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Resumo. Pára-raios de óxido de zinco (ZnO) são dispositivos utilizados na proteção dos sistemas 
elétricos de alta tensão. Os pára-raios são compostos por uma ou mais colunas de varistores e por um 
invólucro de porcelana ou polimérico com formato irregular. Estudos preliminares sobre a condução 
de calor e sobre geometrias irregulares foram feitos. Para a simulação da condução de calor em 
geometrias irregulares, foi realizada uma transformação de coordenadas cartesianas para 
coordenadas generalizadas. Um programa computacional que simula a condução de calor em 
geometrias retangulares usando o método dos volumes finitos foi implementado usando a linguagem 
de programação C++.Um novo programa que gera malhas usando coordenadas generalizadas e que 
resolve problemas de condução de calor em geometrias irregulares foi desenvolvido. 
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1. INTRODUÇÃO 
 

Pára-raios de óxido de zinco são dispositivos utilizados na proteção dos sistemas elétricos de alta 
tensão, protegendo os equipamentos elétricos contra possíveis sobretensões provocadas por descargas 
atmosféricas ou surtos de manobra, atuando quando ocorre uma elevação da tensão, transformando a 
energia elétrica excedente em energia térmica. Os pára-raios são compostos por uma ou mais colunas 
de varistores e por um invólucro de porcelana ou polimérico. O invólucro dos pára-raios apresenta uma 
geometria muito peculiar, como se pode observar na Fig. (1). 

Como conseqüência da necessidade de se estimar a temperatura nas pastilhas varistoras, realizou-se 
alguns estudos preliminares com relação à condução de calor, e devido à geometria irregular do 



envoltório realizou-se o estudo da transformação de coordenadas cartesianas para coordenadas 
generalizadas. 

O trabalho foi dividido em 4 etapas. A primeira etapa corresponde à simulação da condução de 
calor em geometrias retangulares onde a temperatura varia em apenas uma direção. A segunda etapa é 
semelhante à primeira, com o diferencial de ser uma condução bidimensional. A terceira etapa consiste 
na geração da malha bidimensional usando coordenadas generalizadas. A quarta corresponde à 
simulação da condução de calor em geometrias irregulares usando a malha gerada com o sistema de 
coordenadas generalizadas. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figura 1. Vista de um pára-raios com seus componentes (Hinrichsen, 2001) 
 
Após a conclusão do estudo preliminar, planeja-se a aplicação, dos conhecimentos adquiridos e dos 

programas computacionais concebidos, na simulação da transferência de calor em pára-raios de óxido 
de zinco. 
 
2. MÉTODO DOS VOLUMES FINITOS 
 

O método dos volumes finitos pode ser usado na resolução de problemas de transferência de calor. 
O método consiste em dividir a região de interesse em vários volumes (discretizar), e o problema passa 
a ser resolvido em cada um desses volumes. Após a discretização, é realizado em cada volume o 
balanço da propriedade envolvida no problema. A propriedade pode ser quantidade de calor, de massa, 
etc. O passo seguinte é a integração das equações diferenciais obtidas a partir do balanço de energia. A 
integração deve ser feita no domínio do espaço e do tempo em cada um dos volumes elementares. 

Uma equação algébrica é obtida para cada volume e a solução do problema global é alcançada 
através da resolução do sistema formado pelas equações de todos os volumes. 
 
3. CONDUÇÃO UNIDIMENSIONAL 
 

A equação da condução de calor em uma dimensão, como mostrado por (Ozisik, 1985 e Holman, 
1983), sem considerar o termo de geração de calor é: 
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onde � é a densidade do material dado em kg/m3, cp é o calor específico do material dado em kJ/kg.ºC e 
k é a condutividade térmica do material dada em W/m.ºC.��

A Equação (1) será integrada no espaço e no tempo em cada volume como se observa a seguir. Na 
Figura (2) tem-se um exemplo de uma malha usada para integração no caso unidimensional. 
 

 
 

Figura 2. Exemplo de uma malha unidimensional discretizada 
 

Realizando a integração da Eq. (1) no volume P da malha mostrada na Fig. (2), tem-se: 
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(5) 

 
Pode-se observar nas equações acima que o índice das temperaturas referem-se ao volume 

correspondente. O expoente ‘0’ que aparece em algumas variáveis das equações indica que o valor 
daquela variável corresponde ao seu valor no instante de tempo anterior. A Equação (5) apresenta duas 
derivadas parciais que podem ser aproximadas pelas diferenças centrais: 
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Para os volumes adjacentes à fronteira, as derivadas parciais aproximadas por diferenças centrais 

sofrem uma pequena modificação, pois não se tem volume adjacente em um dos lados.  
Substituindo a Eq. (6) na Eq. (5), e reorganizando, obtém-se: 
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Nomeando os coeficientes de cada temperatura, obtém-se: 
 

WwEePPPP TATATATA ++= 00  (8) 
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(9) 

 
A Equação (8) representa a transferência de calor em cada volume elementar e está escrita de modo 

a facilitar a sua implementação computacional. Ela representa a integração local no domínio do espaço 
e do tempo em cada um dos volumes elementares. Desse modo um sistema com todas as equações é 
formado. A solução do sistema, usando o método de Gauss-Seidel, fornece a temperatura em cada 
volume. As condições de contorno utilizadas são as temperaturas nas fronteiras. 

O fluxograma do programa computacional produzido para simulação de transferência de calor em 
coordenadas cartesianas é: 
 

 
 

 
 
 

 
Figura 3. Fluxograma do programa desenvolvido para condução unidimensional 

 
3.1. Simulação Unidimensional 
 

Uma simulação computacional foi implementada para análise do comportamento da temperatura no 
tempo. Uma barra unidimensional medindo 10 cm a 0°C foi considerada. As propriedades térmicas 
utilizadas foram: cp = 0,3831 kJ/kgºC,  � = 8954 kg/m3 e k = 386 W/mºC.  Foi utilizada a condição de 
contorno de temperatura prescrita, sendo a temperatura na face oeste de 100°C e na face leste 0°C. A 
Fig. (4) explicita a propagação de calor ao longo da barra no tempo e a Fig. (5) a distribuição de 
temperaturas em regime permanente na barra simulada. 

 

            
 

Figura 4. Condução de calor unidimensional 
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Figura 5. Comportamento das temperaturas na barra em regime permanente 
  

4. CONDUÇÃO BIDIMENSIONAL 
 

A seqüência dos procedimentos no caso bidimensional é semelhante ao unidimensional, a equação 
de condução de calor bidimensional sem o termo da geração de calor é: 
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Uma malha utilizada na implementação bidimensional foi composta de “volumes elementares” em 

formato retangular. A Equação (11) representa a transferência de calor bidimensional em cada volume 
elementar.   

 

NnSsWwEePPPP TATATATATATA ++++= 00  (11) 

 
Uma equação com o formato da Eq. (11) é montada para cada volume não adjacente à fronteira, 

formando um sistema de equações lineares. Na solução do sistema é mostrada a temperatura em cada 
volume. As equações geradas para os volumes adjacentes às fronteiras são ligeiramente diferentes e as 
condições de contorno utilizadas são as mesmas, ou seja, as temperaturas nas fronteiras da geometria. 

O algoritmo do programa que simula a condução de calor bidimensional é semelhante ao mostrado 
para o caso da condução unidimensional.  

 
4.1. Simulação Bidimensional 

 
Um exemplo de condução de calor bidimensional é mostrado na Fig. (6). A temperatura inicial da 

placa é 0 (zero) graus Celsius. O comportamento da temperatura na placa em três instantes de tempo é 
mostrado na Fig. (6). A escala de temperaturas é semelhante à do exemplo unidimensional. 
 

 
Figura 6. Condução de calor bidimensional e saída de dados 

 
5. GERAÇÃO DA MALHA USANDO COORDENADAS GENERALIZADAS 

 
Em geometrias peculiares, como por exemplo, o invólucro do pára-raios, a aplicação do método dos 

volumes finitos não é adequada ao uso com coordenadas cartesianas. Assim, pode-se realizar uma 

        
            Exemplo                                      1 segundo                                 3 segundos                                5 segundos 

10 cm 



transformação de coordenadas, de forma que os volumes gerados no novo sistema coordenado sejam 
ajustados à fronteira da geometria em questão.  

No plano físico, que representa a geometria real, é gerada uma malha irregular usando coordenadas 
curvilíneas, o plano é mapeado para um plano computacional regular. A transformação do plano físico 
para o plano computacional é governada pelas métricas de transformação ξ=ξ(x,y) e η=η(x,y), que 
transmitem para o plano computacional as características do plano físico. Na Figura (7) observa-se um 
exemplo de planos físico e transformado. 

 

 
 

Figura 7. Planos físico e transformado 
 

Para gerar a malha usando coordenadas generalizadas usam-se as equações de Poisson e Laplace 
mostradas na Eq. (12) (Maliska, 1995). 
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As funções P(ξ,η) e Q(ξ,η) são funções de controle propostas por (Maliska, 1995). As funções de 

controle servem como parâmetros de atração da malha para pontos e linhas pré-determinadas. 
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Realizando manipulações matemáticas, obtém-se: 
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onde, α, β e γ são métricas da transformação e são dadas na Eq. (15). 
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As incógnitas mostradas como índice corresponde a derivada com relação ao índice, por exemplo, 

xa corresponde à derivada de x com relação à a. 
Como as coordenadas dos pontos das fronteiras são conhecidas, eles são usados como condições de 

contorno. Aproximando as derivadas e substituindo os coeficientes obtém-se: 
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Uma equação com o formato da Eq. (16) é implementada para cada ponto, e a solução do sistema 

linear constituído pelas equações, quando resolvido, gera a malha em coordenadas generalizadas. As 
condições de contorno são os pontos localizados na fronteira da geometria. 

O fluxograma do programa computacional produzido para a geração da malha encontra-se na 
Fig. (8). 

 
 

 

 
 

 
 
 
 

Figura 8. Fluxograma do programa gerador de malha 
 

Alguns exemplos de malhas geradas usando o programa desenvolvido encontram-se na Fig. (9). 
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Figura 9 (a) e (b). Exemplos de malhas produzidas 
 

6. CONDUÇÃO DE CALOR EM GEOMETRIAS IRREGULARES 
 

Sabe-se que a equação de condução de calor em três dimensões sem o termo de geração de calor é: 
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A Equação (17) pode ser re-escrita da seguinte forma: 
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Utilizando-se a Eq. (18) em apenas duas dimensões (x e y), manipulando-se matematicamente, 

utilizando as métricas de transformação ξ=ξ(x,y), η=η(x,y) e a Eq. (15), obtém-se: 
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Integrando a Eq. (19) no plano computacional do sistema de coordenadas generalizadas, tem-se: 
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Seguindo-se um procedimento semelhante ao caso da condução bidimensional em coordenadas 

cartesianas, obtém-se uma equação que assume a seguinte forma: 
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Uma equação com o formato da Eq. (21) é construída para cada volume da malha gerada, formando 

um sistema de equações lineares, a resolução do sistema fornece a temperatura em cada volume. As 
equações dos volumes adjacentes às fronteiras seguem o mesmo estilo dos encontrados na condução 
bidimensional. As condições de contorno usadas também são as temperaturas nas fronteiras da 
geometria. 

 
                                             (a)                                                    (b) 



O algoritmo do programa computacional produzido para simular a Eq. (21) é semelhante ao 
fluxograma apresentado na Fig. (3). Para uma simulação completa da condução de calor em geometrias 
irregulares, usa-se a princípio o programa gerador da malha apresentado na Fig. (8). O resultado da 
simulação serve como entrada para o programa que simula a condução de calor. 

 
6.1. Simulação em Coordenadas Generalizadas 
 

Um exemplo de condução de calor em geometria irregular é mostrado na Fig. (10). O triângulo tem 
temperatura inicial igual a zero e a escala de temperaturas é semelhante à mostrada no exemplo 
unidimensional na Fig. (4). 

 

 
Figura 10. Exemplo de condução de calor em geometria irregular 

 
7. CONCLUSÕES 

 
O artigo apresenta estudos preliminares e simulações de transferência de calor em geometrias 

irregulares de forma a obter os conhecimentos necessários para o desenvolvimento de uma aplicação 
envolvendo pára-raios de óxido de zinco.  

Foram implementados diversos programas computacionais. Um programa simula a condução de 
calor em uma e duas dimensões em geometrias retangulares. Um outro gera malhas em geometrias 
irregulares usando coordenadas generalizadas e o último simula a condução de calor em geometrias 
irregulares.  

As simulações de transferência de calor apresentaram resultados confiáveis e promissores.  
As malhas geradas apresentadas nas Fig. (9.a) e Fig (10) são uniformes, com volumes apresentando 

aproximadamente tamanhos semelhantes.  
Na Figura (9.b) é apresentada a malha de uma secção de uma aleta de pára-raios. Observa-se a não 

uniformidade dos volumes. Analisando a parte superior da figura, podem ser visto volumes que 
facilmente superam em dez vezes o tamanho dos volumes da parte inferior. Na região superior 
esquerda, tem-se uma alta concentração de volumes. Pelos resultados apresentados na geração de 
malha, concluiu-se que o uso da técnica de multi-blocos seria útil, de forma a melhorar a malha da 
secção da aleta. 

Uma interface amigável dos programas com o usuário deve ser desenvolvida para facilitar a 
utilização das rotinas, entrada e saída de dados. 
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