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Resumo. Pdra-raios de oxido de zinco (ZnO) sdo dispositivos utilizados na protecdo dos sistemas
elétricos de alta tensdo. Os pdra-raios sdo compostos por uma ou mais colunas de varistores e por um
involucro de porcelana ou polimérico com formato irregular. Estudos preliminares sobre a conducdo
de calor e sobre geometrias irregulares foram feitos. Para a simulacdo da condugcdo de calor em
geometrias irregulares, foi realizada uma transformagcdo de coordenadas cartesianas para
coordenadas generalizadas. Um programa computacional que simula a conducdo de calor em
geometrias retangulares usando o método dos volumes finitos foi implementado usando a linguagem
de programacdo C++.Um novo programa que gera malhas usando coordenadas generalizadas e que
resolve problemas de conducdo de calor em geometrias irregulares foi desenvolvido.
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1. INTRODUCAO

Péra-raios de 6xido de zinco sdo dispositivos utilizados na protecao dos sistemas elétricos de alta
tensdo, protegendo os equipamentos elétricos contra possiveis sobretensdes provocadas por descargas
atmosféricas ou surtos de manobra, atuando quando ocorre uma elevacdo da tensdo, transformando a
energia elétrica excedente em energia térmica. Os pdra-raios sd30 compostos por uma ou mais colunas
de varistores e por um involucro de porcelana ou polimérico. O invélucro dos pdra-raios apresenta uma
geometria muito peculiar, como se pode observar na Fig. (1).

Como conseqii€éncia da necessidade de se estimar a temperatura nas pastilhas varistoras, realizou-se
alguns estudos preliminares com relacio a condugdo de calor, e devido a geometria irregular do



envoltério realizou-se o estudo da transformacdo de coordenadas cartesianas para coordenadas
generalizadas.

O trabalho foi dividido em 4 etapas. A primeira etapa corresponde a simulacdo da conducdo de
calor em geometrias retangulares onde a temperatura varia em apenas uma dire¢do. A segunda etapa é
semelhante a primeira, com o diferencial de ser uma condug¢do bidimensional. A terceira etapa consiste
na geracdo da malha bidimensional usando coordenadas generalizadas. A quarta corresponde a
simulacdo da condug¢do de calor em geometrias irregulares usando a malha gerada com o sistema de
coordenadas generalizadas.
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Figura 1. Vista de um péra-raios com seus componentes (Hinrichsen, 2001)

Ap6s a conclusdo do estudo preliminar, planeja-se a aplicacdo, dos conhecimentos adquiridos e dos
programas computacionais concebidos, na simulag¢do da transferéncia de calor em para-raios de 6xido
de zinco.

2. METODO DOS VOLUMES FINITOS

O método dos volumes finitos pode ser usado na resolucio de problemas de transferéncia de calor.
O método consiste em dividir a regido de interesse em varios volumes (discretizar), e o problema passa
a ser resolvido em cada um desses volumes. Apds a discretizagdo, € realizado em cada volume o
balanco da propriedade envolvida no problema. A propriedade pode ser quantidade de calor, de massa,
etc. O passo seguinte € a integracao das equacgdes diferenciais obtidas a partir do balanco de energia. A
integracdo deve ser feita no dominio do espaco e do tempo em cada um dos volumes elementares.

Uma equacdo algébrica é obtida para cada volume e a solucdo do problema global é alcancada
através da resolucdo do sistema formado pelas equagdes de todos os volumes.

3. CONDUCAO UNIDIMENSIONAL

A equacgdo da condugdo de calor em uma dimensdo, como mostrado por (Ozisik, 1985 e Holman,
1983), sem considerar o termo de geracdo de calor é:

9 (o) =2 L X a—T] (1)
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onde p € a densidade do material dado em kg/m3, ¢p € o calor especifico do material dado em kJ/kg.°C e
k € a condutividade térmica do material dada em W/m.°C.

A Equacio (1) serd integrada no espaco e no tempo em cada volume como se observa a seguir. Na
Figura (2) tem-se um exemplo de uma malha usada para integra¢do no caso unidimensional.
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Figura 2. Exemplo de uma malha unidimensional discretizada

Realizando a integracdo da Eq. (1) no volume P da malha mostrada na Fig. (2), tem-se:
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Pode-se observar nas equagdes acima que o indice das temperaturas referem-se ao volume
correspondente. O expoente ‘0’ que aparece em algumas varidveis das equagdes indica que o valor
daquela varidvel corresponde ao seu valor no instante de tempo anterior. A Equacao (5) apresenta duas
derivadas parciais que podem ser aproximadas pelas diferengas centrais:

or| _T,-T, or| _T,-T, ©)

Para os volumes adjacentes a fronteira, as derivadas parciais aproximadas por diferencas centrais
sofrem uma pequena modificacdo, pois ndo se tem volume adjacente em um dos lados.
Substituindo a Eq. (6) na Eq. (5), e reorganizando, obtém-se:

(pr+2Az£i)T —prT°+Az£i T, +Az£i T, (7)
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Nomeando os coeficientes de cada temperatura, obtém-se:

AT, =AT) + AT, +AT, &)



onde:
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A Equacdo (8) representa a transferéncia de calor em cada volume elementar e estd escrita de modo
a facilitar a sua implementacdo computacional. Ela representa a integracdo local no dominio do espaco
e do tempo em cada um dos volumes elementares. Desse modo um sistema com todas as equagdes ¢é
formado. A solucdo do sistema, usando o método de Gauss-Seidel, fornece a temperatura em cada
volume. As condig¢des de contorno utilizadas sao as temperaturas nas fronteiras.

O fluxograma do programa computacional produzido para simulacdo de transferéncia de calor em
coordenadas cartesianas é:
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Figura 3. Fluxograma do programa desenvolvido para condu¢ao unidimensional
3.1. Simulac¢ao Unidimensional
Uma simulag¢do computacional foi implementada para anélise do comportamento da temperatura no
tempo. Uma barra unidimensional medindo 10 cm a 0°C foi considerada. As propriedades térmicas
utilizadas foram: ¢, = 0,3831 kJ/kg°C, p = 8954 kg/m® e k = 386 W/m°C. Foi utilizada a condicdo de
contorno de temperatura prescrita, sendo a temperatura na face oeste de 100°C e na face leste 0°C. A

Fig. (4) explicita a propagacdo de calor ao longo da barra no tempo e a Fig. (5) a distribui¢dao de
temperaturas em regime permanente na barra simulada.
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Figura 4. Condugao de calor unidimensional
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Figura 5. Comportamento das temperaturas na barra em regime permanente

4. CONDUCAO BIDIMENSIONAL

A seqiiéncia dos procedimentos no caso bidimensional € semelhante ao unidimensional, a equacao
de condugdo de calor bidimensional sem o termo da geracdo de calor é:

3y (kT o kor
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Uma malha utilizada na implementagao bidimensional foi composta de “volumes elementares” em
formato retangular. A Equacdo (11) representa a transferéncia de calor bidimensional em cada volume
elementar.

AT, =AT) +AT, +AT, +AT,+AT, (11

Uma equacdo com o formato da Eq. (11) é montada para cada volume ndo adjacente a fronteira,
formando um sistema de equagdes lineares. Na solu¢do do sistema € mostrada a temperatura em cada
volume. As equagdes geradas para os volumes adjacentes as fronteiras sdo ligeiramente diferentes e as
condig¢des de contorno utilizadas sdo as mesmas, ou seja, as temperaturas nas fronteiras da geometria.

O algoritmo do programa que simula a condugdo de calor bidimensional é semelhante a0 mostrado
para o caso da conducao unidimensional.

4.1. Simulacao Bidimensional

Um exemplo de condugdo de calor bidimensional € mostrado na Fig. (6). A temperatura inicial da
placa é 0 (zero) graus Celsius. O comportamento da temperatura na placa em trés instantes de tempo é
mostrado na Fig. (6). A escala de temperaturas € semelhante a do exemplo unidimensional.
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Figura 6. Conducao de calor bidimensional e saida de dados
5. GERACAO DA MALHA USANDO COORDENADAS GENERALIZADAS

Em geometrias peculiares, como por exemplo, o invélucro do para-raios, a aplicacdo do método dos
volumes finitos ndo é adequada ao uso com coordenadas cartesianas. Assim, pode-se realizar uma



transformacdo de coordenadas, de forma que os volumes gerados no novo sistema coordenado sejam
ajustados a fronteira da geometria em questao.

No plano fisico, que representa a geometria real, é gerada uma malha irregular usando coordenadas
curvilineas, o plano é mapeado para um plano computacional regular. A transformagao do plano fisico
para o plano computacional é governada pelas métricas de transformagido E=E(x,y) e N=n(X,y), que
transmitem para o plano computacional as caracteristicas do plano fisico. Na Figura (7) observa-se um
exemplo de planos fisico e transformado.
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Figura 7. Planos fisico e transformado

Para gerar a malha usando coordenadas generalizadas usam-se as equagdes de Poisson e Laplace
mostradas na Eq. (12) (Maliska, 1995).

VE=PEM) (12)
Vn=Q(Emn)

As fungdes P(E,n) e Q&) sdo fungdes de controle propostas por (Maliska, 1995). As fungoes de
controle servem como parametros de atracdo da malha para pontos e linhas pré-determinadas.
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Realizando manipulacdes matematicas, obtém-se:
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| (14)
onde, o, B ey sdo métricas da transformacéo e sdo dadas na Eq. (15).
a=X;+y,
2 2
Y=X:tYy: (15)

B=xex, +yey,

As incdgnitas mostradas como indice corresponde a derivada com relagao ao indice, por exemplo,
X, corresponde a derivada de x com relagdo a a.

Como as coordenadas dos pontos das fronteiras sdo conhecidas, eles sdo usados como condicdes de
contorno. Aproximando as derivadas e substituindo os coeficientes obtém-se:

AP¢P = AE¢E + AW¢W + AN¢N + AS¢S + ANE¢NE + ASE¢SE + ANW¢NW + ASW¢SW (16)

Uma equacdo com o formato da Eq. (16) é implementada para cada ponto, e a solu¢dao do sistema
linear constituido pelas equagdes, quando resolvido, gera a malha em coordenadas generalizadas. As
condig¢des de contorno sdo os pontos localizados na fronteira da geometria.

O fluxograma do programa computacional produzido para a geracdo da malha encontra-se na
Fig. (8).
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Figura 8. Fluxograma do programa gerador de malha

Alguns exemplos de malhas geradas usando o programa desenvolvido encontram-se na Fig. (9).
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Figura 9 (a) e (b). Exemplos de malhas produzidas

6. CONDUCAO DE CALOR EM GEOMETRIAS IRREGULARES

Sabe-se que a equacdo de condugdo de calor em trés dimensdes sem o termo de geracdo de calor €:

of 0 kJdT, 0 ,kdT, 9  kdT

pg—ﬁ(c aX) Py ( aY) (——) (17)

A Equacdo (17) pode ser re-escrita da seguinte forma:

apT V(—VT) 0 (18)
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Utilizando-se a Eq. (18) em apenas duas dimensdes (x e y), manipulando-se matematicamente,
utilizando as métricas de transformagio E=(x,y), N=n(x,y) e a Eq. (15), obtém-se:

9o k , OT k  oT ok
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Integrando a Eq. (19) no plano computacional do sistema de coordenadas generalizadas, tem-se:
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Seguindo-se um procedimento semelhante ao caso da condugdo bidimensional em coordenadas
cartesianas, obtém-se uma equacdo que assume a seguinte forma:

AT, =AT) +AT, +AT, +ATy + AT +A Tg, +A, Ty + ATy +A T (21)

Uma equagdo com o formato da Eq. (21) € construida para cada volume da malha gerada, formando
um sistema de equacdes lineares, a resolucdo do sistema fornece a temperatura em cada volume. As
equagoes dos volumes adjacentes as fronteiras seguem o mesmo estilo dos encontrados na conducao
bidimensional. As condicdes de contorno usadas também sdo as temperaturas nas fronteiras da
geometria.



O algoritmo do programa computacional produzido para simular a Eq. (21) é semelhante ao
fluxograma apresentado na Fig. (3). Para uma simulagdo completa da conducdo de calor em geometrias
irregulares, usa-se a principio o programa gerador da malha apresentado na Fig. (8). O resultado da
simulacdo serve como entrada para o programa que simula a conducao de calor.

6.1. Simulacao em Coordenadas Generalizadas
Um exemplo de conducao de calor em geometria irregular € mostrado na Fig. (10). O tridngulo tem

temperatura inicial igual a zero e a escala de temperaturas é semelhante a mostrada no exemplo
unidimensional na Fig. (4).
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Figura 10. Exemplo de conducdo de calor em geometria irregular
7. CONCLUSOES

O artigo apresenta estudos preliminares e simulacdes de transferéncia de calor em geometrias
irregulares de forma a obter os conhecimentos necessarios para o desenvolvimento de uma aplicacao
envolvendo péra-raios de 6xido de zinco.

Foram implementados diversos programas computacionais. Um programa simula a condugdo de
calor em uma e duas dimensdes em geometrias retangulares. Um outro gera malhas em geometrias
irregulares usando coordenadas generalizadas e o ultimo simula a conducdo de calor em geometrias
irregulares.

As simulacdes de transferéncia de calor apresentaram resultados confidveis e promissores.

As malhas geradas apresentadas nas Fig. (9.a) e Fig (10) sdo uniformes, com volumes apresentando
aproximadamente tamanhos semelhantes.

Na Figura (9.b) é apresentada a malha de uma sec¢@o de uma aleta de pdra-raios. Observa-se a nao
uniformidade dos volumes. Analisando a parte superior da figura, podem ser visto volumes que
facilmente superam em dez vezes o tamanho dos volumes da parte inferior. Na regido superior
esquerda, tem-se uma alta concentracdo de volumes. Pelos resultados apresentados na geracdo de
malha, concluiu-se que o uso da técnica de multi-blocos seria ttil, de forma a melhorar a malha da
seccdo da aleta.

Uma interface amigavel dos programas com o usudrio deve ser desenvolvida para facilitar a
utilizacdo das rotinas, entrada e saida de dados.
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Abstract. Zinc Oxide surge arresters are devices used to protect high voltage electric systems. The
surge arresters are made with one or more varistor columns involved by one porcelain housing with
irregular geometrie. Preliminary studies over heat transfer and irregular coordinates were made. For
a heat transfer simulation in irregular geometries, was made a transformation from cartesians
coordinates to generalized coordinates. A software that simulate the heat conduction in rectangular
geometry was made using C++, and the finite volume method. Then a new software, a grid generator
using generalized coordinates and that solves conduction heat transfer in irregular geometries was
developed.
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