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Resumo. No presente trabaho aconvec@o forgcada transiente no escoamento em desenvol vimento
com uma variacao senoidal no perfil de temperatura na entrada é estudada anéti camente em
cands de placas planas paralelas para um fluido n&-newtoniano. A Témica da Transformada
Integral Generalizada (GITT) é utilizada paa fornece uma solucdo hbrida semi-anditica da
equacao daenergia, sujeita a uma condcao ¢k contorno do5° tipo, a qud considera os efeitos da
convec@o exerna e da capecitancia térmica da paede. A solucdo periddica do merfil de
temperatura nocampo complexo é obtida com a utili zacdo de dois problemas auxili ares acopladcs,
representando & partes real eimaginaria daequacao.

A fimde walidar o procedimento dasolucao ili zada, os resultadcs da temperatura média e do
ndmero de Nusslt foram apresentadcs em funcdo das posiches axiais adimensionas e mwmparadcs
com os resultadcs pullicadcs anteriormente.
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1. INTRODUCAO

Cada vez mais 0 enorme desenvolvimento cientifico-teaoldgico alcancado nestas Ultimas
décalas no setor petrolifero, petroquimico e alimenticio, aliado a0 répido desenvolvimento dos
computadores, permite que problemas complexos de grande relevancia sbcio-eamndmica possam ser
simulados computacionalmente empregando modelos fisticados cgpazes de representar o
comportamento red com alto grau de precisdo. O setor petréleo e gés esta na buscade solucdes para
o campo de velocidade etemperatura do escoamento de fluidos com caraderisticas tipicamente ndo
newtonianas. O estudo da @mnveccd® forcada transiente tem sido objeto de interesse por parte de
muitos pesguisadores, devido a sua importancia prética na engenharia. A Técnica da Transformada
Integral Generalizada (GITT), presente neste trabalho, € conhedda como um método poderoso na



solugéo e manipulacé de cetas classes de problemas difusivos de calor e massa. A GITT permite a
solucéo de problemas de forma hibrida aproblemas com complexidade newtonianas envolvidas que
ndo podem ser tratados pelas témicas analiticas habituais. A idéia basica onsiste em transformar
um sistema de ejuagdes diferenciais parciais original em um sistema infinito de eguagdes
ordindrias, através da eliminacd de dependéncias espaciais, onde eses podem ser resolvidos de
maneira mais simples, com a vantagem de produzir uma solugcéo mais aaurada e mais econémica
além de permitir um controle sobre o erro relativo dos resultados. O principal objetivo deste
trabalho é resolver as equagdes da camada limite para o problema da @nvecc® forcada de um
fluido ndo-newtoniano em um canal de placas planas paralelas com o0 escoamento em
desenvolvimento térmico e hidrodindmico simulténeo pela glicac® da Témica de Transformada
Integral Generalizada (GITT), témica eta glicada para forneca uma solucd hibrida semi-
analiticana equacd® da energia. O presente trabalho pode ser inserido no contexto dos problemas de
convecgéo forcada transiente, sendo considerado uma extensdo dos trabalhos realizados por:
Cheroto (1999, Madado (1999, Figueirada Silva d a (1996; Wortmann et a (1996; Medeiros
(1998; Santos et a (20017) e outros; na resolucéo das equagdes da canada limite dravés da Témica
da Transformada Integral Generalizada, incluindo condi¢bes de contorno e de entrada no problema
térmico simultaneamente, com aumento significativo da complexidade do problema proposto.
Obtendo dados de interesse prético tais como a temperatura média do fluido e o nimero de Nusselt.

1.2 — Definicdo do problema

Considere o desenvolvimento smultaneo de um escoamento laminar de um fluido né&o-
newtoniano em um canal de placas paralelas. O problema é descrito através das equagdes da
quantidade de movimento e energia. As hipotese para aformulac® matemética sdo: escoamento
laminar, fluido incompressivel e bidimensional; Nao considerar-se-a os efeitos de dissipacéo
viscosa;, As propriedades fisicas ®réo constantes e @& paredes £rdo mantidas a uma temperatura
uniforme T,,. O problema proposto pode ser representado pelas equagdes abaixo:
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2. METODO DE SOLUCAO DO PROBLEMA TERMICO EM FUNCAO CORRENTE VIA

GITT

Para adeterminacé do perfil de temperatura, utiliza-se aEq. da energia (2) e sua condigdes de
entrada econtorno (3 &;j). Entéo pararesolver a Eq. da energia, viaGITT, deve-se transformar duas
vezes, tornando assim o problema mais dificil, mas como é de interese genas a solucdo periddica
para tempos longos, pode-se asaumir entdo como solugéo a seguinte expressao abaixo, facilitando a

resolucéo do problema.
O(X.,Y,T)=0(X,Y)exp(iQ7)

onde;

0(X,Y) =6,(X,Y)+i6,(X,Y) ; onde: i é aunidade imaginariausual , i = (—1)%

Pelo método das varidveis complexas dependentes::
6, =6.,Cos(Qr) ; 6, =6,5n(Qr1)
Aplicando (4.1) em (2):
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A Eq. (5 edta en termos reais e imaginarios, usando a Eq. (4.2) separamos a parte red da
imaginaria
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Cujas condicdes de entrada econtorno sdo:

6.(0.Y) =AB(Y): 0 < ;aaeR —0 X >0 (7 ab)
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6,0Y)=0; O0<Y=<1 — =0; X>0 (7 d-e)
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A Eq. da energia (2) foi dividida em outras duas (6.1) e (6.2). Logo sera glicada a solucéo
formal da GITT em cada uma das equagdes. Cada uma delas tera o seu respedivo problema
auxiliar, par de transformada-inversa, etc.

Problema auxiliar;

d’r, o (Y)
dy?

+ﬁeri,R(Y)=0; 0<Y<1 i=123. (8)
CondicGes de mntorno parao problema auxiliar:

———+Bil (1) =0;

|R() dr r(0) =0 (9 ab)
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Este problema auxiliar tem solug&o analiticada seguinte forma:
Fr(Y)=Cos(BrY) ;i=123. (10

Onde os autovalores, 3, , 80 encontrados atraveés da Eq. transcendentais dados abaixo e alculados
através da DZBREN do IMSL.

BiCos(8) =Sen(B)B. : i=1,2 3. (11)

A norma, M;g, e a autofungdes normalizadas 0 definidas respedivamente mmo:



Mir =}F5R(Y)dY ; ﬁ,R(Y)=ri#(Y) (12-13)
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Da propriedade de ortogonali dade:

o ~ DHES
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O par detransformada-inversa édado por:
1
. (X) = IFi’R(Y)GR(X,Y)dY (Transformada) (15)
0
B(X.Y) = ZFi,R(Y)éRi(X) (Inversa) (16)
O operador integral é visualizado como:
1 _—~
[Ta(dY (17)
0

Como o problema auxiliar da parte imaginaria tem as mesmas condi¢cbes de cntorno, entéo a
solucéo é adloga a do problemada partered.

Os pares de transformada-inversa sdo dados por:

6, (X) =iﬁ,, ()8, (X,Y)dY (Transformada) (18)

6,(X,Y) = Eﬁ,, V)8, (X)  (Inversa) (19
O operador € dado por:

iﬁ,, (Y)dY (20)

Para proceder a transformacé integral da Eq. (6.1) deve-se operéla om a Eq. (17), usando em
seguida o teorema de Green. Aplicando ainversa para obter:
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Onde:
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0
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Na notagdo matricial:
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A condicéo inicial transformada éobtida d@ravés da glicacéo da Eq. (18) naEq. (7 b):
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A parte imaginéria pode ser obtida de maneira similar, obtendo a seguinte Eq. naforma matricial:

AAE@§§2=BBE(X)—CC (32)
AA= ;[Ajk*w*k +p] (33

1 > 0. d¥' L
BB=-0. — B2 + .S 34
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- 39

As condi¢des iniciais transformadas so:
6,(0,Y)=0 (36)

Substituindo a equac@® admanaEq. (7 €), para obter:
1
6,(0) = [T\, ()6, @) = [, (nody =0 (37)

De poss dos dois sistemas utilizase a DIVIPAG para encontrar 0 campo de temperatura
transformado e a partir dai, determinar a temperatura média do fluido e o nimero de Nus<lt local
dados por:
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3 - ANALISE DOS RESULTADOS PARA O CAMPO DE TEMPERATURA E NUMERO
DE NUSELT

Para alcular o pefil de temperatura, € utilizado uma outra coordenada longitudinal
adimensionalizada, afim de cmparar com os resultados obtidos na literatura.

X

X*=10"—>
D, Re, P

(40)

O codigo computacional foi desenvolvido em FORTRAN 90 e validado com os resultados
obtidos por Campos et a, 1992 e Medeiros, 1998, para n = 1, isto € um fluido newtoniano,
conforme ilustrado na Tab. (1).

A Tabela 1. mostra a convergéncia da temperatura média do fluido em diversas posi¢bes ao
longo do duto, para diversos indices lei de Poténcia, com nimero de Reynolds (Re) igual a 200Q
nimero de Prandtl (Pr) igual a0,72 e freqiéncia de entrada (Q) igual a0,06491, a igual a8,5.10°° e
Biot igual a1.10%°.

Tabela 1. - Convergéncia da temperatura média do fluido usando indice Lei de Poténcia =1.
(n=1)

X NA=20 | NA=40 | NA=60 | NA=80 | NA=100 | Campos | Medeiros
0,0000434| 0,9808 | 0,9808 | 0,9809 | 0,9810 | 0,9810 - 0,9814
0,0000868| 0,9726 | 0,9727 | 0,9729 | 0,9730 | 0,9730 - 0,9734
0,00026 | 0,9518 | 0,9523 | 0,9524 | 0,9525 | 0,9526 | 0,9486 | 0,9528
0,000434 | 0,9372 | 0,9377 | 0,9379 | 0,9380 | 0,9381 | 09331 | 0,9382
0,000608 | 0,9251 | 0,9257 | 0,9259 | 0,9260 | 0,9260 | 0,9204 | 0,9261
0,000955 | 0,9050 | 0,9056 | 0,9058 | 0,9059 | 0,9059 | 0,8995 | 0,9059
0,0013 | 0,8881 | 0,8886 | 0,8888 | 0,8889 | 0,8889 | 0,8819 | 0,8889
0,00174 | 0,8691 | 0,8696 | 0,8698 | 0,8699 | 0,8699 | 0,8624 | 0,8698
0,0026 | 0,8371| 0,8376 | 0,8378 | 0,8378 | 0,8379 | 0,8299 | 0,8376
0,00434 | 0,7836 | 0,7841 | 0,7842 | 0,7843 | 0,7843 | 0,7764 | 0,7839
0,00608 | 0,7383| 0,7388| 0,7389 | 0,7390 | 0,7390 | 0,7311 | 0,7384
0,00868 | 0,6793 | 0,6796 | 0,6798 | 0,6798 | 0,6798 | 0,6729 | 0,6789
0,0148 | 0,5632 | 0,5635 | 0,5636 | 0,5636 | 0,5636 | 05581 | 0,5622
0,0234 | 0,4344 | 0,4346 | 0,4347 | 0,4347 | 0,4348 | 0,4306 | 0,4328
0,0434 | 0,2377 | 0,2378 | 0,2378 | 0,2378 | 0,2379 | 0,2356 | 0,2360
0,0651 | 0,1235| 0,1236 | 0,1236 | 0,1236 | 0,1236 | 0,1212 | 0,1222
0,0942 | 0,0513| 0,0514 | 0,0514 | 0,0514 | 0,0514 | 0,0509 | 0,0506

As figuras a seguir mostram o comportamento da temperatura média do fluido assim como o
nimero de Nuslt ao longo do duto. A medida em que o nimero de Biot cresce, a temperatura
média do fluido e o nimero de Nuslt tendem a diminuir ao longo do dito e a medida em que
aumentamos o indice Lei de Poténcia atemperatura média do fluido tende a amentar e 0 nimero



de Nus=lt a diminuir. Outro fator de grande influéncia éo a. ParaBiot = 1, a temperatura média
a0 longo do duto tende aser maior a medida em que 0 a cresce e ©m relagdo a0 nimero de
Nusselt, notamos que ele tende aser maior quando a = 0,001 e tem uma queda quando a = 1.
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4. CONCLUSOES

A Técnica da Transformada Integral Generalizada (GITT), utilizada neste trabalho mostrou-se
eficiente na solucd de problemas com escoamento simultaneo, obtendo-se uma excelente
concordancia @m outros trabalhos. Na andlise foi considerado o efeito do indice Lei de Poténcia
(Power-Law) no comportamento do nimero de Nuslt e da temperatura média a longo do duito,
assim como a influéncia do a. Verificou-se também que em relac% ao ndmero de Nusslt, a
variac® de Biot é inversamente proporcional Os resultados mostrados, sdo de importancia no
estudo do comportamento de fluidos ndo-newtonianos na transferenciade alor e no escoamento de
fluidos.

5. NOMENCLATURA

*

a Relagdo da @pacitanciatérmicaentre aparede e

ofluido LETRAS GREGAS
AA Matriz definida pela Eq. (32)
BB Matriz definida pela Eq. (34) a Difusivibili dade térmica do fluido , m? /s
Bi NUmero de Biot B Fregliéncia de entrada
C ik Coeficiente definido pela Eq. (23) B Autovalor do problema auxiliar do campo
cCc Matriz definida pela Eg. (35) de temperatura no escoamentode placas
d M etade da disténcia entre as placas planas pardelas

paralelas Fir Autofungo do problema auxiliar da parte
D, Diametro hidréulico real do campo de temperatura
he Coeficiente detransferéncia de cdor i Autofungo do problemaauxiliar da parte
li Coeficiente definido naEq. (26) imaginéria do campo de temperatura
1 Coeficiente definido pela Eq. (25) W Fungo corrente
I Espesara da parlede_, m ) v Viscosidade cinemética
ke Condutividade térmica do fluido o Fregiiéncia de entrada adimensional
Mi Norma do problemade aitovalor para a Densidade do fluido, kg/m?

componente real eimagin&riado campo de p ens dade '

temperatura e Potencial transformado para o campo de
NA NUmero de aitovalores temperaiura . ) .
NU NGmero de Nussit Brredia Temperaturamédia adimensiona da
P Pressio, N/m? 6 Temperatura alimensional
P Coeficiente definido pela Eq. (24) z Tempo adimensional _
Pe NUmero de Pecklet u Viscosidade dindmicado fluido
Pr Numero de Pranditl 4 Delta de Kronecker
Re NUmero de Reynolds
T(x,y,t) DistribuicZo de temperatura ao longo do duto, SUBSCRITOS

°C
t Tempo, s R Indica acomponente real do potencial
T(x,y,0) Temperaturainicial,®C transformado para o campo de temperatura
U Velocidadeinicid, m/s | Indica acomponente imaginariado potencial
u Componente de velocidade ada, m/s transformado para o campo de temperatura
U Componente de velocidade aial adimensional iy, k Indica aordem dos autoval ores e funcdes afins
v Componente de vel ocidade transversal, m/'s w valor da parede
\V, Velocidade transversa adimensionalizada f Indica o valor dagrandeza do fluido de
X Coodenada acial, m trabalho
X Coordenada acia adimensonalizada o0 Indica o valor dagrandezano escoamento
X Variavel longitudinal adimensional: Completamente desenvolvido

Xt =10 — >
D, Re, P,

y Coordenada normal, m
Y Coordenada normal adimensional
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Abstract. In this work the transient forced convedion in paallel plate dhanrels is andytically
studied in the smultaneously devedoping flow of nonnewtonian fluids with a senoidal variation of
the temperature profile at the inlet position. The Generalized Integral Transform Tednique is
appied to provide a hybrid semi-andytical solution for momentum and energy equdions. The
energy equdionis lved by cnsideration d a bounday condtions of fifth kind of where exernal
convedion effeds andthe wall capacitanceare cmnsidered. The periodic temperature profile in the
complex field is obtained with the utili zation of two acoupged awiliary problems representing
imaginary andreal parts of energy equdion.

To validate the solution procedure used as average temperature and Nusselt number are plotted
as function o dimensionlessaxial positions and ae cmpared with previously puldi shed results.
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