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Resumo. No presente trabalho a convecção forçada transiente no escoamento em desenvolvimento
com uma variação senoidal no perfil de temperatura na entrada é estudada analiti camente em
canais de placas planas paralelas para um fluido não-newtoniano. A Técnica da Transformada
Integral Generalizada (GITT) é utili zada para fornecer uma solução híbrida semi-analítica da
equação da energia, sujeita a uma condição de contorno do 5º tipo, a qual considera os efeitos da
convecção externa e da capacitância térmica da parede. A solução periódica do perfil de
temperatura no campo complexo é obtida com a utili zação de dois problemas auxili ares acoplados,
representando as partes real e imaginaria da equação.

A fim de validar o procedimento da solução utili zada, os resultados da temperatura média e do
número de Nusselt foram apresentados em função das posições axiais adimensionais e comparados
com os resultados publicados anteriormente.
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1. INTRODUÇÃO

Cada vez mais o enorme desenvolvimento científico-tecnológico alcançado nestas últimas
décadas no setor petrolífero, petroquímico e alimentício, aliado ao rápido desenvolvimento dos
computadores, permite que problemas complexos de grande relevância sócio-econômica possam ser
simulados computacionalmente empregando modelos sofisticados capazes de representar o
comportamento real com alto grau de precisão. O setor petróleo e gás está na busca de soluções para
o campo de velocidade e temperatura do escoamento de fluidos com características tipicamente não
newtonianas. O estudo da convecção forçada transiente tem sido objeto de interesse por parte de
muitos pesquisadores, devido a sua importância prática na engenharia. A Técnica da Transformada
Integral Generalizada (GITT), presente neste trabalho, é conhecida como um método poderoso na



solução e manipulação de certas classes de problemas difusivos de calor e massa. A GITT permite a
solução de problemas de forma híbrida a problemas com complexidade newtonianas envolvidas que
não podem ser tratados pelas técnicas analíticas habituais. A idéia básica consiste em transformar
um sistema de equações diferenciais parciais original em um sistema infinito de equações
ordinárias, através da eliminação de dependências espaciais, onde esses podem ser resolvidos de
maneira mais simples, com a vantagem de produzir uma solução mais acurada e mais econômica
além de permitir um controle sobre o erro relativo dos resultados. O principal objetivo deste
trabalho é resolver as equações da camada limite para o problema da convecção forçada de um
fluido não-newtoniano em um canal de placas planas paralelas com o escoamento em
desenvolvimento térmico e hidrodinâmico simultâneo pela aplicação da Técnica de Transformada
Integral Generalizada (GITT), técnica esta aplicada para fornecer uma solução híbrida semi-
analítica na equação da energia. O presente trabalho pode ser inserido no contexto dos problemas de
convecção forçada transiente, sendo considerado uma extensão dos trabalhos realizados por:
Cheroto (1995), Machado (1998), Figueira da Silva et al (1996); Wortmann et al (1996);  Medeiros
(1998); Santos et al (2001) e outros; na resolução das equações da camada limite através da Técnica
da Transformada Integral Generalizada, incluindo condições de contorno  e de entrada no problema
térmico simultaneamente, com  aumento significativo da complexidade do problema proposto.
Obtendo dados de interesse prático tais como a  temperatura média do fluido e o número de Nusselt.

1.2 – Definição do problema

Considere o desenvolvimento simultâneo de um escoamento laminar de um fluido não-
newtoniano em um canal de placas paralelas. O problema é descrito através das equações da
quantidade de movimento e energia. As hipótese para a formulação matemática são: escoamento
laminar, fluido incompressível e bidimensional;  Não considerar-se-á os efeitos de dissipação
viscosa; As propriedades físicas serão constantes e as paredes serão mantidas a uma temperatura
uniforme wT .  O problema proposto pode ser representado pelas equações abaixo:

Figura 1 - Definição do Problema Proposto

As equações da quantidade de movimento e energia
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E as condições iniciais e  de contorno :
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Foram usados os seguintes grupos adimensionais:
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2. MÉTODO DE SOLUÇÃO DO PROBLEMA TÉRMICO EM FUNÇÃO CORRENTE VIA
GITT

Para a determinação do perfil de temperatura, utiliza-se a Eq. da energia  (2) e sua condições de
entrada e contorno (3 a-j). Então para resolver a Eq. da energia, via GITT, deve-se transformar duas
vezes, tornando assim o problema mais difícil, mas como é de interesse apenas a solução periódica
para tempos longos, pode-se assumir então como solução a seguinte expressão abaixo, facil itando a
resolução do problema.

)iexp()Y,X(),Y,X( τΩθτθ =              (4.1)

onde:
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1

)1(−=i           (4.2)

Pelo método das variáveis complexas dependentes::
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Aplicando (4.1) em (2):
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A Eq. (5) esta em termos reais e imaginários, usando a Eq. (4.2) separamos a parte real da
imaginaria.
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Cujas condições de entrada e contorno são:
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A Eq. da energia (2) foi dividida em outras duas (6.1) e (6.2). Logo será aplicada a solução
formal da GITT em cada uma das equações. Cada uma delas terá o seu respectivo problema
auxil iar, par de transformada-inversa, etc.

Problema auxil iar:
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Condições de contorno para o problema auxil iar:
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Este problema auxil iar tem solução analítica da seguinte forma:

     )()( ,, YCosY RiRi β=Γ   ; i = 1, 2, 3...                  (10)

Onde os autovalores, ,,Riβ são encontrados através da Eq. transcendentais dados abaixo e calculados

através da DZBREN do IMSL.

     iii SenBiCos βββ )()( =    ;      i = 1, 2, 3...         (11)

A norma, Mi,R, e as autofunções normalizadas são definidas respectivamente como:
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Da propriedade de ortogonalidade:
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O par de transformada-inversa é dado por:
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O operador integral é visualizado como:
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Como o problema auxiliar da parte imaginária tem as mesmas condições de contorno, então a
solução é análoga ao do problema da parte real.

Os pares de transformada-inversa são dados por:
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Para proceder à transformação integral da Eq. (6.1) deve-se operá-la com a Eq. (17), usando em
seguida o teorema de Green. Aplicando a inversa para obter:
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Onde:
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Na notação matricial:
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A condição inicial transformada é obtida através da aplicação da Eq. (18) na Eq. (7 b):
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A parte imaginária pode ser obtida de maneira similar, obtendo a seguinte Eq. na forma matricial:
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As condições iniciais transformadas são:
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Substituindo a equação acima na Eq. (7 e), para obter:
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De posse dos dois sistemas utiliza-se a DIVIPAG para encontrar o campo de temperatura
transformado e a partir daí, determinar a temperatura média do fluido e o número de Nusselt local
dados por:
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3 - ANÁLISE DOS RESULT ADOS PARA O CAMPO DE TEMPERATURA E NÚMERO
DE NUSSELT

Para calcular o perfil de temperatura, é utilizado uma outra coordenada longitudinal
adimensionalizada, a fim de comparar com os resultados obtidos na literatura.
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O código computacional foi desenvolvido em FORTRAN 90 e validado com os resultados
obtidos por Campos et al, 1992 e Medeiros, 1998, para n = 1, isto é, um  fluido newtoniano,
conforme ilustrado na Tab. (1).
 A Tabela 1. mostra a convergência da temperatura média do fluido em diversas posições ao
longo do duto, para diversos índices lei de Potência, com número de Reynolds (Re) igual a 2000,
número de Prandtl (Pr) igual a 0,72 e freqüência de entrada (Ω) igual a 0,06491, a* igual a 8,5.1030 e
Biot igual a 1.1030.

  Tabela 1. - Convergência da temperatura média do fluido usando índice Lei de Potência = 1.
  (n = 1)

X++ NA=20 NA=40 NA=60 NA=80 NA=100 Campos Medeiros
0,0000434 0,9808 0,9808 0,9809 0,9810 0,9810 - 0,9814

0,0000868 0,9726 0,9727 0,9729 0,9730 0,9730 - 0,9734

0,00026 0,9518 0,9523 0,9524 0,9525 0,9526 0,9486 0,9528

0,000434 0,9372 0,9377 0,9379 0,9380 0,9381 0,9331 0,9382

0,000608 0,9251 0,9257 0,9259 0,9260 0,9260 0,9204 0,9261

0,000955 0,9050 0,9056 0,9058 0,9059 0,9059 0,8995 0,9059

0,0013 0,8881 0,8886 0,8888 0,8889 0,8889 0,8819 0,8889

0,00174 0,8691 0,8696 0,8698 0,8699 0,8699 0,8624 0,8698

0,0026 0,8371 0,8376 0,8378 0,8378 0,8379 0,8299 0,8376

0,00434 0,7836 0,7841 0,7842 0,7843 0,7843 0,7764 0,7839

0,00608 0,7383 0,7388 0,7389 0,7390 0,7390 0,7311 0,7384

0,00868 0,6793 0,6796 0,6798 0,6798 0,6798 0,6729 0,6789

0,0148 0,5632 0,5635 0,5636 0,5636 0,5636 0,5581 0,5622

0,0234 0,4344 0,4346 0,4347 0,4347 0,4348 0,4306 0,4328

0,0434 0,2377 0,2378 0,2378 0,2378 0,2379 0,2356 0,2360

0,0651 0,1235 0,1236 0,1236 0,1236 0,1236 0,1212 0,1222

0,0942 0,0513 0,0514 0,0514 0,0514 0,0514 0,0509 0,0506

As figuras a seguir mostram o comportamento da temperatura média do fluido assim como o
número de Nusselt ao longo do duto. A medida em que o número de Biot cresce, a temperatura
média do fluido e o número de Nusselt tendem a diminuir ao longo do duto e a medida em que
aumentamos o índice Lei de Potência a temperatura média do fluido tende a aumentar e o número



de Nusselt a diminuir. Outro fator de grande influência é o a*. Para Biot  = 1,  a  temperatura média
ao longo do duto tende a ser maior a medida em que o a* cresce e com relação ao número de
Nusselt, notamos que ele tende a ser maior quando a* = 0,001 e tem uma queda quando a*= 1.
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Figuras 2 e 3 - Mostram a temperatura média ao longo duto com   Biot = 1, para: a* = 1 e a* = 0.01
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Figuras 4 e 5 - Mostram o número de Nusselt ao longo duto com Biot = 1 para: a* = 1 e a* = 0.01
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Figura 6 e 7 - Mostram o número de Nusselt ao longo duto com Biot = 10 para: a* = 1 e  a* = 0.01



4. CONCLUSÕES

A Técnica da Transformada Integral Generalizada (GITT), utilizada neste trabalho mostrou-se
eficiente na solução de problemas com escoamento simultâneo, obtendo-se uma excelente
concordância com outros trabalhos. Na análise foi considerado o efeito do índice Lei de Potência
(Power-Law) no comportamento do número de Nusselt e da temperatura média ao longo do duto,
assim como a influência do a*. Verificou-se também que em relação ao número de Nusselt, a
variação de Biot é inversamente proporcional Os resultados mostrados, são de importância no
estudo do comportamento de fluidos não-newtonianos na transferencia de calor e no  escoamento de
fluidos.

5. NOMENCLATURA

  a* Relação da capacitância térmica entre a parede e
o fluido

AA  Matriz definida pela Eq. (32)
BB  Matriz definida pela Eq. (34)
Bi Número de Biot
C* ijk     Coeficiente definido pela  Eq. (23)
CC Matriz definida pela Eq. (35)
d Metade da distância entre as placas planas

paralelas
Dh Diâmetro hidráuli co
he Coeficiente de transferência de calor
Iij Coeficiente definido na Eq.  (26)
IIij Coeficiente definido pela Eq. (25)
l Espessura da parede, m
kf Condutividade térmica do fluido
Mi Norma do problema de autovalor para a

componente real e imaginária do  campo de
temperatura

NA Número de autovalores
Nu Número de Nusselt
P Pressão,  N/m2

P* ij Coeficiente definido pela Eq. (24)
Pe  Número de Pecklet
Pr  Número  de Prandtl
Re      Número de Reynolds
T(x, y, t) Distribuição de temperatura ao longo do duto,

º C
t            Tempo, s
T(x, y, 0) Temperatura inicial, º C
uo  Velocidade inicial,  m/s
u Componente de velocidade axial, m/s
U Componente de  velocidade axial adimensional
v  Componente de velocidade transversal, m/s
V  Velocidade transversal adimensionalizada
x Coodenada axial, m
X Coordenada axial adimensionalizada
X++ Variável longitudinal adimensional:

      
rhh PD

x
X

Re
103=++

LETRAS GREGAS

� Difusivibili dade térmica do fluido , m2 /s
β Freqüência de entrada
βi      Autovalor do problema auxiliar do campo

de temperatura no escoamentode placas
paralelas

Γi,R Autofunção do problema auxiliar da parte
real do campo de temperatura

Γi, I Autofunção do problema auxiliar da parte
imaginária do campo de temperatura

ψ      Função corrente
ν Viscosidade cinemática
Ω Freqüência de entrada adimensional
ρ Densidade do fluido, kg/m3

θi Potencial transformado para o campo de
temperatura

θmedia Temperatura média  adimensionalda
θ Temperatura adimensional

�     Tempo adimensional
µ   Viscosidade dinâmica do fluido
δij   Delta de Kronecker

SUBSCRITOS

R  Indica a componente real do potencial
transformado para o campo de temperatura

I Indica a componente imaginária do potencial
transformado para o campo de temperatura

i, j, k   Indica a ordem dos autovalores e funções afins
w  valor da parede
f    Indica o valor da grandeza do  fluido de

trabalho
� Indica o valor da grandeza no  escoamento

Completamente desenvolvido

y Coordenada normal, m
Y Coordenada normal adimensional
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Abstract. In this work the transient forced convection in parallel plate channels is analytically
studied in the simultaneously developing flow of non-newtonian fluids with a senoidal variation of
the temperature profile at the inlet position. The Generalized Integral Transform Technique is
applied to provide a hybrid semi-analytical solution for momentum and energy equations. The
energy equation is solved by  consideration of a boundary conditions of fifth kind of where external
convection effects and the wall capacitance are considered. The periodic temperature profile in the
complex field is obtained with the utili zation of two acoupled auxili ary problems representing
imaginary and real parts of energy equation.

To validate the solution procedure used as average temperature and Nusselt number are plotted
as function of dimensionless axial positions and are compared with previously published results.
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