
 

PROBLEMAS DIFUSIVOS TRANSIENTES EM DOMÍNIOS DE 
GEOMETRIAS RETANGULARES E ELÍPTICAS 

 

Marcelo F. Pelegrini, Thiago A. Alves, Cassio R. M. Maia, Ricardo A. V. Ramos 
Departamento de Engenharia Mecânica, UNESP – Campus Ilha Solteira 
Av. Brasil, 56, CEP 15385-000, Ilha Solteira, SP, marcelo@dem.feis.unesp.br 
 
Resumo. Apresenta-se neste trabalho a solução de problemas difusivos transientes em domínios 
representados por cilindros com seção transversal de geometria elíptica e retangular submetidos a 
condições de contorno de primeiro tipo. Para a formulação do problema foram considerados meios 
difusivos com propriedades termofísicas constantes e com distribuição de temperatura inicial 
uniforme. Com respeito ao caso particular de difusão em domínios de geometria elíptica procedeu-
se uma transformação adequada do sistema de coordenadas para facilitar a aplicação das 
condições de contorno. Para a obtenção de solução a Técnica da Transformada Integral 
Generalizada foi aplicada sobre a equação da energia para cada um dos problemas propostos. A 
distribuição de temperatura e os parâmetros físicos de interesse foram, então, determinados para 
diversas razões de aspecto dos cilindros de seção elíptica e retangular e depois comparados com 
resultados disponíveis na literatura. 
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1. INTRODUÇÃO 
 

A resolução de problemas difusivos e difusivos-convectivos sempre representou um desafio para 
a engenharia, uma vez que, as equações diferenciais fundamentais que regem os princípios de 
conservação são, em regra, de natureza mais complexa. Durante muito tempo, técnicas analíticas 
clássicas foram aplicadas com sucesso somente em problemas que apresentavam estruturas 
matemáticas mais simples. Mas, diante da necessidade de se obter soluções mais precisas para 
modelos físicos mais realísticos era imperativo que o desenvolvimento e o aperfeiçoamento de 
novas metodologias pudessem contemplar, por exemplo, o acoplamento entre as equações de 
conservação, a não linearidade das relações constitutivas, processos com mudança de fase, a 
presença de contornos com geometria não regular, problemas com fronteiras móveis, condições de 
contorno não lineares, etc. Com a evolução de equipamentos e ferramentas computacionais, foram 
criadas, então, as condições para que diversas técnicas numéricas fossem intensamente 
desenvolvidas e permitissem a obtenção de soluções mais precisas para problemas que 
apresentassem estruturas mais complexas nas diversas áreas de conhecimento da engenharia, 
inclusive na área de transferência de calor e massa.  

Recentemente, tem sido observado que a aplicação de técnicas híbridas analítico-numéricas vem 
ganhando destaque em várias áreas de interesse da engenharia, por garantirem maior confiabilidade 
dos resultados a um menor custo computacional. A Técnica da Transformada Integral 
Generalizada - TTIG (Cotta, 1998), em particular, é uma ferramenta com estas características e vem 
demonstrando ser poderosa para a solução de problemas de transferência de calor e massa os quais, 
geralmente, não possuem solução pelas técnicas analíticas clássicas. No que diz respeito a processos 
puramente difusivos a TTIG vem sendo aplicada com sucesso em vários problemas tais como 
aqueles que apresentam domínios de geometria irregular ou não convencional (Aparecido et al., 
1989), (Cotta & Ramos, 1998), (Maia et al., 2001) e (Maia et al., 2003), problemas difusivos 
tridimensionais e não-lineares (Mikhailov & Cotta, 1996), (Serfaty, 1997), problemas com 



 

 

condições de contorno variáveis no espaço (Cotta & Özisik, 1986), problemas difusivos que 
envolvem movimento de fronteiras (Diniz et al., 1996) e (Diniz et al., 1999), entre outros.  

Assim, dando continuidade a esta linha de trabalhos, a TTIG será utilizada para a obtenção de 
solução de problemas difusivos transientes em domínios multidimensionais que caracterizam 
cilindros de seção transversal de geometria elíptica e retangular. Serão considerados para a 
formulação dos problemas propostos meios difusivos com propriedades termofísicas constantes, 
perfil de temperatura inicial uniforme e condições de temperatura prescrita no contorno. Nota-se 
que para o cilindro de seção retangular ainda é possível obter solução pelas técnicas clássicas 
analíticas, a qual será utilizado para a convalidação da técnica. Porém, no que diz respeito ao 
cilindro de seção elíptica, há uma dificuldade típica para a obtenção de solução analítica devido à 
impossibilidade da separação de variáveis. Para este caso será aplicada uma mudança de variáveis 
adequada para facilitar a aplicação das condições de contorno antes da aplicação da TTIG. Neste 
contexto, a distribuição de temperatura e os parâmetros físicos de interesse serão, então, 
determinados para diversas razões de aspecto dos cilindros de seção elíptica e retangulares e 
comparados com outros resultados disponíveis na literatura. 
 
2. ANÁLISE 
 

 Para o problema proposto, será estabelecido um meio difusivo isotrópico, sem fontes e com 
propriedades termofísicas constantes com a temperatura. A análise será feita admitindo-se, ainda, 
uma distribuição de temperatura inicial uniforme em todo o domínio. Neste modelo, a equação da 
difusão em meios cilíndricos com seção de domínio Ω  e contorno Γ , é dada por: 
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( ) iT0,y,xT =  ,     ( ){ }      y,x Ω∈ .        (1c) 
 

onde, pT  representa a condição de temperatura prescrita no contorno e iT  representa a condição de 
temperatura inicial uniforme no domínio. A Eq. (1) pode ser reescrita na forma como segue: 
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O parâmetro refL  representa um comprimento de referência que é aqui definido como: 
 

PerA2L sref =  (3) 
 

onde As representa a área da seção transversal do cilindro e Per o perímetro. Para caracterizar as 
diversas possibilidades de contornos de geometria retangular ou elíptica emprega-se o parâmetro 
razão de aspecto aspecρ  dado por: 
 

 Llρ aspec =             (4) 



 

 

Os parâmetros geométricos de interesse são visualizados na Fig. 1. Observa-se que os dois 
problemas propostos apresentam simetria em relação ao eixo X e ao eixo Y de forma que é 
suficiente considerar somente o domínio em um quadrante conforme destacado pela região 
sombreada na Fig. (1). 
 

 
  

 

 
 

Domínio de geometria retangular 

Domínio de geometria elíptica Domínio de geometria quadrada 

Figura 1. Formatos dos cilindros propostos para análise. 
 
2.1. Transformação de coordenadas 
 

Para o cilindro de seção elíptica o sistema de coordenadas cartesianas não permite uma 
representação simples de seu formato. Assim, é conveniente que se proceda uma transformação de 
coordenadas adequada para facilitar a aplicação das condições de contorno. O sistema ortogonal de 
coordenadas elípticas é utilizado, então, para transformar o domínio original com contorno de 
formato elíptico no plano (X,Y) em um domínio com contorno de formato retangular no plano 
transformado (u,v): 
 

 )v(cosh)ucos(aX *= ,      (5a) 
 

 )v(senh)u(senaY *= , (5b) 
 

 ref
* Laa = . (5c) 

 

onde a é a distância focal da elipse que é dada por: 
 

 ( )0vcoshLa= ,  (6a) 
 

 ( )Llharctanv0 = . (6b) 
 

onde L e l são, respectivamente, os comprimentos dos semi-eixos maior e menor da elipse e vo é o 
parâmetro que define o contorno no plano (u,v). Os coeficientes métricos, o jacobiano da 
transformação e o operador laplaciano são determinados pelas seguintes relações: 
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Para o domínio compreendido em um quadrante, a equação da difusão e as condições iniciais e 
de contorno no sistema de coordenadas elípticas são dadas por: 
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Para os cilindros de seção retangular, a representação do contorno é natural no sistema de 

coordenadas cartesianas. A fim de manter uniformidade de representação das variáveis espaciais, a 
transformação identidade é aplicada no presente problema: 

 
uX = ,     vY =  (9) 

 
Assim, para o domínio compreendido em um quadrante, a equação da difusão e as condições de 

contorno são reescritas como: 
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 ref0 LLu = ,     ref0 Llv =  (11) 
 
2.2. Aplicação da TTIG 
 

Para a obtenção dos perfis de temperatura a transformada integral será aplicada sobre a equação 
da difusão. Devido a sua característica bidimensional, o potencial θ (u,v,τ) será escrito em termos de 
uma expansão em autofunções normalizadas obtidas de problemas auxiliares de autovalor para cada 
coordenada espacial (Aparecido, 1997). Neste sentido, a aplicação da transformada integral será 
feita por partes, para cada um dos problemas propostos. 

 
2.2.1. Aplicação da TTIG para o cilindro de seção elíptica 
 

Considere o seguinte problema auxiliar de autovalor (Aparecido, 1997): 
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 Os autovalores e as autofunções associados a este problema são 
 

 ( ),1i 2i −=µ      ...3,2,1i =   (13a) 
  

 ( ) ( )ucosu ii µψ = . (13b) 
 
 As autofunções acima são ortogonais e permitem o desenvolvimento do seguinte par 
transformada-inversa:   

 ( ) ( ) ( )∫=
2/

0
ii du,v,u uK,v

π

τθτθ ,     transformada,          (14a) 
  

 ( ) ( ) ( )∑
∞

=

=
1i

ii ,v uK,v,u τθτθ ,     inversa.         (14b) 
 

onde  ( )τθ ,vi  é o potencial transformado em u e ( )uKi  são as autofunções normalizadas, dadas por: 
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 Efetuando o produto interno das autofunções normalizadas ( )uKi  com a equação da difusão 
dada pela Eq. (10a) e fazendo uso das condições de contorno dadas pelas Eqs. (10c), (10d) e (10e) e 
da equação que define o problema auxiliar de autovalor, Eq. (12b), obtém-se: 
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 Para proceder a transformação integral relativo a coordenada v, considere o seguinte problema 
de autovalor: 
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 Os autovalores e as autofunções para este novo problema auxiliar são: 
 

 ( ) 0m v211m2 −=λ ,      ...3,2,1m =  (18a) 
 

 ( ) ( )vcosv mm λφ = . (18b) 
 

 As autofunções ( )vmφ  são ortogonais e permitem o desenvolvimento do seguinte par 
transformada-inversa: 
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 Aqui, ( )vZm  são as autofunções normalizadas e são dadas por: 
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 A transformação integral sobre a coordenada v é feita efetuando-se o produto interno das 
autofunções normalizadas Zm(v) com a equação diferencial transformada na coordenada u, 
Eq. (16a). Em seguida, fazendo uso das condições de contorno e das propriedades de 
ortogonalidade das autofunções correspondentes ao problema auxiliar de autovalor em v, obtém-se 
a seguinte relação para o potencial transformado ( )τθ mi

~
: 
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que deve satisfazer a condição inicial transformada, que é dada por: 
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 O potencial transformado ( )τθim

~
pode ser obtido numericamente quando se trunca a expansão 

para uma dada ordem M e N:  
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O potencial temperatura ( )τ,,vuθelip  para o cilindro de seção elíptica é obtido, então, através da 
fórmula de inversão dada pela Eq. (19b), por: 
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2.2.2. Aplicação da TTIG para o cilindro de seção retangular 
 

A estrutura das condições de contorno para o cilindro de seção retangular apresentam a mesma 
forma para as variáveis u e v. Com o mesmo procedimento empregado no problema de domínios de 
geometria elíptica, a aplicação da TTIG conduz a seguinte relação para o potencial ( )τθ ,v,uret : 
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 ( ) ( )ucosu ii µψ = ,     ( ) 0i 2u1i2 πµ −= ,     ...3,2,1i =   (25e) 
 

 ( ) ( )vcosv mm λφ = ,     ( ) 0m v21m2 πλ −= ,     ...3,2,1m =  (25f) 
 

onde o jacobiano da transformação ( ) 1v,uJ = . 
 
2.3. Temperatura média e energia interna específica 
 

A temperatura média no domínio em um dado instante τ é dada por: 
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2κ π=  ⇒   para o problema de difusão em cilindros elípticos, 

ouκ =  ⇒   para o problema de difusão em cilindros retangulares, 
sendo que a distribuição de temperatura ( )τθ ,v,u  e o Jacobiano da transformação ( )v,uJ  são 
aqueles correspondentes a cada problema proposto. 
 

Estabelecendo como referência para a energia interna o estado em regime permanente, a energia 
interna específica em um dado instante é dada por: 
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Desta forma, a energia interna relativa, definida como sendo a relação entre a energia interna no 

instante τ e a energia interna no instante inicial, pode ser determinada pela temperatura média 
adimensional: 
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2.4. Constante de tempo 
 

Para a análise dos problemas abordados é conveniente que se estabeleça um parâmetro 
apropriado capaz de verificar o comportamento transiente da difusão de calor em função da razão 
de aspecto do cilindro de seção elíptica e retangular. Para tanto, são definidos aqui duas constantes 
de tempo: a constante maxτ  como sendo o parâmetro que determina o tempo necessário para que a 
temperatura máxima no domínio ( )τθ ,0,0max  esteja a 1/e do seu valor em regime permanente 

( )∞,0,0θ , e a constante de tempo medτ  como sendo o parâmetro que determina o tempo necessário 
para que a energia interna relativa ( )τ*U  alcance o valor (1/e). Assim, as constantes de tempo são:  

 

( ) ( ) 36788,0e1,0,0 maxmaxmax === τθτθ ,  (29a) 
 
 

( ) ( ) 36788,0e1UUU imedmed
* === ττ . (29b) 

 
3. RESULTADOS E DISCUSSÃO 
 

 Para a determinação dos potenciais transformados nj
~
θ  é necessário preliminarmente calcular 

os coeficientes Bi j m n referentes a cada problema proposto. A integração envolvida no cômputo 
desses coeficientes foi feita pelo método de quadratura de Gauss. Conseqüentemente, todas as 
autofunções e o jacobiano da transformação foram calculados nos pontos de quadratura. 
 O potencial transformado nj

~
θ  foi calculado para cada problema resolvendo-se o sistema de 

equações diferenciais ordinárias, dada pelas Eqs. (22) e (25a), fazendo uso da rotina DIVPAG da 
Biblioteca IMSL FORTRAN. Foi observado que a convergência da série que determina o potencial 
temperatura fica mais lenta no início do transiente ( )01,0<τ , principalmente quando a razão de 
aspecto tende a zero para cilindros retangulares e quando tende a 1 para cilindros de seção elíptica. 
Para estes casos é necessário truncar a série que determina o potencial temperatura ( )τθ ,,vu em uma 
ordem N, M  superior a 25 termos para se obter um mínimo de 4 dígitos de precisão. À medida que 
τ  aumenta, observa-se que a série converge com um número bem menor de termos. 
 Nas Figs. (2) e (3) são apresentadas as evoluções da temperatura máxima e da energia interna 
para cilindros de seção elíptica e retangular, respectivamente, para diversas razões de aspecto. Para 
a simulação de cilindros de seção circular foram obtidos resultados para cilindros de seção elíptica 
com razão de aspecto ρaspec = 0,99, pois com razão de aspecto unitária a transformação para o 
sistema de coordenadas elípticas leva a uma singularidade. 
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Figura 2. Evolução das temperaturas máxima e média em função do tempo em um cilindro 
de seção elíptica para diversas razões de aspecto. 
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Figura 3. Evolução das temperaturas máxima e média em função do tempo em um 
cilindro de seção retangular para diversas razões de aspecto. 

 
 Os resultados obtidos para a temperatura máxima e temperatura média (que representa a 
energia interna relativa) são apresentados na Tab. (1) para cilindros de seção elíptica e retangular 
com razão de aspecto 0,50aspec =ρ .  
 O problema difusivo transiente em cilindros retangulares permite a obtenção de solução 
analítica pelo método da separação de variáveis (Özisik, 1993) e, para fim de comparação, os 
resultados obtidos para a temperatura máxima e temperatura média também são apresentados na 
Tab. (1). Como pode ser observado, há uma excelente concordância entre os mesmos.  

 
Tabela 1. Evolução das temperaturas máxima e média em função do tempo para cilindros 

de seções elíptica e retangular ambos com razão de aspecto 0,50. 
 

Elíptico Retangular τ θmáx θméd θmáx θméd θ(1)
máx  θ(1)

méd 
0,0001 1,0002 0,9772 1,0008 0,9833 1,00000 0,98874 
0,0002 1,0000 0,9682 1,0005 0,9805 1,00000 0,98410 
0,0005 1,0000 0,9500 1,0004 0,9734 1,00000 0,97491 
0,0010 1,0000 0,9295 1,0003 0,9640 1,00000 0,96460 
0,0020 1,0000 0,9008 1,0001 0,9500 1,00000 0,95010 
0,0050 1,0000 0,8447 1,0000 0,9216 1,00000 0,92163 
0,0100 1,0000 0,7830 1,0000 0,8900 1,00000 0,88999 
0,0200 0,9997 0,6984 1,0000 0,8461 1,00000 0,84608 
0,0500 0,9656 0,5408 1,0000 0,7618 1,00000 0,76183 
0,1000 0,8010 0,3821 0,9984 0,6715 0,99841 0,67147 
0,2000 0,4742 0,2034 0,9646 0,5520 0,96458 0,55196 
0,5000 0,0811 0,0332 0,7288 0,3443 0,72883 0,34433 
1,0000 0,0040 0,0017 0,3964 0,1689 0,39641 0,16890 
2,0000 0,0000 0,0000 0,1041 0,0424 0,10408 0,04242 
5,0000 0,0000 0,0000 0,0017 0,0007 0,00171 0,00069 
10,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,00000 

                            (1) Resultados obtidos através da solução analítica do problema difusivo em cilindros retangulares. 
 

 Na Tabela (2) são apresentados os resultados obtidos para as constantes de tempo relacionados 
com a temperatura máxima e temperatura média para cilindros de seção elíptica e retangular com 
diversas razões de aspecto. Como pode ser visualizado na Fig. (4), a constante de tempo sofre uma 
maior influência da razão de aspecto nos cilindros de seção retangular. Mas para todos os casos 
analisados observa-se, como era esperado, que a constante de tempo relacionado com a temperatura 
média é inferior quando comparado com a constante de tempo relacionada com a temperatura 
máxima. 



 

 

Tabela 2. Constantes de tempo em função da razão de aspecto para 
cilindros de seções elíptica e retangular. 

 
Elíptico Retangular ρaspec τmáx τméd τmáx τméd 

0,10 0,2091 0,0922 0,6087 0,3565 
0,20 0,2191 0,0957 0,7245 0,3885 
0,30 0,2295 0,0995 0,8501 0,4169 
0,40 0,2383 0,1029 0,9670 0,4382 
0,50 0,2446 0,1057 1,0577 0,4554 
0,60 0,2487 0,1079 1,1224 0,4702 
0,70 0,2514 0,1095 1,1619 0,4773 
0,80 0,2535 0,1105 1,1871 0,4829 
0,90 0,2543 0,1110 1,1994 0,4888 
0,99 0,2545 0,1111 1,2026 0,4897 
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Figura 4. Constantes de tempo máxima e média em função da razão de aspecto. 
 
 
4. CONCLUSÕES 
 
 No presente trabalho foi analisado o problema difusivo transiente caracterizado por cilindros de 
seção transversal elíptica e retangular submetidos à condição de contorno de primeiro tipo. Para os 
cilindros de seção transversal elíptica foi utilizado um sistema de coordenadas ortogonais adequado 
a fim de facilitar a aplicação das condições de contorno. Soluções da equação da energia foram 
obtidas, então, através da aplicação da Técnica da Transformada Integral Generalizada. Foi 
observado que a expansão que determina o potencial temperatura apresenta convergência lenta no 
início do transiente para ambos os casos. Os resultados obtidos para o cilindro de seção retangular 
foram comparados com aqueles obtidos através da solução analítica (solução exata) e foi verificada 
uma excelente concordância entre os mesmos. Constantes de tempo definidas em relação à 
temperatura máxima e à temperatura média foram também calculadas para diversas razões de 
aspecto de cilindros de seção elíptica e retangular. Finalizando, observa-se que a TTIG foi aplicada 
com sucesso para a obtenção de solução de problemas difusivos transientes multidimensionais, 
ressaltando, aqui, o problema com domínio de geometria elíptica, o qual não admite solução pelas 
técnicas analíticas clássicas. 
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Abstract. Solutions of transient diffusion problems in elliptical and rectangular cross-section 
cylinders submitted to the first kind boundary conditions are presented in this work. Constant 
thermo-physical properties for the diffusive medium and uniform initial temperature distribution 
have been considered in the problem formulations. The main difficulty related to the boundary 
conditions application to elliptical geometries has been removed by employing a suitable 
coordinate change. The generalized integral transform technique (GITT) has been used to obtain 
the energy equation solutions. Temperature profiles and other interesting physical parameters have 
been evaluated for several cylinder aspect ratios and the results obtained have been compared with 
the literature. 
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