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Resumo: Escoamentos com convecção dominante resultam em um sistema de equações 
hiperbólicas o qual quando discretizado leva a matrizes mal condicionadas e aproximações 
oscilatórias quando usado a formulação pelo Método dos Elementos Finitos de Galerkin. Neste 
trabalho o Método dos Elementos Finitos dos Mínimos Quadrados é apresentado para um estudo 
detalhado dos problemas convectivo-difusivos bidimensionais em regime permanente. A equação 
diferencial de segunda ordem que descreve o fenômeno convectivo-difusivo é transformada em um 
equivalente sistema de equações diferenciais parciais de primeira ordem o qual é discretizado 
utilizando a formulação dos elementos finitos dos mínimos quadrados, resultando em um sistema 
algébrico, simétrico e positivo definido. A performance de tal método é verificada através da 
solução de alguns problemas teste.  
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1. INTRODUÇÃO 
 

A partir da década de 50, alguns pesquisadores como Turner et al. (1956), Clough (1960) e 
Argyris (1963) começaram a utilizar o Método dos Elementos Finitos na sua forma padrão, Método 
de Galerkin, para a solução de problemas difusivos dominantes nos quais excelentes resultados 
foram alcançados. Mas grande parte dos problemas de Mecânica dos Fluidos e de Transferência de 
Calor e Massa são do tipo convectivo dominante. Vários autores apresentaram trabalhos nas últimas 
décadas demonstrando que a aplicação do Método de Galerkin na solução de problemas 
convectivos dominantes geram oscilações numéricas, por exemplo Camprub et al. (2000) e Romão 
et al. (2003), fato esse que só poderia ser evitado com um grande refinamento da malha o que para 
problemas bi e tridimensional seria computacionalmente e financeiramente caro. 

Neste trabalho será apresentada a aplicação do Método dos Mínimos Quadrados na solução 
numérica de fenômenos convectivos dominantes definidos sobre um domínio bidimensional. A 
partir das características de apresentar soluções suaves e sua formulação gerar um sistema algébrico 
de equações simétrico e positivo definido, o objetivo desse trabalho é mostrar que Método dos 
Mínimos Quadrados pode ser usado com sucesso na solução de fenômenos convectivo dominantes. 

Primeiramente, será apresentada a discretização das equações diferenciais parciais que modelam 
o fenômeno convectivo-difusivo, pelos Métodos de Galerkin e dos Mínimos Quadrados (LSFEM – 
Least Square Finite Element Method) da equação governante do fenômeno bidimensional escrita da 
forma 
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na qual assume-se =k 0constante ≠ , ),( yxuu = , ),( yxAA xx = , ),( yxAA yy = , ),( yxBB = , e 

),( yxff =  com ℜ∈ , yx  e condições de contorno de primeiro e segundo tipo. 
Ao final, será apresentado duas aplicações numéricas e suas respectivas conclusões, uma 

puramente difusiva em uma geometria cartesiana multiplamente conexa e uma convectiva-difusiva 
com termo convectivo dominante. 

 
2. DISCRETIZAÇÃO  
 

Neste item será apresenta a discretização espacial da equação (1), pelas formulações de Galerkin 
e dos Mínimos Quadrados. 
 
2.1 Método de Galerkin 

 
Inicialmente deve-se fazer a discretização no espaço aproximando a função u  descrita na    Eq. 

(1) pela aproximação espacial û , com segue 
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e nósN  é o número de nós em cada elemento, jN  são as funções de interpolação e e

jû  são as 
aproximações de u  no elemento. Com a aproximação descrita na Eq. (2) e usando a Eq. (1) 
define-se um resíduo na forma 
 

fuB
y
u

A
x
u

A
y
u

k
yx

u
k

x
R yx ++

∂
∂

+
∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

= ˆ
ˆˆˆˆ

                   (3) 

 
Então é possível iniciar a introdução da aproximação pelo Método de Galerkin, na qual é 

necessário definir a formulação variacional do problema genérico (1), como segue: Deve-se 
encontrar ee Vu ∈ˆ , )(2 Ω∈ CV e , tal que 
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no qual 2ℜ⊂Ω  é um domínio limitado e fechado. 

A Eq. (4) será válida para qualquer i
e
i Nv = , nósNi ,...,2,1= , ou seja, no Método de Galerkin a 

função peso é assumida como igual a função de interpolação. Utilizando a Eq. (2), fazendo-se as 
devidas integrações e algebrismos obtém-se o seguinte sistema linear matricial 
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com Nnósji ,...,2,1, = . Maiores detalhes sobre a formulação descrita anteriormente podem ser 
encontrados em Romão (2004). 

 
2.2 Método dos Mínimos Quadrados 

 
A aproximação pelo Método dos Mínimos Quadrados tem como característica inicial a adição 

de duas variáveis extras no problema através das seguintes equações 
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com isso o problema deixa de ser representado por uma equação diferencial parcial de segunda 
ordem para ser representado por uma sistema com três equações diferenciais parciais de primeira 
ordem. Sendo assim, e substituindo-se as Eqs. (8a-b) na Eq. (1), obtém-se 
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Assim como no Método de Galerkin deve-se, primeiramente, definir as aproximações espaciais, 

entretanto no Método dos Mínimos Quadrados utilizado neste trabalho três variáveis são 
aproximadas, no caso, as variáveis u , xq  e yq , por û , xq̂  e yq̂ , da seguinte maneira 
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e como û , xq̂  e yq̂  são aproximantes de u , xq  e yq , então a partir das Eqs. (9), (10) e (11) pode-se 
definir os seguintes resíduos  
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A idéia básica do Método dos Mínimos Quadrados é de determinar ee Vu ∈ˆ  que seja um 

minimizador do funcional (Jiang, 1998) 
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ou seja, na primeira variação de û , xq̂  e yq̂  resulte 
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Fazendo os devidos algebrismos e as devidas integrações, a Eq. (19) gera o seguinte sistema 

linear matricial, 
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no qual 
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com Nnósji ,...,1, = . 

 
3. APLICAÇÕES NUMÉRICAS 

 
Todos os coeficientes envolvidos nos sistemas matriciais (5) e (20), respectivamente de 

Galerkin e dos Mínimos Quadrados (LSFEM), estão descritos em função das coordenadas espaciais 
x  e y . Neste trabalho será utilizado o Método de Quadratura de Gauss (Reddy, 1993) para calcular 
as integrais encontradas nos sistemas matriciais, para isso, é necessário reescrever as integrais em 
termos das coordenadas de referênciaξ  e η  ( )1,1 ≤≤− ηξ , conforme descrito em Romão (2004). 
As funções de interpolação em coordenadas de referência para elementos quadrilaterais e 
triangulares podem ser em encontradas em Dhatt et al. (1984). 

Logo a seguir, serão apresentadas duas aplicações numéricas: A primeira trata de um 
problema puramente difusivo e a segunda trata-se de um problema convectivo-difusivo com termos 
convectivo dominantes, com o objetivo de analisar a performance dos Métodos de Galerkin e dos 
Mínimos Quadrados para três tipos de malhas previamente determinadas. 
 
Aplicação 1: Difusão Pura em domínio multiplamente conexo 
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Figura 1 – Geometria cartesiana multiplamente conexa com condições de contorno de primeiro tipo  
 



Esta aplicação tem como objetivo apresentar um caso de difusão pura em uma geometria 
cartesiana multiplamente conexa. Os resultados numéricos são comparados com a solução pelo 
software Ansys. A malha utilizada nesta aplicação possui 966 elementos triangulares com seis nós 
cada, Fig. 2. 

 

 

Figura 2 – Malha com 966 elementos triangulares 
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Figura 3 – Solução numérica de ),( yxu  pelo software Ansys. 
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Figura 4 – Solução numérica de ),( yxu  pelo Método de Galerkin. 
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Figura 5 – Solução Numérica de ),( yxu  pelo Método dos Mínimos Quadrados. 
 
Os resultados numéricos apresentados nas Figs. 4 e 5 comparados com a solução pelo Ansys, 

Fig. 3, mostram que os Métodos de Galerkin e dos Mínimos Quadrados apresentam resultados com 
boa concordância para a geometria cartesiana multiplamente conexa. 
 

Aplicação 2: Convecção-Difusão em domínio simplesmente conexo 

 
Essa aplicação tem como principal objetivo avaliar a melhoria na solução numérica de um 

problema convectivo-difusivo o quanto mais refina-se a malha. Para tal análise serão adotadas 
malhas com 100, 900 e 2500 elementos quadrilaterais com oito nós cada, sendo idênticos todos os 
elementos adotados em cada malha. 
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Figura 6 – Geometria cartesiana simplesmente conexa com condições de contorno de primeiro tipo. 
 
Analisando a Fig. 7, nota-se que o Método de Galerkin apresenta grandes oscilações numéricas, 

principalmente nas regiões dos contornos 0=x  e 0=y , oscilações essas suavizadas pelo Método 
dos Mínimos Quadrados. Vale ressaltar que a malha com 100 elementos triangulares apresenta um 

1414,021,0 ≈=h , no qual h  é a maior aresta do elemento. 
Para a malha com 900 elementos, Fig. 8, percebe-se que as oscilações numéricas dos dois 

métodos começam a diminuir, tendo como maior destaque a solução numérica pelo Método dos 
Mínimos Quadrados que já não apresenta oscilações numéricas. Por fim, para a malha com 2500 
elementos, Fig. 9, os Métodos de Galerkin ainda não fornece bons resultados, enquanto isso, é 
notável que o Método dos Mínimos Quadrados melhora expressivamente seus resultados o quanto 
mais refinada é a malha. 
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Figura 7a-b – Soluções numéricas de ),( yxu  obtidas pelos Método de Galerkin (à esquerda) e dos 
Mínimos Quadrados (à direita) para uma malha com 100 elementos quadrilaterais com 8 nós cada. 
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Figura 8a-b – Soluções numéricas de ),( yxu  obtidas pelos Método de Galerkin (à esquerda) e dos 
Mínimos Quadrados (à direita) para uma malha com 900 elementos quadrilaterais com 8 nós cada. 
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Figura 9a-b – Soluções numéricas de ),( yxu  obtidas pelos Método de Galerkin (à esquerda) e dos 
Mínimos Quadrados (à direita) para uma malha com 2500 elementos quadrilaterais com 8 nós cada. 



 
4. CONCLUSÕES 
 

O Método dos Mínimos Quadrados mostrou-se uma poderosa ferramenta na solução de 
problemas convectivo-difusivos. Quando o mesmo foi aplicado a um problema puramente difusivo 
em uma geometria cartesiana multiplamente conexa apresentou resultados semelhantes aos 
apresentados pelo Método de Galerkin e aos resultados obtidos usando o software Ansys. 
Entretanto, quando o Método dos Mínimos Quadrados foi aplicado ao problema convectivo 
dominante proposto, apresentou resultados mais suaves até mesmo para uma malha com 100 
elementos, considerada grosseira. Para a mesma malha o Método de Galerkin apresentou grandes 
oscilações, as quais não foram totalmente suavizadas com o refinamento da malha. Para o mesmo 
refinamento da malha citado, 900 e 2500 elementos, o Método dos Mínimos Quadrados apresentou 
excelentes resultados. 
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Abstract: Convection dominated flows result in a hyperbolic system of equations which leads to 
ill-conditioned matrices and oscillatory approximations when using the classical Galerkin finite 
element formulation. In this work a Least-Square Finite Element Method, LSFEM, is presented for 
a detailed study of steady-state convective-diffusive problems in two dimensions. The second-order 
differential equation describing the convection-diffusion phenomenon is transformed into an 
equivalent system of first-order partial differential equations which is discretized by a least-squares 
finite element formulation, resulting in a algebraic system, symmetrical and positive defined. The 
performance of such LSFEM is verified by solving some test problems.  
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