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Resumo. No presente trabalho a convecção forçada no escoamento em desenvolvimento com uma
variação senoidal na temperatura de entrada é estudada analiti camente em canais de placas
planas paralelas para um fluido não-newtoniano. A Técnica da Transformada Integral
Generalizada (GITT) é utili zada para fornecer uma solução híbrida semi-analítica da equação da
energia, sujeita a uma condição de contorno do 5º tipo, a qual considera os efeitos da convecção
externa e da capacitância térmica da parede. São obtidos os resultados considerados de interesse
prático como a temperatura do fluido ao longo da linha central do duto. A fim de validar o
procedimento da solução utili zada, os resultados da temperatura foram apresentados em função
das posições axiais adimensionais e comparados com os resultados publicados anteriormente por
Cheroto (1998).
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1. INTRODUÇÃO

A maioria dos chamados "novos materiais'' possui um comportamento não-linear que não é
adequadamente descrito pelas teorias constitutivas clássicas da mecânica. A necessidade crescente
da formulação de modelos e de métodos de cálculo capazes de auxil iar no estudo destes materiais
levou a uma evolução da teoria da dinâmica dos fluidos, desenvolvendo assim uma análise para os
fluidos com comportamento dinâmico diferenciado dos demais fluidos enumerados. Isto é
decorrência do crescimento da importância destes fluidos no processamento industrial e em outros
segmentos da economia onde os fluidos presentes não se comportam como fluidos newtonianos.

Exemplos típicos de substâncias com comportamentos não-newtonianos são: suspensões de
sólidos em líquidos, polímeros, emulsões, materiais em processamento com propriedades visco-
elástico, borrachas, plásticos, fibras sintéticas, petróleo, detergente e sabão, fluidos biológicos e
farmacêuticos, alimentos, operações no campo de óleos, tintas. Notadamente nas indústrias
siderúrgica, petroquímica, nuclear e aeroespacial entre outros.
O estudo da convecção forçada tem sido objeto de interesse por parte de muitos pesquisadores,
devido a sua importância prática na engenharia. Devido à necessidade cada vez maior de soluções



exatas em curto intervalo de tempo, as técnicas de aproximação numérica vêm ganhando espaço
sobre a experimentação e aos métodos analíticos clássicos. Isto ocorre, pois a experimentação é
quase sempre demorada, dispendiosa e os gastos com aquisição e aferição de equipamentos são
enormes para cada nova situação e os métodos analíticos clássicos apresentam certas limitações.

A Técnica da Transformada Integral Generalizada (GITT), presente neste trabalho, é conhecida
como um método poderoso na solução e manipulação de certas classes de problemas difusivos de
calor e massa. A idéia básica consiste em transformar um sistema de equações diferenciais parciais
original em um sistema infinito de equações diferenciais ordinárias, através da eliminação de
dependências espaciais, onde esses podem ser resolvidos de maneira mais simples, com a vantagem
de produzir uma solução mais acurada e mais econômica além de permitir um controle sobre o erro
relativo dos resultados.

O principal objetivo deste trabalho é resolver as equações da camada limite para o problema da
convecção forçada de um fluido não-newtoniano em um canal de placas planas paralelas no
escoamento com condição de entrada periódica pela aplicação da Técnica da Transformada Integral
Generalizada (GITT), técnica esta aplicada para fornecer uma solução híbrida semi-analítica na
equação da energia. O presente trabalho pode ser inserido no contexto dos problemas de convecção
forçada, sendo considerado uma extensão dos trabalhos realizados por: Cheroto (1998), Santos
(2002), Veronese (2002) e outros; na resolução das equações da camada limite através da Técnica
da Transformada Integral Generalizada, obtendo dados de interesse prático tais como a  temperatura
do fluido ao longo da linha central do duto.

2. FORMULAÇÃO DO PROBLEMA

Consideremos a convecção forçada, com o perfil de velocidade completamente desenvolvido,
em um escoamento laminar de um fluido  não-newtoniano em um canal de placas paralelas. A
equação da energia esta sujeita a uma condição de contorno do 5º tipo, a qual considera os efeitos
da convecção externa e da capacitância térmica da parede. As hipótese para a formulação
matemática são: escoamento laminar, fluido incompressível e bidimensional.  Não considerar-se-á
os efeitos de dissipação viscosa e as propriedades físicas serão mantidas constantes. O problema
proposto pode ser representado pelas equações abaixo:

Figura 1. - Definição do Problema Proposto

Equação da energia e condições de contorno:
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Foram utilizados os seguintes grupos adimensionais:

d

y
Y = ;

d

x
X = ;

α
β 2d

=Ω ;
l

d

c

c
a

w

f

)(

)(
*

ρ
ρ

= ;
cT

TT

∆
−= ∞θ ;       (2 a-e)

cT

T

∆
∆

=∆θ ;
f

e

k

dh
Bi =  ;

2d

tατ =  ;
0u

u
U =∞ ;              (2 f-i)

Segundo Mikhailov e Özisik (1984), o modelo Lei de Potência, para o fluido não-newtoniano no
termo de velocidade completamente desenvolvido é dado por:
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 Quando n = 1, a equação acima se reduz ao modelo newtoniano. Os fluidos em que n < 1 são
chamados de pseudoplásticos ; os exemplos incluem as soluções polímeras, suspensões coloidais e
polpa de papel em água. Se n > 1 o fluido é chamado de dilatante; os exemplos incluem as
suspensões de amido e areia.

2.1 Solução Periódica

 Como é de interesse a solução periódica para tempos longos, pode-se assumir então como
solução a seguinte expressão abaixo, facil itando a resolução do problema.

)exp(),(),,( τθτθ Ω= iYXYX                    (3)

Substituindo a equação acima na Eq. (1), temos:
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2.2 Solução via GITT

Problema auxil iar:
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Condições de contorno para o problema auxil iar:
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A normalização integral, Mi, é dada por:
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A solução para o problema de autovalor (5.a-c) é dada por:
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Onde os  autovalores, 
�

i, são encontrados através da Eq. transcendental dada abaixo:
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Da propriedade de ortogonalidade:
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O par de Transformada-Inversa é dado por:
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O operador integral é visualizado como:
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Para proceder à transformação integral da Eq. (4 a) deve-se operá-la com a Eq. (6 c), para obter:
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Aplicando a expressão da inversa (6 b), o lado esquerdo da Eq. acima torna-se:
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O lado direito da Eq. (7 a) será resolvido separadamente, na primeira integral será usado o
segundo teorema de Green para obter:
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Aplicando o problema de autovalor para simpli ficar o restante da integral e em seguida a
formula da inversa. Quando Y = 0,  os  termos desaparecem, logo:
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Para continuar a transformação, as equações de contorno (4 d) e (5 c) serão necessárias e por
cancelamento os termos com número de Biot (termos iguais, mas com sinais opostos) desaparecerão
e a Eq. (7 c) pode ser reescrita como:
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Na segunda integral do lado direito da Eq. (7 a), após aplicar a fórmula da Inversa:
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Reagrupando todos os termos :
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Note que a transformação eliminou do problema a dependência em Y,  agora a Eq. (10) pode ser
reescrita na forma matricial:
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As condições de entrada são dadas pela Eq. (4.b) e precisam ser transformadas pelo operador da Eq.
(6c) para obter:
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finalmente o sistema transformado é definido como:
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Onde:
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O sistema de equações diferenciais ordinário é truncado em NA termos e numericamente
solucionado. Para a recuperação da temperatura original, utili za-se a Eq. (6 b), equação da inversa,
para obter o potencial original.

3. ANÁLISE DOS RESULT ADOS PARA O CAMPO DE TEMPERATURA

Apresentamos a convergência da temperatura ao longo da linha central do duto para
diferentes índices Lei de Potência e Biot. O perfil da temperatura na entrada é do tipo  ∆θ (Y) = 1 -
Y2. NA é o número de termos utilizados na expansão. As Tabelas  abaixo mostram a convergência
da temperatura ao longo da linha central do duto para os diferentes índices Lei de Potência, com
número de Reynolds (Re) igual a 452 e número de Prandtl (Pr) igual a 0,7. Na Tabela (1) os valores
convergem rapidamente, apenas com 9 termos, para os diferentes índices Lei de Potência. Na
Tabela (2), são comparados os resultados obtidos para índice Lei de Potência  igual a 1 (n = 1) com
os resultados obtidos por Cheroto (1998), obtendo uma excelente concordância com estes
resultados. Na Tabela (3), é mostrado os resultados para diversos índices Lei de Potência, variando
o número de Biot, utilizando desta vez  a* = 8,5x 1030, neste caso a convergência é rápida, utilizando
apenas 7 termos.



Tabela 1. - Convergência da temperatura ao longo da linha central do duto, usando Bi = 105,
Ω = 0,06491, a* = 5 x 10-5, ∆θ (Y) = 1 - Y2 e vários índices Lei de Potência

Índice Lei de Potência = 0,5. (n = 0,5)
X 0,01 0,1 0,5 1,0

NA=3 0,984931 0,844862 0,384492 0,142520
NA=7 0,984963 0,845080 0,384546 0,142538
NA=9 0,984978 0,845082 0,384547 0,142539

Índice Lei de Potência = 1,0. (n = 1)
X 0,01 0,1 0,5 1,0

NA=3 0,986425 0,856064 0,405527 0,158004
NA=7 0,986564 0,856208 0,405575 0,158022
NA=9 0,986571 0,856209 0,405576 0,158021

Índice Lei de Potência = 3,0. (n = 3)
X 0,01 0,1 0,5 1,0

NA=3 0,987999 0,866689 0,425757 0,173588
NA=7 0,988245 0,866956 0,425930 0,173657
NA=9 0,988252 0,866967 0,425936 0,173660

Tabela 2. – Comparação da temperatura ao longo da linha central do duto, usando Bi = 105,
Ω = 0,06491, a* = 5 x 10-5, ∆θ (Y) = 1 - Y2   e   índice Lei de Potência = 1. (n = 1)

X 0,01 0,1 0,5 1,0
PRESENTE
TRABALHO

0,986571 0,856209 0,405576 0,158021

CHEROTO 0,9866 0,8562 0,4056 0,1580

Tabela 3. - Resultados da temperatura ao longo da linha central do duto, usando Ω  =  0,06491,
a*  =  8,5x 1030, ∆θ (Y) = 1 - Y2 , para 7  autovalores, diversos  índices  Lei  de  Potência  e  nú-
mero de Biot

Número de Biot = 20
X 0,01 0,1 0,5 1,0

n = 0,5 0,984979 0,847876 0,410675 0,165251
n = 1 0,986526 0,858957 0,430897 0,18097
n = 3 0,988125 0,869661 0,45043 0,196713

Número de Biot = 50
X 0,01 0,1 0,5 1,0

n = 0,5 0,984969 0,846309 0,395351 0,151666
n = 1 0,986546 0,857409 0,416041 0,167264
n = 3 0,988186 0,868131 0,43605 0,182959

Número de Biot = 100
X 0,01 0,1 0,5 1,0

n = 0,5 0,984966 0,845715 0,390007 0,147105
n = 1 0,986555 0,856827 0,410864 0,16265
n = 3 0,988214 0,86756 0,431043 0,178318



Continuação da Tabela 3.

Número de Biot = 1000
X 0,01 0,1 0,5 1,0

n = 0,5 0,984963 0,845145 0,385093 0,14299
n = 1 0,986563 0,856271 0,406104 0,158482
n = 3 0,988242 0,867017 0,426442 0,174122

As Figuras a seguir mostram o comportamento da temperatura do fluido ao longo da linha
central para os diversos índices Lei de Potência e número de Biot mostrados na Tab.(3). Notou-se
que a medida em que o número de Biot cresce a temperatura do fluido ao longo da linha central
tende a cair, e a medida em que o índice Lei de Potência aumenta a temperatura média ao longo do
duto tende a crescer também.
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Figuras 2 e 3 - Comparação da temperatura do fluido ao longo da linha central, usando Bi = 1000 e
Bi = 100, Ω = 0,06491, a* = 8,5 x 1030, ∆θ (Y) = 1 - Y2 para diversos índices Lei de Potência.
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Figuras 4 e 5 - Comparação da temperatura do fluido ao longo da linha central, usando Bi = 50 e Bi
= 20, Ω = 0,06491, a* =  8,5 x 1030,  ∆θ (Y) = 1 - Y2 para diversos índices Lei de Potência.



4. CONCLUSÃO

A Técnica da Transformada Integral Generalizada (GITT), utilizada neste trabalho mostrou-se
eficiente na solução de problemas com o perfil de velocidade completamente desenvolvido,
obtendo-se uma excelente concordância com os resultados obtidos por Cheroto (1998). Na análise
foi considerado o efeito do índice Lei de Potência no comportamento da temperatura do fluido ao
longo da linha central. Verificou-se também que em relação ao número de Biot, a variação da
temperatura do fluido ao longo da linha central ao longo do duto é inversamente proporcional. Os
resultados mostrados são de importância no estudo do comportamento de fluidos com
características não-newtonianas na transferência de calor e escoamento de fluidos, principalmente
para o setor petróleo e gás que está na busca de soluções para o campo de velocidade e temperatura
do escoamento de fluidos deste tipo.
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7. NOMENCLATURA

 a*  Relação da capacitância térmica entre a
parede e  o fluido

Bi       Número de Biot
d       Metade da distância entre as placas planas

       paralelas, m
he         Coeficiente de transferência de calor
i           Número imáginário, ( -1 )1/2

kf         Condutividade térmica do fluido, W/(mk)
l         Espessura da parede, m
M i         Norma do problema de autovalor do campo
                de temperatura
NA      Número de autovalores   
n         Indice Lei de Potência
Pr      Número de Prandtl
R              Número de Reynolds
T(x,y,t)   Distribuição de temperatura ao longo do
                 duto,  º C
t            Tempo, s
T(x, y, 0) Temperatura inicial, º C

u          Componente longitudinal do campo de
       velocidade, m/s

uo             Velocidade inicial m/s
U      Componente longitudinal do campo de

       velocidade adimensional
x       Variável longitudinal, m
X         Variável longitudinal adimensional
y Coordenada normal, m
Y Coordenada normal adimensional

SIMBOLOS GREGOS

�  Difusividade térmica , m2 /s
β Freqüência de entrada
βi Autovalor do problema auxiliar do campo de

temperatura no escoamento de placas
paralelas

Γ          Autofunção do problema auxil iar do campo
de temperatura



ν Viscosidade cinemática
Ω Freqüência adimencional das oscilações de

entrada
ρ Densidade do fuido, kg/m3

θ Temperatura adimensional
� Tempo adimensional
µ Viscosidade dinâmica da solução
δi j   Delta de Kronecker

SUBSCRITOS

i, j, k  Indica a ordem dos autovalores e funções
afins

w  Indica o valor da grandeza da parede
f    Indica o valor da grandeza do fluido de

trabalho
� Indica o valor da grandeza no escoamento

completamente desenvolvido.
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Abstract. In this work the forced convection in parallel plate channels is analytically
studied in the developed flow of non-newtonian fluids with a senoidal variation of the
temperature profile at the inlet position. The Generalized Integral Transform Technique is
applied to provide a hybrid semi-analytical solution for energy equation. The energy
equation is solved by consideration of a boundary conditions of fifth kind of where external
convection effects and the wall capacitance are considered and next to obtain results of
practical interests such as: centerline temperature fluid. To validate the solution procedure
used as centerline temperature fluid are plotted as function of dimensionless axial positions
and are compared with previously published results by Cheroto (1998).
Key Words: Convection Forced, GITT, Power-Law, Non-Newtonian fluid.


