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Abstract. In this work, the model and simulation of transport phenomena in an environment
representing an adiabatic nitrogen atmosphere containing three pollutants is presented. The
mathematical model consists of mass and momentum conservation for the nitrogen-pollutant
mixture as well as the mass balance for the three pollutants. Some simplifying assumptions give rise
to a nonlinear hyperbolic system of five coupled partial differential equations. The problem is
solved subjected to a discontinuous initial condition — a jump, originating, in most cases, shock
waves. The resulting hyperbolic system is numerically approximated by means of Glimm’s scheme,
combined with an operator splitting technique to account for the non-homogeneous portion of the
hyperbolic operator. Some representative examples illustrate the numerical methodology.
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1. INTRODUCTION

This work is concerned with model and numerical simulation of three non-reacting pollutants’
transport in an environment representing a nitrogen atmosphere. The presence of pollutants in the
atmosphere may provoke important effects, justifying the increasing interest devoted to studying
transport phenomena in nitrogen -pollutants mixtures. A simplified model, in which the nitrogen is
treated as an ideal adiabatic gas, is considered to describe the advection-diffusion transport of the
pollutants in the nitrogen. Besides, assuming that the pollutants’ mass is negligible with respect to
the nitrogen mass, it is possible to obtain a mathematical model consisting of a system of five
partial differential equations. These equations are the nitrogen mass and momentum balances and
the three mass transport equations — referring to the three pollutants, assuming the diffusion process
governed by Fick’s law.

The mathematical representation of this phenomenon, considering a one dimensional geometry,
consists of a nonlinear system of five partial differential equations, whose unknowns are the
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nitrogen density and velocity as well as the three pollutants concentration — all functions of the
position x and time ¢. The problem is solved subjected to a discontinuous initial condition — a jump
— originating, in most cases, shock waves.

Modeling of most transport phenomena usually gives rise to parabolic or elliptic partial
differential equations. Such mathematical descriptions always admit regular solutions whose
simulation may employ well-known numerical procedures such as finite elements, finite differences
or finite volumes. Hyperbolic systems, on the other hand, allow very realistic descriptions, since the
propagation speed in real natural phenomena is finite. However they may not admit regular
solutions — requiring special tools for reliable simulations such as, for instance, Glimm’s scheme or
Godunov’s one. An efficient numerical methodology to simulate these problems would be Glimm’s
scheme — a numerical method specially designed to deal with problems involving discontinuities
and shock waves propagation. This method preserves the shock identity, in other words, the shock
waves magnitude and position. When compared to other numerical procedures to approximate
nonlinear problems like, for instance, a finite element method associated with a shock capture
procedure, Glimm’s method exhibits features such as low storage costs and low computational
effort, however its limitation to one-dimensional problems is an important shortcoming.

Glimm’s methodology is very convenient for dealing with the homogeneous associated
problem, which, in this case, is represented by the purely hyperbolic part of the operator. So, an
operator splitting technique — essentially a decomposition of the hyperbolic operator in two parts so
that the merely hyperbolic part of the operator is split away from its purely time evolutionary one —
is combined with Glimm's scheme. More specifically, it consists of advancing in time through the
equations representing the homogeneous problem, employing Glimm's method to obtain an initial
approximation. Once this approximation has been evaluated, the numerical approximation for the
solution at a successive time instant is finally reached by advancing in time to solve the purely time
evolutionary problem, employing the same step.

Glimm's scheme, in turn, consists of employing the solution of the associated Riemann problem
to generate approximate solutions of the hyperbolic equations, when subject to arbitrary initial data.
The main idea behind the method is to appropriately gather the solution of as many Riemann
problems as desired to march from a time » to a time n+1. Essentially, every time step of this
evolutionary problem is implemented by solving a certain number of associated Riemann problems
— one for each two consecutive steps. Representative numerical results for a mixture of nitrogen and
three different pollutants — showing the evolution of nitrogen mass density and velocity
(approximating the mixture mass density and velocity) as well as the three pollutants concentration
— are presented.

2. MECHANICAL MODEL

The transport of three pollutants in a nitrogen atmosphere is described by considering the
mass and linear momentum conservation for the nitrogen-pollutants mixture and the mass balance
for the pollutants along with some simplifying assumptions. The mass transfer is supposed to be
caused by an advection process of the pollutants — from now on denoted as j- constituents — in the
nitrogen, which is assumed as an ideal gas (all viscosity effects being neglected), giving rise to:
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in which p stands for the mixture mass density, v for its velocity, p is the pressure and g the
specific body force (accounting for gravitational effects) acting on the mixture. The concentration
of each j- constituent in the mixture, being expressed as @, = p;/ p is defined as the mass fraction

of each j- constituent in the mixture. Besides, j, represents the j-constituent mass flux vector and r,

the rate of production of the j-constituent. The most important simplifying assumption considered in
this work consists in supposing the presence of a sufficiently small quantity of all the three
pollutants in the nitrogen — at any time instant. As a consequence, the mass and linear momentum
balance equations for the mixture can be approximated by mass and linear momentum balances for
the nitrogen. This simplifying assumption allows a convenient redefinition of some variables — p is

considered as the nitrogen mass density, v its velocity, and p and g the pressure and specific

body force acting on the nitrogen.

At this point it is important to state additional simplifying assumptions to be considered in the
present work. First, the pressure is considered as being a function of the mass density p only, its
derivative with respect to p being given by p' and satisfying fy'( p)>0. Also no chemical

reaction, which could alter the quantity of the any of the j constituents with concentration ®;, will
be allowed, leading to r; =0, for all the five constituents in the mixture. Besides, considering a

radial flow in a spherical geometry, the velocity field may be reduced to a single component on the
flow direction v =ve, and gravitational effects may be omitted. Finally diffusion may be neglected,

when compared to advection — a reasonable one for an isotropic explosion — in other words,
V-j,=0, j=1,3. All these above mentioned simplifying assumptions give rise to the following

nonlinear system of five equations
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The present work main subject is to simulate the mechanical problem represented by the
non-linear non-homogeneous system of partial differential equations stated in equation (2)

subjected to appropriate initial data, which at ¢ =¢,, may be represented as p=p,(r), v=",(r)

and @, =c?)jn(r) , j=13.

2. NUMERICAL PROCEDURE

This section presents the numerical procedure to simulate system (2) with appropriate initial
data. The approximation is carried out by combining Glimm’s scheme, which employs in a special
way the solution of the associated Riemann problem to advance from a time » to a time n+1, with
an operator splitting technique to account for the non-homogeneous portion of the nonlinear
hyperbolic operator. This methodology has already been used with success to approximate distinct
nonlinear hyperbolic problems — among which are wave propagation in fluids, wave propagation in
a damageable elasto-viscoplastic pipe, gas dynamics problems, the filling-up of a porous matrix, the
isothermal and non-isothermal flows of a Newtonian fluid through an unsaturated porous slab and
the response of non-linear elastic rods (see Martins-Costa and Saldanha da Gama, 2001 and
references therein).



Glimm’s method mathematical formulation (Glimm, 1965; Chorin, 1976) is endowed with a
solid thermodynamic basis, expressed by the entropy condition, rendering it a convenient numerical
methodology to simulate non-linear hyperbolic problems (Martins-Costa and Saldanha da Gama,
2003). The construction of an approximate solution for an initial value problem — namely a
nonlinear hyperbolic system subjected to arbitrary initial data — consists in appropriately gathering
the solution of a certain number of associated Riemann problems. Consequently, this solution must
be known in order to apply Glimm’s scheme to a given system. The arbitrary initial condition given
by a function of the position 7 is approximated by piecewise constant functions — with equal width
steps. In the sequence a Riemann problem — an initial value problem whose initial condition must
be a step function, is to be solved for each two consecutive steps. Essentially, Glimm’s scheme
appropriately assembles the solution of a certain number of Riemann problems (according to a
previously settled precision) in order to successively advance from time ¢ =¢, totime ¢, =t +At.

At this point, a convenient redefinition of variables, F'=p, G=pv, H =P, j=lm,

allows to express problem (3) as:
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in which F=F, (r,t), G=G,(x,t) and H,=H, (rt).

3.1. Operator splitting technique

The first step to approximate the system (3) is to employ an operator splitting technique. The
procedure is analogous to the one adopted by Martins-Costa and Saldanha da Gama (2001) to
simulate a non-linear non-homogeneous hyperbolic system of two partial differential equations,
describing an unsaturated flow through a porous matrix. Basically, the operator presented in
equations (3) is decomposed in two problems — namely the homogeneous associated problem (the
purely hyperbolic portion) and an ordinary system obtained by considering the purely time
evolutionary problem. An initial approximation is obtained by advancing At in time through the
equations representing the homogeneous problem simulated by Glimm's method.

After performing Glimm’s method simulation, the numerical approximation for the solution

( PV, a)j), j=13 at time t=¢_, 1is finally reached by advancing in time — with the same step

At =t ,—t, previously employed in Glimm’s scheme — to solve the following time evolutionary

problem:
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as follows:



At &)

evaluated at  =¢_,and considering At =¢,, —t, .

3.2. Glimm’s method

An initial approximation for the fields ¥, G and H; (j=1,3) at time ¢,,,, denoted as F“Hl,

n+l o
GM and H ;... 1s obtained by employing Glimm’s method in the homogeneous associated problem

to equations (4) defined as:
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In order to build a solution for the initial value problem presented in equations (6), namely a
nonlinear hyperbolic system subjected to arbitrary initial data, the solution of the associated
Riemann problem — discussed in details in Martins-Costa and Saldanha da Gama (2003) — must be
known. Essentially, Glimm’s method consists in performing time evolutions employing the solution
of the associated Riemann problem between each two consecutive steps in the spatial discretization.

Initially the arbitrary initial condition given by a function of the position » — in other words:
F(r,0)=F,(r), G(r,0)=G,(r) and H,(r,0)=H, (r) —is approximated by piecewise constant

functions, since the initial condition of each Riemann problem must be a step function. In the
present work, these functions have been chosen with equal width steps, by convenience. At a given
time ¢, this approximation may be expressed as
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in which 6, is a number randomly chosen in the open interval (—1/ 2, +1/ 2) and Ar is the width

1+1 l’;)

Since the first derivative of the pressure with respect to the mass density, p', is positive, the

of each step (Ar =

system presented in equation (3) is a hyperbolic one. When the approximations for the initial data



presented in equation (7) are combined with equation (6) they give rise, for each two consecutive
steps, to a Riemann problem (Lax, 1971; Smoller, 1983) associated with equations (6).

The following proceeding consists in solving — for each two consecutive steps — the associated
Riemann problem in order to successively march from time ¢=¢ to time ¢, =t +A¢. This

problem is defined as:

oF 0G
_— =
ot or

%+£(G—2+pj=0 (8)

with

(F.G.H,)=(F,.G,.H, ) for t=t,, —o<r<r,j=13
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Denoting by Fn[ , (_}n[ and ﬁn[ the generalized solution of equations (8)-(9), the approximation

for the solution of equations (6) at time ¢, is given as follows:
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In order to prevent interactions among nearby shocks of adjacent Riemann problems, the time
step At and, consequently, ¢ ., must be chosen in such a way that the Courant-Friedrichs-Lewy

n+l

condition (John, 1982) be satisfied, thus assuring uniqueness for the solution:
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where |)°|max is the maximum (in absolute value) propagation speed of shocks, considering all the

Riemann problems at time ¢, . Respecting the CFL condition stated in equation (11), when selecting

the time step ensures Glimm’s method robustness

At this point it is important to stress some features of Glimm’s method, regarding its accuracy.
First if the width of the steps tends to zero the approximation obtained by Glimm’s method tends to
the exact solution of the problem considering its weak formulation. Another characteristic of
Glimm’s scheme is that it preserves shock magnitude (no diffusion being observed) and position —
whose admissible deviation from the correct position is of the order of magnitude of the width of
each step. It is also worth mentioning that when compared to other numerical methodologies to
approximate nonlinear problems, Glimm’s scheme requires both lower storage costs and lower
computational effort. However, two important shortcomings of this methodology should be



considered — first its applicability being restricted to one-dimensional problems. Also, its
implementation requires previous knowledge of the solution of the associated Riemann problem.
After each advance in time, the obtained solution is no longer given as a step function. Thus a
new random selection is required in order to build the initial condition as a step function to perform
the time evolution from a given time instant ¢, to the next instant ¢ ,, by employing Glimm’s

n+l

method. Once the solution for a given time instant ¢, is known, the initial data for the next step,

t,.,,1s approximated as

n+l

G, =G(r,+0,Ar,1,) for r—%<r<r+% (12)
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Figure 1. Gas density, velocity and pollutants concentration per unit volume ( p®; ,_, 5 ) variation
with radial position — internal radius 0.2 and initial data: step functions for p, w, and @., zero v

and constant @, .



4. NUMERICAL RESULTS.

In order to validate the numerical strategy presented in the previous item, figures 1 and 2 show,
in all depicted sketches, the evolution of gas density p, velocity v and pollutants concentration per

unit volume for three distinct pollutants — denoted by 4, B and C constituents of the mixture —
namely pw,, pw, and pw., along with radial position for five selected time instants. Each

considered case is presented in a set composed by six lines and five columns of graphs. Each line
represents a distinct time instant — the first one being the initial condition, while each column
corresponds to the behavior of a distinct variable. Also, in all depicted graphs, the sphere’s internal
radius is depicted at the left-hand side. All the qualitative results shown were obtained by
employing a convenient normalization.
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Figure 2. Gas density, velocity and pollutants concentration per unit volume ( p®,;_, 5 ¢,) variation
with radial position — internal radius 0.05 and initial data: step functions for v, w, and o, and

constant p and ,.



All numerical results have been obtained by employing Glimm’s difference scheme combined
with an operator splitting technique as described in the previous section employing 10* evolutions
in time while the spatial domain encompassed 900 steps. In order to exclude edge effects or, in
other words, to assure that the external edge is not reached by a shock or a rarefaction wave —
allowing simulating transport phenomena in an infinite environment — the results are shown for a
domain including only the 450 internal steps. Also, an impermeable wall is considered by assuming
zero velocity at the internal radius. Figure 1 was obtained by considering an internal radius 0.2
while in figure 2 it has been made four times smaller (»=0.05), both spherical regions with the same
thickness.

Figure 1 employed as initial data step functions for the mass density (jumping from p=0.9 ata

given region with width ¢ near the spherical core to p=0.3) and for the concentration of the
pollutants B (jumping from @, =1.0 at an internal region of width 6/2 to w, =0) and C (jumping
from @, =1.0 at the region ¢ to @, =0), zero velocity and a constant value for concentration of

the pollutant 4 (w, =0.5). Aiming to simulate an isotropic explosion — in which the pollutants B

and C with distinct distributions are initially confined in a spherical core, while the pollutant 4 is
present in the whole domain, it may be observed a flow from left-side to right-side, generated by
differences in density.

In all the time instants depicted in figure 1, discontinuities for mass density and velocity at the
same spatial position may be observed. This behavior, as expected, is also followed by pw,, since

a constant value has been assumed for @,, but not by pw, or pw.. In the velocity profiles

evolution a negative inclination after its peak values is observed. This decay effect has been
accentuated due to the employed splitting technique.

The initial data employed to generate figure 2 encompasses the same initial values employed in
the previous figure for the three pollutants as well as constant mass density ( p=0.1) and a step

function for the velocity (jumping from v =0 at the internal region 6 to v=-0.5 outside ¢ ). This
problem simulates external perturbation acting in the sense of compressing the fluids towards a
spherical core, giving rise to a flow from right to left-hand side. This compression effect originates
a peak in the mass density. Similarly to figure 1, discontinuities for mass density, velocity and A4-
pollutant concentration at the same spatial position are present in all the time instants depicted in
figure 2.

At this point it is important to emphasize that Glimm’s scheme — combined with an operator
splitting technique, to account for the non-homogeneous part of the differential equations — has
already been successfully employed to simulate many nonlinear hyperbolic problems. Examples are
wave propagation in fluids (Sod, 1977), gas dynamics problems (Marchesin and Paes-Leme, 1983),
the filling-up of a porous matrix (Saldanha da Gama and Sampaio, 1987), the wave propagation in a
damageable elasto-viscoplastic pipe (Freitas-Rachid et al. 1994), the response of non-linear elastic
rods (Saldanha da Gama, 1990), the non-isothermal flow of a Newtonian fluid through an
unsaturated porous matrix (Saldanha da Gama and Martins-Costa, 1997) and the unsaturated flow
of a Newtonian fluid through a porous slab — covering most one-dimensional cases of interest
(Martins-Costa and Saldanha da Gama, 2001).

Regarding its accuracy, Glimm’s method is free from numerical dissipation — preserving shock
waves magnitude and presenting a deviation from the correct position smaller than the width of
each step — preserving shock waves position. Besides, if the width of the steps tends to zero,
Glimm’s approximation tends to the exact solution of the problem.

4. FINAL REMARKS
Glimm’s method, besides preserving shock waves magnitude and position, is a convenient tool

for solving one-dimensional nonlinear problems, exhibiting features such as low storage costs and
low computational effort, when compared to other numerical procedures to approximate nonlinear



problems. In order to simulate a nonlinear and non-homogeneous system of hyperbolic equations,
Glimm’s scheme has been combined with an operator splitting technique — decomposing the
operator in a purely time evolutionary part and a merely hyperbolic one — to account for the non-
homogeneous portion of the operator.

The numerical methodology presented in this work allowed an accurate approximation of a
hyperbolic system of five partial differential equations representing mathematically the transport of
three pollutants in a nitrogen atmosphere. An analogous procedure allows taking into account
additional effects not considered in this work such as diffusion of the pollutants in the nitrogen
atmosphere, pollutants generation (due to chemical reactions, for instance) as well as gravitational
effects.
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