DIFUSAO NAO LINEAR TRANSIENTE EM UM MEIO SOLIDO
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Resumo: Foi realizado neste trabalho uma formulagdo matemdatica, andlise e solug¢do do problema
de condugdo de calor tridimensional ndo-linear e transiente, definido no sistema de coordenadas
cartesianas. A Técnica da Transformada Integral Generalizada foi utilizada para transformar o
sistema de equagoes diferenciais parciais original em um sistema de equagoes diferenciais
ordinarias, o qual foi truncado em uma ordem suficientemente grande de acordo com a precisdo
desejada e os recursos computacionais disponiveis. Foram obtidos e apresentados resultados
numeéricos para a difusdo de calor em um paralelepipedo de A¢o Inoxidavel Aisi 304.
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1. INTRODUCAO

Os processos de transferéncia de calor estdo presentes em diversas aplicacdes. Na natureza,
animais e plantas ndo sobrevivem sem os processos vitais da transferéncia de calor que fazem parte
de seu metabolismo. Assim, a transferéncia de calor tornou-se, desde tempos remotos, um
importante campo de pesquisa tedrica e aplicada.

Muitas aplicagdes na area de transferéncia de calor sdo representadas por modelos difusivos
nao-lineares. Para o caso tridimensional, o modelamento matematico sera representado por uma
equacao diferencial parcial, ndo-linear de segunda ordem.

As técnicas analiticas tradicionais ndo abordam todos os problemas. Solugdes aproximadas
foram propostas através de métodos numéricos. Técnicas de solugdes hibridas analitico-numéricas
tém sido desenvolvidas e utilizadas em diversos trabalhos disponiveis na literatura. Uma familia
destas técnicas sdao os métodos integrais, e entre eles ha uma técnica chamada Transformada
Integral Generalizada (TTIG) que tém sido utilizada com sucesso na solu¢do de problemas
difusivos ou convectivos-difusivos.

A Técnica da Transformada Integral Generalizada transforma a equacao diferencial parcial
original em um sistema de equagdes diferenciais ordinarias acoplado e infinito, o qual ¢ truncado e
resolvido numericamente através de sub-rotinas computacionais para problemas de valor inicial.
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Sera realizado neste trabalho, uma formulagdo matematica, analise e solugdo para o problema de
difusdo ndo-linear tridimensional e transiente. Resultados numéricos serdo apresentados para a
difusdo de calor em um cubo.

2. ANALISE MATEMATICA

O problema de condugdo de calor transiente no interior de um cubo com condutividade térmica
dependente da temperatura foi considerado, cuja formulagao matematica ¢ dada por
IT(x,y,2,t)

At =V [K(T(x,y,z1t))VT(x,y,z,t)] (1)

no dominio, O<x<lx,0<y<ly,0<z<lz, t>0.

Os parametros e variaveis presentes na Eq. (1) sdo adimensionais e estdo relacionados com suas
dimensodes pela formulacao seguinte

T*(X*sy*3Z*>t)_T;

T(x,y,2,t) = o o T'(LyLz =T, +(T, - T.)T(X,y,X,1) (22)
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e ST K[T(xyz)= Y2 U] (2fg)
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O tempo adimensional (t) ¢ também conhecido na literatura como nimero de Fourier, Fo, assim
Fo=t=at /(L")*. As condigdes inicial e de contorno para a Eq. (1) sdo representadas por

T(x,y,z,0)=f(x,y,z) =1, 0<x</,0<y<l[,0<z<], (3a)

T (x,y,2z,t) —0, T (x,y,z,t) —0, oT(x,y,2z,t) ~0, t>0, (3b-d)
0x o oy 40 0z o

T(y,y,z,t) =0, T(x,1,,2,t)=0, T(x,y,l,,t)=0, t>0 (3e-g)

A condutividade térmica ¢ representada neste trabalho por uma fungdo linear da temperatura,
COmo expressa a seguir

K(T(x,y,z,t)) =a+bT(x,y,z1). 4)
A Eq. (4) quando substituida na Eq. (1) resulta

oT(x,y,21)

P =aV’T(x,y,z 1)+ bV e[ T(x,y,z t)VT(X,y,zt)] (5)

No caso particular b =0, o problema difusivo ndo linear se torna linear.



2.1 Problemas de Autovalores

Os problemas auxiliares de autovalor e suas respectivas condigdes de contorno para os trés eixos
sdo escolhidos como sugerido em Aparecido (1997) e sdo expressos por

(x)
!/ ‘i 2(X_) Hf")z\lji(x) (x)=0, 0<x<l, (6)
(x)
¥ x| 0. YO (x=1)=0, (6a,b)
d ’ )
X x=0
2y (y)
e =0, o<y, @
‘P(Y)(y) 2]
d =0, Yo'y =1,)=0, (7a,b)
Yol
d*¥)” (z
/3 ;2( )_i_HLZ)z\P;Z)(Z):O, 0<z<l, (&)
d¥ (z)
3_ — 0, Y\ (z=1,)=0. (8a,b)
z z=0

As solugdes dos problemas, Egs. (6), (7) e (8), sujeitas as condi¢des de contorno, Egs. (6a,b),
(7a,b) e (8a,b) para os trés eixos espaciais sao efetuadas e portanto sao obtidas as autofungdes
normalizadas W, W ¢ ¥\”, as autoconstantes B{*’,B{’ ¢ B!”, bem como os autovalores

p,ul e ul? . Estas entidades matematicas sdo apresentadas a seguir:

2 ® _ (21 Dr PRICINNCY HY()

Y (x) =B cos(y{"x), BY = |-, Vi =g 1=h2,,0 (9a-c)
I 2l a
() =B costy), BY = | 2,y =CIT e o b s (10a-¢)
I, 2, a
@) @) Dx n@ _ 12 @ _Cp=Dn 16 (2 _ Hy”
¥,7(z) =B,  cos(y,2), B, = 7 Hy :Ta Yp F,pzl,z,...,oo. (11a-c)

3. TRANSFORMADA INTEGRAL GENERALIZADA

A Técnica da Transformada Integral Generalizada aplicada na solucdo da equagdo diferencial
parcial, Eq. (1) transforma o problema investigado em um sistema infinito acoplado de equagdes
diferenciais ordinarias nao-lineares de primeira ordem, o qual ¢ truncado e resolvido
numericamente. Através da formula de inversdo que esta técnica proporciona é possivel reconstruir
o potencial original.

O par transformada-inversa associado aos trés eixos ¢ constituido seguindo a teoria da
Transformada Integral Generalizada, (Cotta, 1993), e € expresso pelas seguintes equagdes:



Iely, ¢l
T (=[], [ ¥ 0¥ ¥ @T(x,y,z,0)dxdydz,  imp=12,...,0 (12)

imp

Tyz= 3 WP P ()P @F (1) (13)

imp
i,m,p=l1

O termo "T“i(n’l‘gz) significa a transformacdo da varidvel dependente para os eixos X, y € z em
relagdo as autofungdes W™, ¥ e W(*), respectivamente.

Para transformar a equacgdo diferencial parcial ndo linear, Eq.(5) multiplica-se esta equagdo
pelas respectivas autofungdes; os problemas de autovalores sdo multiplicados por T(x,y,z,t); as

equagdes resultantes foram somadas e integradas sobre todo o dominio. Assim, um sistema de
equacdes diferenciais ordinarias acoplado ¢ obtido, veja Neves (2003), e dado por

den:”’ 1) & ,
— Z Ajg + Umnpq(T ()T ;;qm(t) i,mp=12,...,0 (14)

Jj,m, q=1

onde o vetor T_ (r) contém todos os infinitos termos, transformados para i,m,p=1,2,...,%0,

~ ~ ~ ~

T () =[{T11 T2 Ty« 4520 Tioos Tiago e 5o {11 T2y Topo -+ o {TzzlaTzzz,Tzzym}am] (t). (15)

A Eq. (14) é um sistema nao-linear de equagdes diferenciais ordinarias de primeira ordem
acopladas. Para que sua postulacdo fique completa ¢ necessario prover uma condi¢do inicial. Isto
pode ser efetuado, transformando a condi¢do inicial original, Eq. (3a). Logo tem-se,

T (0) = j j ! j O )P (0P (2)dxdydz= £L2? com i,m,p =12, (16)

imp

Os coeficientes na Eq. (14) sdo resultantes da transformacgdo dos termos lineares e nao-lineares
da Eq. (5) e sdo representados por

Aljmnpq = Bumnpq + 8 Dijmnpq * 89 mn Eijmnpq + OOmn O pg Fijmnpq 3 (17)
Bimnpa (T (1) = ={Rjmmpq (T (D) + Cijmnpg (T (D) + Vi (T (D)} 5 (18)
Os coeficientes envolvidos na Eq. (17) sdo expressos por:
Bijpg = (1=8)FQ Hy —FjH 0, (1-845,,,) 5 (19)
Dy =~ Ho Hos By = =) FH 5 Fi, = (0 EH (20)

sendo que os coeficientes presentes nas Eqgs. (19) e (20), sdo integrais que surgiram durante o
processo de transformacao realizado pela TTIG. Seus resultados sao

- - (), (@) ¥,
F 81J’ H 6mn’ Hpq _Spq’ Mq “p 8pq’ an “ny “rr}ll Smn’

nas quais os simbolos 3, 8,,, ¢ 8,, sdo conhecidos como delta de kronecker e sdo definidos por

l_]’

Ose s=t ..
5, = : ; para (s,t)=(1,]),(m,n),(p,q) .
se s=t



Os coeficientes presentes na Eq. (18) sdo expressdes matemdticas que contém as nao-
linearidades existentes no problema analisado. Essas contribuicdes foram resolvidas
numericamente.

3.1 Truncamento da Expansio de Funcdes em Séries Finitas

O sistema definido pela Eq. (14) possui um numero infinito de equacdes diferenciais ordinarias
de primeira ordem sujeito a condi¢do inicial transformada, dada pela Eq. (16). Para obter-se
resultados numéricos, o sistema infinito, Eq. (14), deve ser truncado em uma ordem finita
suficientemente grande de acordo com a precisdo desejada e respeitando o0s recursos
computacionais disponiveis. Deste modo, truncando a expansdo x em Ny termos, a expansao y em
Ny termos e a expansio z em N, termos, o niimero total de termos sera (N, N N ), implicando no

sistema de equagdes diferenciais ordinarias, como segue

dT-(xyZ)(t) N,, Ny, N, N N i=1,2,...,N,;
T 2 (A + By (T O TR (0 m=1,2,...,N,; 1)
bt p=1,2,..,N_;
sujeito a condi¢do inicial
T (xy2) _ Fxy2)
Ti?(0) = 207 (22)

imp

A Eq. (21) é um sistema finito de equagdes diferenciais ordindrias ndo-lineares de primeira
ordem e pode ser escrito na forma matricial, como apresentado a seguir
dT(t)

— TIA+BTOITO. (23)
onde A ¢ a matriz dos coeficientes lineares A ¢ B(T(t)) a matriz dos coeficientes ndo-lineares

B ijmnpq
EXpresso por

ijmnpq
(T®?(1)). O vetor T(t) é o vetor T, (t) truncado, como comentado anteriormente, € &

~ ~ ~ ~ ~ ~ ~

N ~ ~ ~ ~ ~ T
T(t)_ [Tl 1 l’Tl 129+ "Tl IN2 T121’T122" *e T12N27 e TlNyl’ TlNyQ?' . "TlNyNz tee T2NyNZ' i TNXNyl’ TNxNyZ‘"’TNXNyNZ] :

Assim, a féormula de inversdo, Eq. (13), depois de truncada ¢ utilizada para obter a distribuicao
de temperatura

NNy ,N, N
T(x,y.z )= Y PP @Y (2T (1). 24)
i,m,p=1

4. RESULTADOS E DISCUSSAO

Neste trabalho, foi considerado um paralelepipedo cartesiano, com comprimento unitirio em
cada dire¢do x, y e z, Iy = [, = [, = 1. O material analisado ¢ o Aco Inoxidavel Aisi 304, o qual foi

submetido a um processo de resfriamento de uma temperatura inicial T, =1200K até uma

temperatura final T, = 400K . A ordem usada no truncamento da série foi de 5, 7 e 10 termos para

cada direcdo, resultando em sistemas diferenciais com 125, 343 e 1000 equagdes diferenciais,
respectivamente. Os resultados apresentados aqui se referem a 10 termos no truncamento da série.

O sistema finito ndo-linear, Eq. (23) foi resolvido através de um programa implementado em
Fortran 90/95 que simula a difusdo tridimensional ndo-linear transiente para um corpo com o
formato de paralelepipedo cartesiano. Neste programa, a subrotina DIVPAG do IMSL (1994) foi



usada para resolver o sistema diferencial de equacgdes. A precisdo da subrotina foi fixada em

£=10". A condutividade térmica dimensional do Ago Aisi 304 foi obtida a partir dos dados
experimentais disponiveis em Incropera & de Witt (1992), para o intervalo de temperatura de 400K
a 1200K e ¢ expressa por

*

k'(T)=1147+0,013T",  [T']=K, [k']= W/(mxK).

Partindo desse polindmio de primeira ordem, utilizou-se a Eq. (2f) para calcular a condutividade
térmica de referéncia k. que possui valor igual a 22,42 W /(mxK) e entdo, através da Eq. (2g)
obteve-se a condutividade térmica adimensional K(T) = 0,756 + 0,489T.

Para este caso, o tempo computacional necessario para se obter a solugdo aumenta
significativamente devido ao computo repetido dos coeficientes dependentes da temperatura. Para
reduzir o tempo de processamento, as matrizes A ¢ B, presentes na Eq. (23) foram computadas na
forma de matrizes banda, sendo que os elementos das matrizes que estejam fora da banda sdo
desprezados. Quando o tamanho da banda aumenta, a aproximagao para a solu¢ao ¢ melhor, mas
também aumenta o custo computacional. O valor adotado para a largura da banda foi 21.

Para o caso que b =0, a Eq. (5) torna-se linear, dependendo somente do pardmetro a. Adotou-se
trés maneiras para analisar o problema linear gerado: a primeira consiste em tomar a condutividade

*
ref

K(T)=k’. /k’, =0,741 e K(T)=k" /k’, =1,249, onde k’_ =k"(T., ) e ki, =k’ (T}

max max min )

, . . ;o1 * . .
térmica igual ao valor médio k ., € assim K(T) =k, /k; =1; as outras duas consistem em tomar

sdo os respectivos valores da condutividade térmica nas temperaturas maxima e minima. Para este
caso, T,. =400K e T, =1200K.

min
Na Fig. (1), sdo apresentadas as distribuicdes de temperatura maxima (Tn.x) € temperatura
média (Tmedia), respectivamente, em funcdo do tempo adimensional, Fo. Como esperado, as curvas
de temperatura tendem para zero mais rapidamente nos casos em que a condutividade térmica ¢
maior. E importante salientar que, apesar das distribui¢des de temperatura estarem proximas, os
resultados obtidos, para um dado instante Fo, se diferenciam bastante para os trés casos analisados.
Como exemplo, para Fo=0,2, tem-se para o caso que K(T)=0,741, uma temperatura

T, =052 e para K(T)=1249, a temperatura T
temperatura da ordem de 100% em relagdo ao menor valor. Para a temperatura média, essa
diferenca € superior a 100%. O tempo que o paralelepipedo gasta para resfriar até uma temperatura
T,. =01 ¢ de aproximadamente Fo~0,54 para K(T)=0,741; e quando calculada para

=0,322, acarretando uma diferenca de

max

K(T) =1249, o tempo ¢ de Fo = 0,32 levando a uma diferenca superior a 60%, relativamente, ao
menor valor. Com respeito a temperatura média, essa diferenca ¢ da ordem de 70%.

Ago Aisi 304 ' Ago Aisi 304

N,=N =N, =10;e=1x 10" N =N =N,=10;e=1x10"
08 —a—K(D)=a=0,741 0.8 —=—K(T)=a=0,741

—e—KM=a=1 —e—K(M)=a=1

——K(T)=a=1,249 ——K(T)=a=1,249
0,6

0,6
0.4

0,2 024

0,0 -
0,0

0,0 4
0,0

Fo Fo
(a) (b)
Figura 1: (a) Distribuicdo da temperatura maxima e (b) temperatura média, em fun¢do do ntimero de
Fourier, para o Ago Inoxidavel Aisi 304.




Nas Figs. (2) e (3) apresentam-se resultados obtidos para o caso ndo linear onde a condutividade
térmica foi modelada como uma fungdo linear da temperatura, K(T)=0,756+0,489T, para o ago

Aisi 304. Pode-se observar nessas figuras pequenos picos no inicio das curvas que representam as
distribuicdes de temperatura méaxima. Isso acontece, pois para tempos adimensionais proximos de
zero, existe uma insuficiéncia de autovalores necessarios para obter o processo adequado de
convergéncia. Ao se aumentar a quantidade de termos na série, a precisdo ird melhorar, no entanto
sempre havera um valor suficientemente pequeno do tempo para o qual um nimero fixo de termos
na série sera insuficiente. Em termos praticos a quantidade total de termos utilizados ¢ dependente
da capacidade computacional disponivel em termos de memdria e tempo de processamento. Na
Fig. (3) apresenta-se uma medida da convergéncia da solugdo, através do computo da diferenca das
distribui¢cdes de temperatura para diferentes quantidades de termos nas expansdes em série. A
solugcdo com 10 termos em cada direcdo, 1000 no total, foi tomada como referéncia. Na figura estdo
as diferencas dos resultados para as temperaturas maximas ¢ médias, obtidas com expansdes de 5 e
7 termos em cada dire¢cdo, com aqueles providas na soluc¢do de referéncia. Percebe-se por inspecao
da figura que os resultados para a temperatura média apresentam menor diferenca e portanto uma
maior convergéncia do que aqueles para a temperatura maxima. Quando o tempo (Fo) aumenta a
diferenca de um modo geral diminui. As maiores diferencas sdo da ordem de 10 ¢ as menores da

ordem de 107,

0,01
1,0 .. .
1 Ago Aisi 304 Ago Aisi 304
Nx=Ny=N7= 10 e=1x10% largura da banda = 21
0.8 K(T)=0,756 + 0,489T —=—mod {Tmax (10 - 7)}
’ . —4—mod {T 10-5)}
e=1x10"; largura da banda = 21 modt mz?x.( )
- = 1E-3 —o—mod {Tmédia (10 - 7)}
—=a— Temperatura maxima g mod {Tmédia (10 - 5)}
g 067 —e— Temperatura média g
g 2
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g 0.4 =
= & 1E-4
[a)
0,24
00 T T T Y g 1E-5 = T T T T T
0,0 0,2 04 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0.8 1,0
Fo Fo
(a) (b)

Figura 2: Distribuicdo das temperaturas maxima Figura 3: Erro de convergéncia para diferentes
e média, em fun¢do do numero de Fourier, para  quantidades de termos na série, em funcao do
0 A¢o Inoxidavel Aisi 304. nimero de Fourier, para o Aco Aisi 304.

Os resultados obtidos através do equacionamento nao-linear com aqueles obtidos utilizando o
equacionamento linear para o Aco Inoxidavel Aisi 304 também foram comparados, conforme
apresentado na Fig. (4). Observa-se na Fig. (1) para o problema linear, que os dois que mais se
aproximam dos resultados do caso ndo-linear sdo aqueles correspondentes a K(T)=0,741 e
K(T)=1. Os resultados com menor concordancia sdo os correspondentes a K(T)=1,249. Note
que, para K(T)=1 tem-se uma aproximagdo razoavel, pois trata-se de uma distribui¢do de
temperatura correspondente a condutividade térmica média.

Nas Figs. (5), (6) ¢ (7) tem-se a distribuicdo de temperatura em relagdo ao sistema de
coordenadas tridimensional para Fo=0,02; 0,18 e 0,5 com condutividade térmica do material

expressa por uma fung¢do linear dependente da temperatura, K(T)=0,756+ 0,489T .
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Figura 4: (a) Distribuicdo da temperatura maxima e (b) temperatura média em fun¢do do niimero de
Fourier para a condutividade térmica constante e linear com a temperatura.

Figura 5: Distribuicdo de temperatura no paralelepipedo em fun¢ao dos eixos do espaco
paraFo = 0,02 ; material Aco Inoxidavel Aisi 304.

Figura 6: Distribuicdo de temperatura no paralelepipedo em fun¢ao dos eixos do espaco
para Fo = 0,18 ; material Aco Inoxidavel Aisi 304.



Figura 7: Distribui¢do de temperatura no paralelepipedo em fun¢ao dos eixos do espaco
para Fo = 0,5; material A¢o Inoxidavel Aisi 304.

5. CONCLUSOES

Foi analisado o problema de conducdo de calor transiente tridimensional em um dominio no
formato de paralelepipedo cartesiano para um processo de resfriamento no intervalo de 1200K a
400K. Utilizou-se dois modelamentos para a condutividade térmica do material: um com
condutividade térmica constante e outro variando linearmente com a temperatura. Para o
equacionamento linear utilizou-se trés diferentes estratégias para se definir um valor constante da
condutividade térmica. Um que utilizava um valor médio e outros dois que utilizavam o maior € o
menor valor.

A Técnica da Transformada Integral Generalizada (TTIG) foi utilizada para transformar a
equacdo diferencial parcial original presente em ambos os equacionamentos, em um sistema infinito
de equagdes diferenciais ordinarias. No caso linear, o sistema de equacdes diferenciais final ¢
desacoplado e pode ser resolvido algebricamente, sendo que o custo computacional em termos de
memoria e tempo de processamento ¢ baixo. J4 para o caso ndo-linear, o sistema de equacdes
diferenciais ¢ acoplado e ndo-linear e foi resolvido usando rotinas do IMSL, tendo custo
computacional alto.

Os resultados obtidos apresentam um comportamento no qual a distribui¢do tridimensional de
temperatura evolui rapidamente do valor inicial para valores menores em uma queda exponencial
com altos gradientes de temperatura. No decorrer do processo de transferéncia de calor os
gradientes tornam-se menores e por fim tendem a zero quando a temperatura adimensional tende a
Zero.
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Abstract: It was done in this work a mathematical formulation, analysis and solution of a unsteady
three-dimensional non-linear heat transfer process defined over a cartesian coordinate system. The
Generalized Integral Transform Technique was used to transform the original non-linear partial
differential equation into an infinite non-linear system of ordinary differential equations which was
truncated to a finite order, big enough to provide a desired results accuracy under computational
resources available. It was obtained and presented numerical results for the heat diffusion inside a
parallelepiped of stainless steel Aisi 304.

Keywords: Heat diffusion, non-linear, integral transform, unsteady state, three-dimensional.


mailto:odacir@fem.unicamp.br
mailto:felipe@fem.unicamp.br
mailto:jbaparec@dem.feis.unesp.br

