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Resumo. A contaminação do meio ambiente tem sido apontada como um dos grandes problemas da 
sociedade moderna. Grande parte desta contaminação pode ser atribuída principalmente as 
atividades industriais. O processo fotocatalítico apresenta excelentes resultados, possui várias 
aplicações para destruição de poluentes em meios aquosos. Como conseqüência, o escoamento 
incompressível laminar em desenvolvimento hidrodinâmico, no interior de um reator fotocatalítico, 
do tipo placas paralelas, operando em regime permanente é modelado, resolvendo as equações de 
Navier-Stokes, Poisson com formulação em termos de variáveis primitivas, empregando o método 
híbrido analítico-numérico conhecido como Técnica da Transformada Integral Generalizada 
(G.I.T.T.), para a determinação  do perfil hidrodinâmico. A solução em termos de variáveis 
primitivas associada à forma explícita do campo de pressão, possibilita o uso de problemas de 
autovalor de segunda ordem, diferente da formulação em termos de função corrente que utiliza um 
problema de quarta ordem. Este problema de autovalor facilita a solução dos problemas em 
diferentes coordenadas. Assim, resultados numéricos para diferentes números de Reynolds são 
obtidos, ilustrando as características de convergência do método utilizado e permitindo 
comparações com resultados existentes na literatura, permitindo um melhor entendimento da 
influência de certos parâmetros que afetam o desempenho de um reator fotocatalítico. 
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            1. INTRODUÇÃO 

 
O crescimento descontrolado das grandes cidades vem acelerando o processo de lançamento de 

esgotos em rios, lagos e águas costeiras. A utilização de pesticidas e fertilizantes na agricultura 
também produz efluentes (subprodutos tóxicos) que contaminam o solo, e de alguma forma, 
alcançam o ambiente aquático. Porém, é a atividade industrial a principal responsável pelo 
lançamento de poluentes não biodegradáveis nesse ambiente. 

A degradação fotocatalítica é conseguida com o auxílio de um fotocatalisador, no caso um 
semicondutor, e uma fonte de radiação. Alguns semicondutores possuem a capacidade de 
transformar luz em outro tipo de energia. Quando o semicondutor suspenso em uma solução 
absorve energia na faixa do seu “bandgap” (energia UV),  um elétron (e-) da banda de valência 
(BV) é transferido para a banda de condução (BC), resultando na criação de lacunas (h+) na banda 
de valência, produzindo radicais altamente reativos (Goswami, 1997). Estes radicais são do tipo 
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hidroxila (•OH) e podem oxidar e mineralizar compostos orgânicos. As moléculas orgânicas são 
decompostas e transformadas em água, dióxido de carbono e ácidos minerais, conforme equações 
abaixo (Alberici, 1992). 

Uma grande variedade de reatores fotocatalíticos vem sendo estudada e desenvolvida para 
aplicações específicas na destruição de poluentes. O sistema de engenharia e metodologia de 
projetos em escala industrial ainda é muito pouco explorado. Poucos trabalhos de simulação foram 
realizados para a determinação de  perfis hidrodinâmico, de concentração e de  radiação.A correta 
simulação do problema físico  é considerada como uma importante ferramenta no projeto de 
reatores fotocatalíticos e equipamentos. 

Ao contrário do que possa parecer, projetar um sistema de desintoxicação fotocatalítico solar é 
bastante complexo, pois muitas variáveis interferem diretamente no processo como: seleção do 
reator, configuração (série ou paralelo), modo operacional (suspensão ou matriz fixa), intensidade 
de radiação, carga do catalisador, velocidade de fluxo, fator de atrito, controle do pH, entre outros. 
A área necessária para que ocorra o processo fotocatalítico é determinada levando em consideração 
todos  estes fatores (Lima et al., 2000). 

O objetivo do presente trabalho é um estudo teórico da determinação do perfil hidrodinâmico de 
um reator fotocatalítico, na forma de um canal de placas paralelas. A simulação numérica é baseada 
na solução das equações de Navier-Stokes e Poisson em termos de variáveis primitivas pelo uso da 
G.I.T.T. Tal objetivo é  baseado na escassez de trabalhos enfocando a modelagem e simulação de 
reatores fotocatalíticos, aliado  ao desenvolvimento gradual da G.I.T.T. na solução de problemas de 
mecânica dos fluidos,  oferecendo soluções para casos cada vez mais complexos.   Permitindo, 
portanto, um melhor entendimento da influência de certos parâmetros que afetam o desempenho de 
um reator fotocatalítico, auxiliando no projeto de novas unidades ou otimização das já existentes. 

A G.I.T.T. proporciona soluções híbridas numérico-analíticas para problemas de convecção-
difusão cuja transformação integral resulta em sistemas de equações diferenciais ordinárias 
acopladas, ou cujos problemas auxiliares são complexos do ponto de vista computacional. O 
trabalho mais completo e sistemático sobre a G.I.T.T. foi feito por Cotta (1993a), mais revisões do 
progresso da técnica encontram-se em Cotta (1992), Mikhailov e Cotta (1992), Cotta (1993b), 
Cotta e Mikhailov (1993), Cotta (1994). 

  
2. DEFINIÇÃO DO PROBLEMA 
 

Para se determinar a área necessária em que possa ocorrer o processo fotocatalítico é necessário 
determinar a velocidade de fluxo e o fator de atrito.  Para isto, considera-se o problema do 
desenvolvimento simultâneo do campo de velocidade, em um reator fotocatalítico, com geometria 
de um canal de placas paralelas, operando em regime permanente, no qual as condições de contorno 
são especificadas na entrada e saída do mesmo, conforme mostrado abaixo. 
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Figura1. Reator fotocatalítico 
 

A formulação matemática do problema físico é obtida a partir das seguintes hipóteses 
restritivas: escoamento incompressível, impermeabilidade e não-deslizamento nas paredes do duto, 
fluido newtoniano, dissipação viscosa desprezível e propriedades físicas constantes. 

Para a solução do problema hidrodinâmico, o escoamento dentro do  reator fotocatalítico  do 
tipo canal de placas paralelas é governado pelas equações da Continuidade, Navier-Stokes, Poisson 
usando a formulação de variáveis primitivas que são descritas a seguir, na forma adimensionalizada: 
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Observando-se que * e ** identifica as variáveis dimensionais e o número de Reynolds, definido 
com base na velocidade na entrada do reator.As equações abaixo são válidas no domínio 0<y<1, 
x>0. 
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Com as seguintes condições de Contorno: 
 
( ) 1,0 =yu   ;    ( ) 0,0 =yP                                      (5 a,b) 
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Para a apropriada aplicação da G.I.T.T. e melhorar sua performance computacional é 

conveniente fazer uma homogeneização das condições de contorno. Para este fim, será feita a 
separação das velocidades, em velocidade do campo em desenvolvimento, que é função de x e y, e 
velocidade do campo desenvolvido, função apenas de y. 

 

( ) ( ) ( yxuyuyxu ,, *+= ∞ )                          ( ) ( )21
2
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Um filtro para a pressão se faz necessário para fazer uma homogeneização das condições de 

contorno. Portanto, a solução para pressão é dada da seguinte maneira: 
 

( ) ( ) ( yxPyxPyxP F ,,, * += )           (10) 
 

Onde PF é um filtro, obtido através da aplicação da equação de quantidade de  movimento em y=1; 
 
Na forma adimensionalizada e integrada, temos: 
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Condições de contorno para o filtro: 
 

00 PPx F =→=  0=→=
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As equações (3) a (4), juntamente com as condições de contorno, devem ser escritas de modo a 

incluir a separação de velocidades (9)  e o filtro de pressão (10) e (11), resultando: 
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( ) ( )yuyu ∞−=1,0*         ;                ( ) 0,0* =yP                                             (16 a,b) 
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Problema Auxiliar para o Campo de Velocidade, com as condições de contorno: 
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Os autovalores, autofunções e a norma são dados respectivamente por: 
 

( )
2

12i
πµ −= i      ( ) ( )yCosy ii φφ ~~

=         ( )∫ ==
1

0 2
1~ dyyN ii φ    ......2,1=i                     (22 a,b,c,d) 

 
Problema Auxiliar para o Campo de Pressão e suas condições de contorno: 
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A autofunção, ao autovalores e a norma tem as seguintes formas e apresentam 

ortogonalidade: 
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 Pares Transformada Inversa 
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A velocidade Média pode ser calculada analiticamente pela integração do perfil de velocidade e 

do uso da inversa, resultando: 
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Para eliminar a dependência espacial da velocidade transversal, a equação da continuidade será 

integrada e nela aplicada a inversa, obtendo-se: 
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Transformação Integral do Problema 
 

O processo de transformação integral das equações diferenciais parciais num sistema diferencial 
ordinário, é feito  fazendo uso do operador ( )∫

1

0
,~ dyyii µφ  no campo da velocidade , bem como  o 

operador , no campo da pressão,  em seguida usando as inversas e aplicando as 

propriedades de ortogonalidade, obtém-se um sistema diferencial ordinário, que deve ser resolvido a 
partir de procedimentos numéricos, devido à impossibilidade de se obter soluções analíticas. No 
entanto, torna-se computacionalmente inviável obter resultados para os potenciais transformados 
para um número infinito de termos da série. A técnica da G.I.T.T. possui como característica 
importante do método, a garantia de convergência das soluções, para ordem crescente de 
truncamento das séries-solução. Para este caso, os sistemas infinitos foram representados por série 
finitas, com uma ordem de truncamento NU para o potencial auxiliar da velocidade,  NP para a 
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pressão e NC para a concentração; podendo NU, NP e NC serem diferentes para cada expansão, 
dependendo da taxa de convergência de cada potencial, resultando: 

Desta maneira, o problema diferencial parcial foi transformado num sistema de equações 
ordinárias não lineares, com condições de contorno em dois pontos. 

O sistema diferencial ordinário resultante da formulação em estudo deve ser resolvido a partir 
de procedimentos numéricos, devido à impossibilidade de se obter soluções analíticas. No entanto, 
torna-se computacionalmente inviável obter resultados para os potenciais transformados para um 
número infinito de termos da série. A técnica da G.I.T.T. possui como característica importante do 
método, a garantia de convergência das soluções, para ordem crescente de truncamento das séries-
solução. Para este caso, os sistemas infinitos foram representados por série finitas, com uma ordem 
de truncamento NU para o potencial auxiliar da velocidade,  NP para a pressão e NC para a 
concentração; podendo NU, NP e NC serem diferentes para cada expansão, dependendo da taxa de 
convergência de cada potencial, resultando: 
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Onde: 
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Os coeficientes podem ser calculados analiticamente a partir das integrais: 
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O mesmo procedimento é também aplicado nas condições de contorno: 
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Como as condições de contorno para a saída do reator estão especificadas no infinito é comum 

resolver-se o problema numericamente tomando-se várias posições arbitrárias na direção axial x, ao 
longo do reator, verificando assim a solução obtida com tal truncamento do domínio, até que se 
consiga satisfazer as condições de contorno de entrada e saída do canal. Para resolver 
numericamente os sistemas de equações resultantes foi utilizada a subrotina  DBVPFD, pertencente 
ao sistema de bibliotecas IMSL (1997). Esta resolve problemas diferenciais ordinários não lineares, 
com condições de contorno em dois pontos. Na Tabela 4.1 são mostrados resultados de Pérez 
Guerrero (1995) relativos ao número de Reynolds, baseado no diâmetro hidráulico e resultados de 
Wang e Longwell (1964), Mc Donald et al. (1972) baseados também no número de Reynolds 
hidráulico. Observa-se que os resultados do presente trabalho, (condição de entrada: u = 1, P=0) 
para números de Reynolds crescentes aproximam-se dos resultados de função corrente (Pérez 
Guerrero,1995), para  condição de entrada irrotacional (u = 1 e ω = 0), como também dos 
resultados de Wang e Longwell (1964), Mac Donald et al. (1972) encontrados a partir da 
aplicação dos métodos das diferenças finitas  e elementos finitos.  
 

Tabela 4.1 - Comparação da componente de velocidade longitudinal no centro do duto. 
 

                                         x 
RE Referência 0.2083 0.8333 3.3333 7.5000 
75 PresenteTrabalho 1.050 1.168 1.334 1.444 

300* Pérez Guerrero (1995) 1.052 1.170 1.337 1.444 
300* Wang e Longwell (1964) 1.058 1.188 1.3572 1.4509 
300* Mac Donald et al. (1972) 1.050 1.170 1.34 1.44 
150 Presente trabalho 1.039 1.121 1.243 1.348 
600* Pérez Guerrero (1995) 1.036 1.120 1.242 1.347 
300 Presente trabalho 1.026 1.083 1.173 1.252 

1200* Pérez Guerrero(1995) 1.024 1.080 1.170 1.250 
       * refere-se ao número de Reynolds baseado no diâmetro hidráulico que é 

equivalente a quatro vezes o número de Reynolds do presente trabalho. 
   
As Tabelas 4.2 e 4.7 ilustram a convergência da velocidade longitudinal no centro do duto (y = 

0) em várias posições do duto, para  diferentes Números de Reynolds. 
 

Tabela 4.2 – Convergência da velocidade no centro do duto, u (x,0), para Re =40 
 

 x 
NU=NP 0.2 0.4 0.6 0.8 

5 1.056 1.083 1.119 1.155 
10 1.050 1.100 1.146 1.185 
15 1.055 1.109 1.156 1.197 
20 1.058 1.113 1.162 1.203 
25 1.059 1.116 1.166 1.208 
30 1.060 1.118 1.169 1.212 

 



35 1.061 1.120 1.171 1.217 
40 1.062 1.122 1.173 1.220 
45 1.065 1.124 1.177 1.224 
50 1.068 1.128 1.180 1.230 
55 1.068 1.130 1.184 1.230 
60 1.068 1.132 1.184 1.230 
65 1.069 1.133 1.184 1.230 

 
Tabela 4.3 – Convergência da velocidade no centro do duto, u (x,0), para Re = 75 

 
 x 

NU=NP 0.20833 0.8333 3.3333 7.5 
5 1.022 1.101 1.275 1.389 
10 1.035 1.131 1.302 1.415 
15 1.040 1.141 1.312 1.424 
20 1.044 1.147 1.317 1.429 
25 1.045 1.151 1.323 1.434 
30 1.046 1.155 1.328 1.438 
35 1.047 1.157 1.333 1.441 
40 1.047 1.159 1.336 1.442 
45 1.048 1.162 1.338 1.442 
50 1.048 1.164 1.338 1.443 
55 1.049 1.166 1.339 1.443 
60 1.050 1.166 1.339 1.444 
65 1.051 1.168 1.340 1.444 
70 1.051 1.168 1.340 1.444 

 
Um estudo das Tabelas 4.2 e 4.3 mostra as características de uma boa convergência para 

velocidade no centro do reator dentro da tolerância requerida. 
Pode ser observado que em regiões próximo à entrada do duto, a convergência é mais lenta e 

somente é alcançada com 65 termos para velocidade e pressão. A taxa de convergência melhora à 
medida que se avança ao longo do duto. A função u∞ , usada como filtro, representa o perfil de 
velocidade completamente desenvolvido de u(x,y);  assim, ao se avançar o escoamento ao longo do 
reator, a velocidade u(x,y) tende para u∞ , requerendo-se um número menor de termos na expansão. 

Os resultados dos testes para o estudo do efeito do truncamento do domínio infinito são 
mostrados nas Tabelas 4.8 a 4.12, onde o número de autovalores utilizados para a velocidade e 
pressão foram 65. 

 
Tabela 4.3- Velocidade na linha de centro do duto, u (x,0), em diversas posições de 

truncamento do duto   para     Re = 40 
 

x L=4 L=6 L=8 L=10 L=∞ 
0.2 1.074 1.070 1.069 1.069 1.069 
0.4 1.136 1.134 1.133 1.133 1.133 
0.6 1.232 1. 221 1.184 1.184 1.184 
0.8 1.266 1.233 1.230 1.230 1.230 
1.0 1.317 1.288 1.260 1.260 1.260 
1.4 1.355 1.340 1.313 1.313 1.313 
1.8 1.369 1.350 1.351 1.351 1.351 
2.0 1.440 1.366 1.364 1.364 1.364 
4.0 1.50 1.442 1.440 1.440 1.440 

 

 



 
Tabela 4.4 - Velocidade na linha de centro do duto, u(x,0), em diversas posições  

de  truncamento do duto   para   Re = 75 
 

x L = 15 L = 20 L = 45  L =  60 L =∞ 
0.2333 1.050 1.050 1.050 1.050 1.050 
0.8333 1.168 1.168 1.168 1.168 1.168 
3.3333 1.340 1.340 1.340 1.340 1.340 
7.5000 1.444 1.444 1.444 1.444 1.444 
8.3333 1.454 1.454 1.454 1.454 1.454 
13.125 1.487 1.487 1.487 1.487 1.487 
15.000 1.500 1.498 1.498 1.498 1.498 

 
Comparações entre resultados obtidos a partir das equações de camada limite (Figueira da 

Silva, 1994) e o presente trabalho são mostrados na Figura 4.2. 
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Figura 4.3 – Comparação da componente de velocidade u(x,0) ao longo do canal  do presente 

trabalho com os resultados das equações de  camada limite. 
 

Pode ser observado que soluções das equações de Navier-Stokes em termos de variáveis 
primitivas (presente trabalho) com condição de entrada    u = 1 e P = 0, para números de Reynolds 
crescentes, apresenta uma boa concordância com os resultados para o caso das soluções por 
formulação em camada limite, com diferenças mais consideráveis na entrada do canal, o que já era 
esperado, uma vez que o modelo de camada limite despreza a difusão longitudinal de quantidade de 
movimento e o gradiente transversal da pressão no duto, que tem influência significativa na entrada. 

A figura 4.3  mostra a comparação realizada  dos  resultados obtidos a partir das equações de 
Navier-Stokes em termos de variáveis primitivas (presente trabalho) em termos de função corrente 
(Pérez Guerrero,1995).  

 

 



1E-5 1E-4 1E-3 0,01 0,1
1,0

1,1

1,2

1,3

1,4

1,5

 

 

u(
x,

0)

x+

 Presente trabalho
 Perez Guerrero (1995)

 
Figura 4.3 – Comparação do perfil de velocidade u(x,0)  ao longo do duto para ReH= 300. 

 
Pela Figura 4.3 pode ser visto mais uma vez a concordância dos resultados do presente trabalho 

com os resultados de (Pérez Guerrero, 1995)  para condição de entrada U = 1 e ω = 0 .  
A Figura 4.4 apresenta  resultados do desenvolvimento do perfil de velocidade v(x,y), para 

número de Reynolds igual a 75. Pode ser observado, uma crescente atenuação axial e transversal da 
componente v(x,y), voltando a assumir essa distribuição no escoamento completamente 
desenvolvido. 
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Figura 4.4 – Perfil de velocidade v(x,y) ao longo do duto para  Re = 75. 

 

 



A Figura 4.5  mostra  uma análise da componente de velocidade u(x,y)  em diferentes posições 
axiais, para o caso de número de  Reynolds igual a 75.  Os resultados  mostram que à medida que 
vai se avançando ao longo do canal o  perfil parabólico vai se formando, característica típica do 
comportamento completamente desenvolvido.  
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Figura 4.5 – Desenvolvimento do perfil de velocidade para Re = 75. 
 

3. CONCLUSÕES 
 

Os resultados apresentados e discutidos demonstraram a aplicabilidade da Técnica da 
Transformada Integral Generalizada, como uma ferramenta capaz de conseguir resultados precisos 
em problemas de escoamento no interior de reatores fotocatalíticos  de placas  paralelas, 
envolvendo as equações de Navier-Stokes, equação de Poisson para o campo de pressão.  

Além dos diversos tipos de problemas já estudados pelas equações de Navier-Stokes no sistema 
de coordenadas retangulares, já abordados com sucesso por esta técnica, fica aqui registrado a 
eficiência da G.I.T.T. também na solução das equações de Navier Stokes via variáveis primitivas. O 
fato de se ter usado a formulação em termos de variáveis primitivas associada ao campo de pressão,  
possibilitando o uso de problemas de autovalor de segunda ordem, ao contrário da formulação em 
termos de função corrente, que utiliza problemas de autovalor de quarta ordem, evidencia a 
possibilidade de se estender este tipo de formulação para problemas em diferentes coordenadas. 

O uso dos filtros na velocidade e na pressão foi bastante adequado, pois além de homogeneizar 
o contorno, serviu também para acelerar as convergências. 

Foi verificado que os resultados da resolução das equações de Navier-Stokes em termos de 
variáveis primitivas com  condição de entrada u = 1 e P = 0  se aproximam dos resultados em 
termos de função corrente com a condição de entrada u = 1 e ω = 0, com diferenças para valores de 
Reynolds baixos.  

Foi observado que os resultados para números de Reynolds crescentes, apresenta boa 
concordância com os resultados da formulação de camada limite, com diferenças mais acentuadas 
na entrada do reator, isto porque nesta última formulação se despreza os termos da difusão 
longitudinal e o  gradiente de pressão, os quais tem grande influência na região de entrada. 
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THEORETICAL ANALYSIS OF FOTOREACTORS USING THE TECHNIQUE 
OF THE TRANSFORMED INTEGRAL GENERALIZED 

 
Abstract. The contamination of the environment has been pointed as one of the great problems of 
the modern society. Great part of this contamination can be attributed mainly the industrial 
activities. The process photocatalytic presents excellent results, it possesses several applications for 
destruction of pollutant in aqueous means. As consequence, the incompressible drainage to laminate 
in hydrodynamic development, inside a reactor photocatalytic, of the type parallel plates, operating 
in permanent regime is modeled, solving the equations of Navier-Stokes, Poisson with formulation 
in terms of primitive variables, using the analytic-numeric hybrid method known as Technique of 
the Transformed Integral Generalized (G.I.T.T.), for the determination of the hydrodynamic profile. 
The solution in terms of primitive variables associated to the explicit form of the pressure field, 
makes possible the use of problems of eigenvalue of second order, different from the formulation in 
terms of average function that uses a problem of fourth order. This eigenvalue problem facilitates 
the solution of the problems in different coordinates. Like this, numeric results for different 
numbers of Reynolds are obtained, illustrating the characteristics of convergence of the used 
method and allowing comparisons with existent results in the literature, allowing a better 
understanding of the influence of certain parameters that you/they affect the acting of a reactor 
photocatalytic. 
 
Key-words: Transformed Integral, photocatalysis, Photoreactors, Navier-Stokes 
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