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Resumo. Uma solução analítica aproximada, de baixo custo computacional, é apresentada para a 
convecção forçada transiente em um canal de placas planas paralelas submetido à condição de 
entrada periódica. A Técnica da Expansão em Autofunções é usada aliada a Transformada 
Clássica de Laplace para encontrar a solução analítica para um escoamento completamente 
desenvolvido e em desenvolvimento térmico, com uma função periódica na condição de entrada e 
condição de contorno do 3º tipo na parede. O código computacional desenvolvido permite uma 
rápida analise do problema, em todo o domínio, para diferentes tempos.  
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1. INTRODUÇÃO 

 
O estudo dos fenômenos relativos a transferência de calor na convecção forçada interna tem 

sido realizado essencialmente, para atender a uma necessidade prática, uma vez que a maioria das 
soluções encontradas para este tipo de fenômeno, notadamente, na região de entrada térmica e 
desenvolvimento simultâneo do fluido pode ser útil no projeto de dispositivos térmicos de melhor 
desempenho. Portanto, componentes eletrônicos, condensadores, evaporadores, trocadores de calor, 
entre outros são exemplos da possível utilização. Mais ainda, com a crescente miniaturização e a 
necessidade de otimização destes equipamentos, tem se tornado uma necessidade mundial. Assim, a 
motivação do estudo deixa de ser um exercício puramente acadêmico, devido a sua importância 
prática nas diversas áreas da engenharia, tais como, na engenharia nuclear, espacial, controle 
automático e transporte envolvendo reações químicas.                                          .                                                  

Um outro fator importante neste estudo é a crescente busca de soluções exatas e de referência 
para problemas de engenharia, cada vez mais complexos em intervalos de tempo curtos. Por esta 
razão, a abordagem teórica vem ganhando espaço sobre a experimentação e aos métodos analíticos 
tradicionais. Isto ocorre, primeiro porque a experimentação é geralmente demorada, alem do fato de 
ser muito dispendiosa, pois para cada experiência tem-se novos gastos tais como a utilização e 
aferição de novos equipamentos para adaptação da nova situação no problema em análise; segundo 
porque os métodos analíticos tradicionais apresentam certas limitações, onde as dificuldades 
matemáticas são reduzidas através de simplificações, que por vezes tornam os modelos muito 
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distantes da realidade física, possuindo assim utilidade do ponto de vista acadêmico ou didático, 
mas raramente de aplicação pratica. Por último, com o desenvolvimento dos computadores digitais 
com velocidades de processamento cada vez maiores, tem-se avançado bastante na simulação de 
problemas em mecânica dos fluidos e transferência de calor, minimizando o tempo de trabalho e 
possibilitando assim um menor custo. 

Utilizou-se a Expansão em Autofunções, que é um método de fácil manuseio e que pode 
apresentar soluções completamente analíticas, ou para casos de maior complexidade apresenta 
soluções híbridas, analítico-numéricas, onde se tem um controle preestabelecido sobre o erro, aliada 
a Transformada Clássica de Laplace. A idéia básica consiste na transformação de um sistema de 
equações diferenciais parciais em um sistema de equações diferenciais ordinárias, através da 
eliminação de dependências direcionais, com a vantagem de produzir uma solução analítica 
aproximada mais econômica em relação aos métodos numéricos, além de não necessitar da geração 
de malha e permitir ainda o acompanhamento e a variação dos parâmetros de interesse práticos 
determinantes presentes na solução.   

 
  

2. FORMULAÇÃO DO PROBLEMA 
 

O problema físico considerado consiste de um escoamento laminar hidrodinamicamente 
desenvolvido no interior de um duto de placas planas paralelas, submetido à convecção forçada, 
com entrada térmica periódica, como ilustrado na Fig. (1). O sistema em estudo é constituído por 
um canal de placas paralelas infinitas na largura, de comprimento L, no interior do qual escoa um 
fluido newtoniano. O sistema assim definido esta inicialmente em equilíbrio térmico a uma 
temperatura T0. É então provocada uma perturbação na temperatura de entrada do fluido, sendo essa 
perturbação uma função generalizada do tipo G(t), tendo como distribuição ao longo da entrada 
uma função F(y). O sistema possui uma condição de contorno com convecção na parede do canal. 
As paredes são sólidas e impermeáveis. O escoamento ocorre na direção x, sendo simétrico em 
relação à y, conforme esta representado na Fig. (1). O fluido em estudo é considerado 
incompressível, com propriedades constantes, desprezam-se os efeitos da dissipação viscosa, e a 
variação temporal temperatura de entrada é do tipo periódica. 
 
 

 
 

Figura 1. Representação Esquemática do Problema. 
 
 
Para o problema proposto são considerados os seguintes grupos adimensionais: 
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Com a utilização dos grupos adimensionais, o problema pode ser representado pela equação 
da energia, e suas condições de contorno e de entrada como: 
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 Segundo Cavalcante (2000), o perfil de velocidade adimensional é dado por:  
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3. METODOLOGIA DE SOLUÇÃO 
 
 Seguindo os passos apresentados por Guindem(1997), aplica-se a Transformada Clássica de 
Laplace sobre a variável tempo no sistema de equações (1.2.a-f), obtendo-se : 
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 Onde   θ   é a transformada de Laplace do potencial  θ . ( yx,~ ) ( )tyx ,,

 

3.1 Problema de Autovalor na Direção y 
 

Como primeiro passo para resolver o problema (2.1.a-e) usando a Expansão em 
Autofunções, define-se um problema de autovalor, na direção y : 
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Onde as autofunções são dadas por: 

 
( ) ( )yyY nn βcos=                                                                                                               (2.2.d) 

 
Os autovalores são obtidos da solução da equação transcendental: 

 
)( nnTanBi ββ=                                                                                                                (2.2.e) 

 
A norma é dada por: 
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 Logo a Autofunção Normalizada torna-se: 
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Obedecendo a propriedade de ortogonalidade: 
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3.2 Par Transformada-Inversa  
 
            Escrevendo  a  função    como  uma  expansão  que  tem  como  base  as 
autofunções oriundas do problema de autovalor equações (2.2a-c) e observando a propriedade de 
ortogonalidade equação( 2.2.h) temos: 

( yx,~θ )
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3.3 Transformação do Problema na Direção y 
 

Operando a equação  (2.1a)  com o operador  ,   tem-se: ( )dyyYn∫
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Aplicando-se a equação da Inversa(3.1.b) em cada termo, e utilizando a propriedade de 
ortogonalidade(2.2.h) tem-se: 

 
Termo (A) 
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Termo  (C)   
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O problema fica transformado no sistema diferencial ordinário: 
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Aplicando  o  operador    na  condição inicial,  tem-se :                           ( )dyyYn∫
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Onde o termo Anm é dado por :  ( ) ( ) ( )dyyYyuyY mn
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4. SOLUÇÃO DO SISTEMA DE EQUAÇÕES DIFERENCIAIS ORDINARIO 

 
Desprezando-se os termos não diagonais na equação (5.1.a), o sistema de equações é 

aproximado por: 
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 O sistema de equações diferenciais, ordinário desacoplado, equações (6.1a-b), tem como 
solução: 
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4.1  Recuperação do Potencial Original  
       

Para a recuperação do potencial original, inicialmente substitui-se equação (7) na equação 
(3.1.b), equação da Inversa, obtendo-se: 
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Observando-se que o potencial original é dado pela inversão da Transformada Clássica de 

Laplace da equação (8). Aplica-se este procedimento matemático à equação (4.8), o que pode ser 
efetivamente simplificado pelo emprego de um programa de computador que execute a 
manipulação simbólica, obtendo se: 
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Esta equação é a solução analítica aproximada do sistema de equações diferenciais do 

problema (1.2.a-f) onde o termo Ann é dado por:  .     ( ) ( ) ( )dyyYyuyY nn
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5. RESULTADOS E DISCUSSÂO  
 
 Com o intuito de avaliar, a presente solução é testada através da convergência, e comparada 
com resultados apresentados por Cheroto (1998). Os resultados são mostrados na Tab. (1), que 
representa a convergência da solução analítica. 

  
Tabela 1. Comparação da temperatura ao longo da linha central entre o presente trabalho e 

 Cheroto (1998), para : Bi = 10 5  ,Ω = 0.06491 e F(y) = 1-y2  ,t=24.1996 , y=0. 
 

x 1 termo 2 termos 3 termos 5 termos 7 termos 9 termos Cheroto(1998) 

0.01 1.0127 0.98187 0.98635 0.98564 0.98561 0.98561 0.9866 

0.1 0.85411 0.84965 0.84967 0.84967 0.84967 0.84967 0.8562 

0.5 0.40057 0.40056 0.40056 0.40056 0.40056 0.40056 0.4056 

1 0.15537 0.15537 0.15537 0.15537 0.15537 0.15537 0.1580 

 
 
Na Tabela (1) observa-se uma boa concordância entre os valores apresentados pela solução 

aproximada e os valores apresentados por Cheroto(1998), o que indica que a solução analítica tem 
uma utilidade na estimativa de parâmetros de interesse práticos para o problema aqui estudado. A 



Tabela (2) apresenta uma estimativa da temperatura para a linha central do canal para uma faixa de 
valores do numero de Biot, onde todos os cálculos foram efetuados com nove termos nas series. A 
Tabela (2) mostra a influencia do número de Biot nos valores da temperatura ao longo da linha 
central, mostrando que quanto maior este número, maior a troca térmica ao longo do canal.  

 
Tabela 2. Temperatura ao longo da linha central para: Ω = 0.06491 e F(y) = 1-y2 , 

t=24.1996, nt=9, y=0. 
 

X / Bi 0.001 0.1 1 10 1000 
0.1 0.8041 0.8034 0.8067 0.8421 0.8496 
0.2 0.7144 0.7121 0.7061 0.7130 0.7064 
0.3 0.6829 0.6768 0.6472 0.6061 0.5851 
0.4 0.6719 0.6608 0.6016 0.5156 0.4844 
0.5 0.6680 0.6512 0.5615 0.4387 0.4010 
0.6 0.6665 0.6438 0.5246 0.3732 0.3319 
0.7 0.6658 0.6372 0.4903 0.3175 0.2747 
0.8 0.6654 0.6308 0.4583 0.2701 0.2274 
0.9 0.6651 0.6246 0.4284 0.2298 0.1882 
1 0.6647 0.6184 0.4004 0.1955 0.1558 

 
 

6. CONCLUSÃO 
 

O procedimento aqui desenvolvido mostrou ser útil no estudo da entrada térmica em um canal 
de placas planas paralelas submetido a uma variação senoidal na temperatura de entrada, o que 
indica a validade deste enfoque na avaliação de parâmetros de interesse prático, tendo em vista, a 
facilidade apresentada pela solução final, representada por uma equação analítica, e a boa 
concordância com a literatura. 
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