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Resumo. No presente trabalho um estudo teórico da convecção forçada transiente em um canal de 
placas planas paralelas é apresentado. É feita uma formulação geral da convecção forçada 
transiente para um escoamento completamente desenvolvido e em desenvolvimento térmico, com o 
uso de uma função temporal periódica na condição de entrada e uma condição de contorno do 3º 
tipo na parede. A Técnica da Expansão em Autofunções é usada para encontrar uma solução 
completa do problema. O código computacional desenvolvido permite uma análise apurada para 
diferentes tempos.  
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1. INTRODUÇÃO 

 
O estudo dos fenômenos relativos a transferência de calor na convecção forçada interna tem 

sido realizado essencialmente, para atender a uma necessidade pratica, uma vez que a maioria das 
soluções encontradas para este tipo de fenômeno, notadamente, na região de entrada térmica e 
desenvolvimento simultâneo do fluido, pode ser útil no projeto de dispositivos térmicos de melhor 
desempenho. Portanto, componentes eletrônicos, condensadores, evaporadores, trocadores de calor, 
entre outros, são exemplos da possível utilização. Mais ainda, com a crescente miniaturização e a 
necessidade de otimização desses equipamentos, tem se tornado uma necessidade mundial. Assim, a 
motivação do estudo deixa de ser um exercício puramente acadêmico, devido a sua importância 
pratica nas diversas áreas da engenharia, tais como, na engenharia nuclear, espacial, controle 
automático e transporte envolvendo reações químicas. 

Um outro fator importante neste estudo é a crescente busca de soluções exatas e de 
referencia para problemas de engenharia, cada vez mais complexos em intervalos de tempo curtos. 
Por esta razão, a abordagem teórica vem ganhando espaço sobre a experimentação e aos métodos 
analíticos tradicionais. Isto ocorre, primeiro porque a experimentação é geralmente demorada, alem 
do fato de ser muito dispendiosa, pois para cada experiência tem-se novos gastos tais como a 
utilização e aferição de novos equipamentos para adaptação da nova situação no problema em 
analise; segundo porque os métodos analíticos tradicionais apresentam certas limitações, onde as 
dificuldades matemáticas são reduzidas através de simplificações, que por vezes tornam os modelos 
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muito distantes da realidade física, possuindo assim utilidade do ponto de vista acadêmico ou 
didático, mas raramente de aplicação pratica. Por ultimo, com o desenvolvimento dos computadores 
digitais com velocidades de processamento cada vez maiores, tem-se avançado bastante na 
simulação de problemas em mecânica dos fluidos e transferência de calor, minimizando o tempo de 
trabalho e possibilitando assim um menor custo. 

Utilizou-se a Expansão em Autofunções Boyce e Di Prima(1988), que é um método de fácil 
manuseio, que pode apresentar soluções completamente analíticas, ou para casos de maior 
complexidade apresenta soluções híbridas, analítico-numéricas, onde se tem um controle 
preestabelecido sobre o erro. A idéia básica consiste na transformação de um sistema de equações 
diferenciais parciais em um sistema de equações diferenciais ordinárias ou um sistema linear, 
através da eliminação de dependências direcionais, com a vantagem de produzir uma solução mais 
econômica em relação aos métodos numéricos, alem de não necessitar da geração de malha. 

O presente trabalho pode ser inserido no contexto dos problemas de convecção forçada 
transiente, sendo considerado uma extensão dos trabalhos realizados por Cheroto(1998), 
Cavalcante(2000) e outros; na resolução da equação da energia com condição de entrada periódica e 
considerando condição de contorno do terceiro tipo. 

 
2. FORMULAÇÃO DO PROBLEMA 
 

O problema físico considerado consiste de um escoamento laminar hidrodinamicamente 
desenvolvido no interior de um duto de placas planas paralelas, submetido à convecção forçada, 
com entrada térmica periódica, como ilustrado na Fig. (1). O sistema em estudo é constituído por 
um canal de placas paralelas infinitas na largura, de comprimento L, no interior do qual escoa um 
fluido newtoniano. O sistema assim definido esta inicialmente em equilíbrio térmico a uma 
temperatura T0. É então provocada uma perturbação na temperatura de entrada do fluido, sendo essa 
perturbação uma função generalizada do tipo G(t), tendo como distribuição ao longo da entrada 
uma função F(y). O sistema possui uma condição de contorno com convecção na parede do canal. 
As paredes são sólidas e impermeáveis. O escoamento ocorre na direção x, sendo simétrico em 
relação à y, conforme esta representada na Fig. (1). O fluido em estudo é considerado 
incompressível, com propriedades constantes, desprezam-se os efeitos da dissipação viscosa, e a 
variação temporal temperatura de entrada é do tipo periódica. 
 
 

 
 

Figura 1. Representação Esquemática do Problema. 
 
 
Para o problema proposto são considerados os seguintes grupos adimensionais: 
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Com a utilização dos grupos adimensionais, o problema pode ser representado pela equação 
da energia, e suas condições de contorno e de entrada como: 
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 Segundo Cavalcante(2000), o perfil de velocidade adimensional é dado por:  
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3. METODOLOGIA DE SOLUÇÃO 
 

3.1 Problema de Autovalor na Direção y 

 Como primeiro passo para resolver o problema Eqs. (2.1.a-e), usando a Expansão em 
Autofunções, define-se um problema de autovalor, na direção y : 

 
( ) ( ) 02
2

2

=+ yY
dy

yYd
nn

n β                                                                                               (2.1.a) 

 
( )

0
0
=

dy
dYn                                                                                                                      (2.1.b) 



( ) ( )
0

1
1 =+

dy
dY

BiY n
n                                                                                                     (2.1.c) 

 
Onde as autofunções são dadas por: 

 
( ) ( )yyY nn βcos=                                                                                                          (2.1.d) 

 
Os autovalores são obtidos da solução da equação transcendental: 
 

                                                                                                                       (2.1.e) )( nnTanBi ββ=
 
A norma é dada por: 
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 Logo a Autofunção Normalizada torna-se: 
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Obedecendo a propriedade de ortogonalidade: 
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3.2 Par Transformada-Inversa  
 
              Escrevendo  a  função    como  uma  expansão  que  tem  como  base  as 
autofunções oriundas do problema de autovalor Eqs. (2.1a-c) e observando a propriedade de 
ortogonalidade Eq. (2.1.h) temos: 
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3.3 Transformação do Problema na Direção y 
 

Operando a Eq.  (1.1a)  com o operador  ,   tem-se: ( )dyyYn∫
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Aplicando-se a equação da Inversa Eq. (3.1.b) em cada termo, e utilizando a propriedade de 
ortogonalidade Eq. (2.1.h) tem-se: 
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Aplicando  o  operador    na  condição inicial, e de contornos,  tem-se :     ( )dyyYn∫
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 Onde o termo A1nm é dado por :  ( ) ( ) ( )dyyYyuyY mn
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3.4 Problema de Autovalor na Direção t 
 

Define-se um problema de autovalor para a variável t, tem-se: 
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As condições de contorno são homogêneas, para o instante inicial, t=0 e para o fim do ciclo 

de oscilação da temperatura, ou seja, um período completo, t=1 , o que pode ser observado da Eq.  
(1.2.c). Assim tem-se: 
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Este problema auxiliar tem como autofunção: 
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E os autovalores,  , são encontradas pela equação transcendental: lλ
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 A norma é dada por: 
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As autofunções normalizadas: 
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E  a  propriedade de ortogonalidade é: 
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3.5 Par Transformada-Inversa 
 

Escrevendo  a  função  ( txn , )θ   como  uma  expansão  que  tem como base  as autofunções  
oriundas  do  problema  de  autovalor  na  direção t, e observando a propriedade de ortogonalidade 
tem-se: 
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3.6 Transformação do Problema na Direção t 
 

Operando a Eq. (4.1a)  com o operador  ,   tem-se: ( )dttX l∫
1

0

~

 

( ) ( ) ( ) ( ) ( ) ( )dttxtXdt
x

tx
AtXdt

t
tx

tX nnl
m

m
nml

n
l ,~,

1~,
2

~ 21

0
1

1

0

1

0
θβ

θθ
π

−=
∂

∂
+

∂
∂Ω

∫∑∫∫
∞

=

 

          (A)                                               (B)                                          (C) 

 
Aplicando-se a equação da Inversa Eq. (6.1.b) em cada termo, e utilizando a propriedade de 

ortogonalidade Eq. (5.1.i), o  problema fica transformado no sistema diferencial ordinário: 
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 E  operando  a  condição  de entrada (4.1.c)   com    :  ( )∫ Χ
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3.7 Reordenamento das Expansões 

     
Com o objetivo de reduzir os esforços computacionais, e assim otimizar o código 

computacional, reduz-se os somatórios duplos das expansões a um somatório simples, através de 
um processo de pré-seleção dos termos das expansões, a partir do ordenamento dos autovalores 
originais Gondim(1997). 

Esta redução gera um agrupamento de dois índices em um, de acordo com esquema 
apresentado a seguir, referenciando-se a ligação destes índices com os autovalores e as respectivas 
direções de transformação.  Desta forma, tem-se: 
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         O problema pode ser expresso como: 
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4. SOLUÇÃO DO SISTEMA DE EQUAÇÕES DIFERENCIAIS ORDINARIO 
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 O sistema de equações é truncado em um numero de termos, necessários para a 

convergência desejada, e numericamente solucionado. O que fornecerá  ( )xi

~
θ . 

  
4.1 Recuperação da Temperatura Original 
       

Para a recuperação da temperatura original, aplica-se a Eq. (6.1.b) na Eq.  (3.1.b) e fazendo as 
considerações de redução a um somatório tem-se: 
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5. RESULTADOS E DISCUSSÂO  
 
 Com o intuito de avaliar, a presente solução é testada através da convergência, e comparada 
com resultados apresentados por Cheroto (1998). Os resultados são mostrados na Tab. (1), que 
representa a convergência da solução via Expansão em Autofunções. 

  
Tabela 1. Comparação da temperatura ao longo da linha central entre o presente trabalho 

 e Cheroto (1998), para : Bi = 10 5  ,Ω = 0.06491 e F(y) = 1-y2  ,t=24.1996, y=0. 
 

x 5 termos 10 termos 15 termos 20 termos 22 termos 24 termos Cheroto(1998) 

0.01 0.986426 0.986861 0.986449 0.98645 0.98661 0.98661 0.9866 

0.1 0.856058 0.856243 0.856185 0.856199 0.856219 0.856219 0.8562 

0.5 0.405441 0.405356 0.405403 0.40558 0.40559 0.40559 0.4056 

1 0.157868 0.157646 0.157754 0.158034 0.158037 0.158037 0.1580 

 
 
Na Tabela (1) verifica-se que a Técnica utilizada neste trabalho obteve uma boa eficiência na 

solução do escoamento em desenvolvimento térmico, obtendo-se também uma excelente 
concordância com os resultados obtidos por Cheroto(1998), onde os resultados são validos para 
tempos longos. A Figura (2) mostra a comparação do comportamento da temperatura ao longo da 
linha central entre o caso teórico e caso prático apresentado por Li e Kakaç(1990). 
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Figura 2. Comparação da Temperatura ao Longo da Linha Central do Canal Entre o Presente 
Trabalho e o Experimental Apresentado por Li e Kakaç(1990) t=0.25 , Bi = 105 ,Ω = 0.01,  

F(y ) = 1-y2 ,  Re = 430, Pr = 0.7, y=0. 
 



6. CONCLUSÃO 
 

O procedimento aqui desenvolvido mostrou ser útil no estudo da entrada térmica em um canal 
de placas planas paralelas submetido a uma variação senoidal na temperatura de entrada A Solução 
encontrada neste trabalho foi totalmente obtida com o uso da Técnica da Expansão em 
Autofunções, que apresentou um fácil manuseio matemático e um custo computacional pequeno, 
inclusive, o esforço no desenvolvimento de códigos computacionais foi bastante simplificado.   
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