CONVECCAO FORCADA LAMINAR DE FLUIDO NAQ—NEWTONIANO
USANDO O MODELO LEI DE POTENCIA: SOLUCAO VIA GITT

Jean Pierre Veronese
(*) Laboratorio de Energia Solar (LES) da UFPB, Cidade Universitéria- Campus |, 58059900,
Jodo Pesa/PB, e-mail: jpveronese@ig.com.br

Jacques Cesar dos Santos
(*), e-mail : jacquescesarsantos@ig.com.br

Carlos A. Cabral dos Santos
(*), e-mail: cabral @les.ufpb.br

Romberg Rodrigues Gondim
(*), email: romberg@Ies.ufpb.br

Resumo. No presente trabdho acornvec@o forcada noescoamento em desenvolvimento com uma
variacdo senoidal na temperatura de entrada é estudada anéticamente an canas de placas
planas paralelas para um fluido naoenewtoniano. A Témica da Transformada Integral
Generalizada (GITT) é utilizada paa forneceg uma solucdo hbrida semi-anditica da equacdo ca
energia, sujeita a uma condc¢do de contorno do5° tipo, a qud considera cs efeitos da corvec@o
exerna e da capacitancia térmica da paede. S& ohtidos os resultados consideradcs de interese
pratico como a temperatura do fluido ao longo da linha central do duo. A fim de walidar o
procedimento da solucao uili zada os resultados da temperatura foram apresentados em fungdo
das posicles axiais adimensionas e amparados com os resultadcs pulicados anteriormente por
Cheroto (1998.
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1. INTRODUCAO

A maioria dos chamados "novos materiais' possli um comportamento ndo-linea que ndo é
adequadamente descrito pelas teorias congtitutivas clasdcas da mecénica A necessidade aescente
da formulagé de modelos e de métodos de calculo cgpazes de auxiliar no estudo destes materiais
levou a uma evolucéo da teoria da dindmica dos fluidos, desenvolvendo assim uma andlise para 0s
fluidos com comportamento dnamico dferenciado dos demais fluidos enumerados. Isto é
decorréncia do crescimento da importancia destes fluidos no processamento industrial e em outros
segmentos da economia onde os fluidos presentes ndo se cmportam como fluidos newtonianos.

Exemplos tipicos de substéncias com comportamentos ndo-newtonianos $0: suspensdes de
solidos em liquidos, polimeros, emulsdes, materiais em processamento com propriedades visco-
elastico, borradchas, plasticos, fibras sintéticas, petréleo, detergente e sabdo, fluidos bioldgicos e
farmacéuiticos, aimentos, operagbes no campo de Oleos, tintas. Notadamente nas indistrias
siderdrgica, petroquimica, nuclea e agoespacial entre outros.

O estudo da mnveccad forgada tem sido objeto de interesse por parte de muitos pesquisadores,
devido a sua importancia prética na engenharia. Devido a necessdade cala vez maior de solugdes



exatas em curto intervalo de tempo, as témicas de groximac¢d® numérica vém ganhando espag
sobre a eperimentacd® e aos métodos analiticos classicos. Isto ocorre, pois a experimentacéd €
quase sempre demorada, dispendiosa e 0s gastos com aquisicéo e dericdo de eguipamentos $o0
enormes para cala nova situacé e os métodos anal iticos classicos apresentam certas limitagdes.

A Técnicada Transformada Integral Generalizada (GITT), presente neste trabalho, é conhecida
como um método poderoso na solugdo e manipulacd de ceatas classes de problemas difusivos de
calor e massa. A idéia basica onsiste em transformar um sistema de equagdes diferenciais parciais
original em um sistema infinito de equagdes diferenciais ordinérias, através da eliminac® de
dependéncias espaciais, onde esses podem ser resolvidos de maneira mais simples, com a vantagem
de produzir uma solugéo mais acurada e mais econdémicaalém de permitir um controle sobre o0 erro
relativo dos resultados.

O principal objetivo deste trabalho é resolver as equagdes da amada limite para o problema da
convecgéo forcada de um fluido ndo-newtoniano em um canal de placas planas paralelas no
escoamento com condi¢éo de entrada periddicapela glicac® da Témica da Transformada I ntegral
Generalizada (GITT), témica eta glicada para fornece uma solucéo hibrida semi-analitica na
equacd da energia. O presente trabalho pode ser inserido no contexto dos problemas de mwnveccd®
forcada, sendo considerado uma extensdo dos trabalhos realizados por: Cheroto (1998, Santos
(2002, Veronese (2002 e outros; na resolucdo das equagdes da canada limite aravés da Técnica
da Transformada Integral Generalizada, obtendo dados de interesse pratico tais como a temperatura
do fluido ao longo dalinha eentral do duto.

2. FORMULACAO DO PROBLEMA

Consideremos a mnveccd forgada, com o perfil de velocidade completamente desenvolvido,
em um escoamento laminar de um fluido n&o-newtoniano em um canal de placas paralelas. A
equacd da eergia esta sujeita auma condicdo de @ntorno do 2 tipo, a qual considera os efeitos
da @mnvecdo externa e da cgacitancia térmica da parede. As hipétese para a formulagcéo
matemética sdo: escoamento laminar, fluido incompressivel e bidimensional. N&o considerar-se-a
os efeitos de dissipacéo viscosa e & propriedades fisicas sréo mantidas constantes. O problema
proposto pode ser representado pelas equagdes abaixo:
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Figura 1. - Defini¢éo do Problema Proposto

Equacé daenergia e ondigdes de contorno:
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Foram utilizados os gguintes grupos adimensionais:
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Segundo Mikhailov e Ozisik (1984, o modelo Lei de Poténcia, para o fluido ndo-newtoniano no
termo de velocidade completamente desenvolvido é dado por:

U_(Y) = zn”:llE—Yn E 2i)

Quando n = 1, a equacgdo adma se reduz a0 modelo newtoniano. Os fluidos em que n < 1 sdo
chamados de pseudoplasticos ; os exemplos incluem as lucdes polimeras, suspensdes coloidais e
polpa de papel em &gua. Se n > 1 o fluido é diamado de dilatante; os exemplos incluem as
suspensdes de anido e aeia.

2.1 Solucédo Periodica

Como € de interese a solucd periddica para tempos longos, pode-se asumir entdo como
solucéo a seguinte expressao abaixo, facilitando aresolucéo do problema.

O(X,Y,T) =0(X,Y)exp(Qr) (3)

Substituindo a equac@® admanaEg. (1), temos:
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2.2 Solugdo viaGITT

Problema auxiliar:

d’r, (Y)
dy?

Condigdes de contorno parao problema auxiliar:
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A normalizacéo integral, M;, é dada por:

M. =}Fi2(Y)dY

A solucéo parao problema de aitovalor (5.a-C) é dada por:

r(Y)=Cos(BY) ;i=1,23..

Onde os autovalores, §j, s80 encontrados atraves da Eq. transcendental dada abaixo:

BiCos(B) =Sen(B)B ; 1=1,23.
Da propriedade de ortogonali dade:
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O par de Transformada-Inversa édado por:
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6.(X) = I I (Y)8(X,Y)dY (Transformada)

0
6(X.Y)=5 T(V)6,(x)  (Inversa)

O operador integra é visualizado como:
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Para proceder atransformacé integral da Eq. (4 a) deve-se operéla mom aEg. (6 ¢), paraobter:

IF V)J,, (Y)%dY IF (Y)aze_

dy —}Fi Y)iQedy (7 )

Aplicando a expresséo dainversa (6 b), o lado esquerdo da Eq. admatorna-se:

1~ L df,(X)
!Fi(Y)Um(Y)ZFJ(Y) v dy (7 b)

O lado direito da Eq. (7 @ sera resolvido separadamente, na primeira integral serd usado o
segundo teorema de Green para obter:
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Aplicando o problema de aitovalor para smplificar o restante da integral e em seguida a
formuladainversa. Quando Y =0, os termos desaparecem, logo:

6, (x 1) r of

dv ¢

- B’ IZF ()T, (V)8 (X)dY + m‘ @ -6, (X )" (7d)

Para @ntinuar a transformaca, as equagdes de contorno (4 d) e (5 ¢) serdo necessérias e por
cancelamento 0s termos com nimero de Biot (termos iguais, mas com sinais opostos) desapareceaao
e aEq. (7 c) pode ser reescrita cmo:
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Na segundaintegral do lado direito da Eq. (7 @), ap6s aplicar aférmulada lnversa:
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Reagrupando todos ostermos :
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Onde:

Q = jF ()} (YU, (V)Y (11)



Note que a transformacé eliminou do problema adependéncia em Y, agora aEq. (10) pode ser
reescrita na forma matricial:

dé(X) . =
Q; “ax B, 6 (X) (12
Onde;
B, = ~(B2 +iQ)5, —;—% WF, @) (13

As condi¢des de entrada séo dadas pela Eq. (4.b) e predsam ser transformadas pelo operador da Eq.
(6€) paraobter:

6,(0)=f,(Y) (14)
com

fi(v)= jF (V)A8(Y)dY (19

finalmente o sistema transformado é definido como:

46(X) _ pg (16)
dX
Onde:
A= Qi 'Bij (17

O sistema de euagdes diferenciais ordinario € truncado em NA termos e numericamente
solucionado. Para areauperac@® datemperatura original, utiliza-se aEq. (6 b), equagdo da inversa,
para obter o potencial original.

3. ANALISE DOSRESULT ADOS PARA O CAMPO DE TEMPERATURA

Apresentamos a convergéncia da temperatura ao longo da linha entral do duto para
diferentes indices Lei de Poténcia eBiot. O perfil datemperatura na entrada édo tipo A0 (Y) =1 -
Y2 NA é o nimero de termos utilizados na expansio. As Tabelas abaixo mostram a @nvergéncia
da temperatura ao longo da linha ceantral do duto para os diferentes indices Lei de Poténcia, com
nimero de Reynolds (Re) igual a452 e nimero de Prandtl (Pr) igual a0,7. Na Tabela (1) os valores
convergem rapidamente, apenas com 9 termos, para os diferentes indices Lei de Poténcia. Na
Tabela (2), sBo comparados os resultados obtidos para indice Lei de Poténcia igual al (n = 1) com
os resultados obtidos por Cheroto (1998, obtendo uma exceente concordancia @mm estes
resultados. Na Tabela (3), € mostrado os resultados para diversos indices Lei de Poténcia, variando
o nimero de Biot, utilizando destavez a= 8,5x 10°°, neste cao a convergéncia érépida, utilizando
apenas 7 termos.



Tabela 1. - Convergéncia da temperatura ao longo dalinha central do duto, usando Bi = 10,

Q =0,06491 a =5x10°, A8 (Y) = 1 - Y? e vérios indices Lei de Poténcia

indiceLe de Poténcia=0,5. (n = 0,5)

X 0,01 0,1 0,5 1,0
NA=3 0,984931 0,844862 0,384492 0,142520
NA=7 0,984963 0,845080 0,384546 0,142538
NA=9 0,984978 0,845082 0,384547 0,142539

indiceLe dePoténcia=1,0. (n=1)

X 0,01 0,1 0,5 1,0
NA=3 0,986425 0,856064 0,405527 0,158004
NA=7 0,986564 0,856208 0,405575 0,158022
NA=9 0,986571 0,856209 0,405576 0,158021

indiceLe de Poténcia=3,0. (n = 3)

X 0,01 0,1 0,5 1,0
NA=3 0,987999 0,866689 0,425757 0,173588
NA=7 0,988245 0,866956 0,425930 0,173657
NA=9 0,988252 0,866967 0,425936 0,173660

Tabela 2. — Comparagéo datemperatura ao longo dalinha central do duto, usando Bi = 10,
Q =0,06491a=5x10 A0 (Y)=1-Y? e indiceLei dePoténcia =1. (n= 1)

X 0,01 0,1 0,5 10
PRESENTE
TRABALHO 0,986571 0,856209 0,405576 0,158021
CHEROTO 0,9866 0,8562 0,4056 0,1580

Tabela 3. - Resultados datemperatura a longo da linha eentral do duto, usando Q = 0,0649,
a = 85x10°° A0 (Y)=1-Y?, para7 autovalores, diversos indices Lei de Poténcia e nd-
mero de Biot

NUmero de Biot = 20
X 0,01 0,1 0,5 1,0
n=0,5 0,984979 0,847876 0,410675 0,165251
n=1 0,986526 0,858957 0,430897 0,18097
n=3 0,988125 0,869661 0,45043 0,196713
Numero de Biot = 50
X 0,01 0,1 0,5 1,0
n=0,5 0,984969 0,846309 0,395351 0,151666
n=1 0,986546 0,857409 0,416041 0,167264
n=3 0,988186 0,868131 0,43605 0,182959
NUmero de Biot = 100
X 0,01 0,1 0,5 1,0
n=0,5 0,984966 0,845715 0,390007 0,147105
n=1 0,986555 0,856827 0,410864 0,16265
n=3 0,988214 0,86756 0,431043 0,178318




Continuagédo da Tabela 3.

NUmero de Biot = 1000
X 0,01 0,1 0,5 1,0
n=0,5 0,984963 0,845145 0,385093 0,14299
n=1 0,986563 0,856271 0,406104 0,158482
n=3 0,988242 0,867017 0,426442 0,174122

As Figuras a seguir mostram o comportamento da temperatura do fluido ao longo da linha
central para os diversos indices Lei de Poténcia e nimero de Biot mostrados na Tab.(3). Notou-se
gue amedida em que o nimero de Biot cresce atemperatura do fluido ao longo da linha caentral
tende a @ir, e amedida em que o indice Lei de Poténcia aumenta atemperatura média a longo do
duto tende a cescer também.

Temperatura do Fluido ao Longo da Linha Central do Duto
adimensional)

——H—— indice Lei de Poténcia= 0.5
—— -+ — - indice Lei de Poténcia =1
— -A— - indice Lei de Poténcia = 3

0.2

0.4 0.6 0.8 1

Posicéo ao Longo do Duto (X)

Temperatura do Fluido ao Longo da Linha Central do Duto

(adimensional)

——— indice Lei de Poténcia = 0.5
—— 4~ indice Leide Poténcia = 1
— -A— - ndice Leide Poténcia = 3

0.2

04 06 08 1

Posigcdo ao Longo do Duto (X)
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4. CONCLUSAO

A Técnica da Transformada Integral Generalizada (GITT), utilizada neste trabalho mostrou-se
eficiente na solugéo de problemas com o perfil de velocidade mmpletamente desenvolvido,
obtendo-se uma excelente mncordancia cm os resultados obtidos por Cheroto (1998. Na andlise
foi considerado o efeito do indice Lei de Poténcia no comportamento da temperatura do fluido ao
longo da linha central. Verificou-se também que em relacd® ao nimero de Biot, a variacd® da
temperatura do fluido ao longo da linha central ao longo do duto € inversamente proporcional. Os
resultados mostrados 0 de importancia no estudo do comportamento de fluidos com
caraderisticas ndo-newtonianas na transferéncia de alor e escoamento de fluidos, principalmente
para o setor petréleo e gas que esta na buscade solucdes para o campo de velocidade etemperatura
do escoamento de fluidos deste tipo.
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7.NOMENCLATURA

a Relacdo da capacitanciatérmica entre a u Componente longitudinal do campo de
parede e o fluido velocidade, m/s

Bi NUmero de Biot Uo Velocidadeinicial m/s

d Metade da distancia entre as placas planas U Componente longitudinal do campo de
pardelas m vel ocidade adimensional

he Coeficiente de transferéncia de clor X Variavel longitudina, m

[ NUmero iméginério, ( -1 )Y X Variavel longitudinal adimensional

ks Condutividade térmicado fluido, W/(mk) y Coordenadanormal, m

I Espesaura da parede, m Y Coordenada normal adimensional

M; Normado problema de autovalor do campo
detemperatura SIMBOLOS GREGOS

NA NUmero de autovalores S _

n IndiceLei de Poténcia a Difusividade térmica, m? /s

Pr NUmero de Prandtl B Freqiiénciade entrada

R NUmero de Reynolds Bi Autovalor do problema auxiliar do campo de

T(x,y,t) Distribuicdo de temperatura ao longo do temperatura no escoamento de placas
duto, °C paraeas

! Tempo, s r Autofunggo do problema auxiliar do campo

T(x,y, 0) Temperaturainicial,® C

de temperatura



v Viscosidade dnemética SUBSCRITOS
Q Freqiiéncia adimencional das oscil agbes de
entrada ij,k Indica a ordem dos autoval ores e funcfes
o Densidade do fuido, kg/m® afins
9 Temperatura adimensional w Indica o valor da grandeza da parede
. Tempo adimensional f Indica o valor dagrandeza do fluido de
u Viscosidade dinamicada solugao trabalho
3 Delta de Kronedker 00 Indica o valor da grandezano escoamento

completamente desenvolvido.
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Abstract. In this work the forced convection in parallel plate channels is analytically
studied in the developed flow of non-newmonian fluids with a senoidal variation of the
temperature profile at the inlet position. The Generalized Integral Transform Technique is
applied to provide a hybrid semi-analytical solution for energy equation. The energy
equation is solved by consideration of a boundary conditions of fifth kind of where external
convection effects and the wall capacitance are considered and next to obtain results of
practical interests such as: centerline temperature fluid. To validate the solution procedure
used as centerline temperature fluid are plotted as function of dimensionless axial positions
and are compared with previoudly published results by Cheroto (1998).
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