 741,0)T(K =  e

1)T(K = . Os resultados com menor concordância são os correspondentes a 249,1)T(K = . Note
que, para 1)T(K =  tem-se uma aproximação razoável, pois trata-se de uma distribuição de
temperatura correspondente à condutividade térmica média.

Nas Figs. (5), (6) e (7) tem-se a distribuição de temperatura em relação ao sistema de
coordenadas tridimensional para 02,0Fo = ; 0,18 e 0,5 com condutividade térmica do material
expressa por uma função linear dependente da temperatura, T489,0756,0)T(K += .
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Figura 4: (a) Distribuição da temperatura máxima e (b) temperatura média em função do número de

Fourier para a condutividade térmica constante e linear com a temperatura.
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Figura 5: Distribuição de temperatura no paralelepípedo em função dos eixos do espaço
para 02,0Fo = ; material Aço Inoxidável Aisi 304.
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Figura 6: Distribuição de temperatura no paralelepípedo em função dos eixos do espaço
para 18,0Fo = ; material Aço Inoxidável Aisi 304.
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Figura 7: Distribuição de temperatura no paralelepípedo em função dos eixos do espaço
para 5,0Fo = ; material Aço Inoxidável Aisi 304.

5. CONCLUSÕES

Foi analisado o problema de condução de calor transiente tridimensional em um domínio no
formato de paralelepípedo cartesiano para um processo de resfriamento no intervalo de 1200K a
400K. Utilizou-se dois modelamentos para a condutividade térmica do material: um com
condutividade térmica constante e outro variando linearmente com a temperatura. Para o
equacionamento linear utilizou-se três diferentes estratégias para se definir um valor constante da
condutividade térmica. Um que utilizava um valor médio e outros dois que utilizavam o maior e o
menor valor.

A Técnica da Transformada Integral Generalizada (TTIG) foi utilizada para transformar a
equação diferencial parcial original presente em ambos os equacionamentos, em um sistema infinito
de equações diferenciais ordinárias. No caso linear, o sistema de equações diferenciais final é
desacoplado e pode ser resolvido algebricamente, sendo que o custo computacional em termos de
memória e tempo de processamento é baixo. Já para o caso não-linear, o sistema de equações
diferenciais é acoplado e não-linear e foi resolvido usando rotinas do IMSL, tendo custo
computacional alto.

Os resultados obtidos apresentam um comportamento no qual a distribuição tridimensional de
temperatura evolui rapidamente do valor inicial para valores menores em uma queda exponencial
com altos gradientes de temperatura. No decorrer do processo de transferência de calor os
gradientes tornam-se menores e por fim tendem a zero quando a temperatura adimensional tende a
zero.
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Abstract: It was done in this work a mathematical formulation, analysis and solution of a unsteady
three-dimensional non-linear heat transfer process defined over a cartesian coordinate system. The
Generalized Integral Transform Technique was used to transform the original non-linear partial
differential equation into an infinite non-linear system of ordinary differential equations which was
truncated to a finite order, big enough to provide a desired results accuracy under computational
resources available. It was obtained and presented numerical results for the heat diffusion inside a
parallelepiped of stainless steel Aisi 304.
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