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Resumo: Escoamentos com convecgdo dominante resultam em um sistema de equaghes
hiperbolicas o qual quando discretizado leva a matrizes mal condicionadas e aproximagdes
oscilatorias quando usado a formulagdo pelo Método dos Elementos Finitos de Galerkin. Neste
trabalho o Método dos Elementos Finitos dos Minimos Quadrados é apresentado para um estudo
detalhado dos problemas convectivo-difusivos bidimensionais em regime permanente. A equacao
diferencial de segunda ordem que descreve o fendbmeno convectivo-difusivo é transformada emum
equivalente sistema de equacdes diferenciais parciais de primeira ordem o qual é discretizado
utilizando a formulagdo dos elementos finitos dos minimos quadrados, resultando em um sistema
algébrico, simétrico epositivo definido. A performance de tal método € verificada através da
solucéo de alguns problemas teste.
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1. INTRODUCAO

A partir da década de 50, alguns pesquisadores como Turner e d. (1956), Clough (1960) e
Argyris (1963) comecaram a utilizar o Méodo dos Elementos Finitos na sua forma padrdo, Méodo
de Gaerkin, paa a solugdo de problemas difusvos dominantes nos quais excelentes resultados
foram acancados. Mas grande parte dos problemas de Mecanica dos Fluidos e de Transferéncia de
Cdor e Massa séo do tipo convectivo dominante. Varios autores apresentaram trabahos nas Ultimas
décadas demonstrando que a aplicacdo do Método de Gaerkin na solugdo de problemas
convectivos dominantes geram oscilagbes numéricas, por exemplo Camprub et d. (2000) e Roméo
et d. (2003), fato esse que SO poderia ser evitado com um grande refinamento da malha o que para
problemas bi e tridimensiond seria computaciond mente e financeiramente caro.

Neste trabaho sera apresentada a aplicacd do Método dos Minimos Quadrados na solucéo
numérica de fendmenos convectivos dominantes definidos sobre um dominio bidimensond. A
partir das caracterigticas de apresentar solucBes suaves e sua formulagdo gerar um sstema agébrico
de equagbes smétrico e pogitivo definido, o objetivo desse trabalho é mostrar que Méodo dos
Minimos Quadrados pode ser usado com sucesso na solugdo de fendmenos convectivo dominantes.

Primeiramente, sera apresentada a discretizacdo das equagbes diferenciais parciais que modeam
o fenbmeno convectivo-difusivo, pelos Métodos de Gaerkin e dos Minimos Quadrados (LSFEM —
Least Square Finite Element Method) da equacdo governante do fendmeno bidimensiona escrita da
forma
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na qud assume-se k =condante * 0, u=u(x,y), A =AKXY), A =AKXY), B=B(xY),e
f =f(xy) com x,yl A econdigdes de contorno de primeiro e segundo tipo.
Ao find, serd gpresentado duas aplicagbes numéricas e Suas respectivas conclusdes, uma

puramente difusva em uma geometria catesana multiplamente conexa e uma convectiva-difusva
com termo convectivo dominante.

2. DISCRETIZACAO

Neste item sera gpresenta a discretizacdo espacid da equacéo (1), pelas formulagdes de Galerkin
e dos Minimos Quadrados.

2.1 Méodo de Galerkin

Iniciamente deve-se fazer a discretizacd no espago aproximando a fungdo U descritana  Eq.
(1) pelaaproximacdo espacial U, com segue
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e N, € 0 nimero de nos em cada elemento, N; sdo as fungdes de interpolagdo e U; sao as

aproximagdes de u no eemento. Com a agproximagdo descrita na Eg. (2) e usando a Eq. (1)
define-se um residuo naforma
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Entdo € possivd iniciar a introducdo da aproximacdo peo Méodo de Gaerkin, na qua é
necessxio definir a formulagdo variaciond do problema genéico (1), como segue Deve-se
encontrar G°1 Ve, Vel C2(W), td que
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noquad W1 A2 éum dominio limitado e fechado.

A Eq. (4) sera vdida para quaquer v =N,, i =12,...,N ., ou s§a no Méodo de Galerkin a
funcdo peso é assumida como iguad a funcdo de interpolagdo. Utilizando a Eq. (2), fazendo-se as
devidas integractes e a gebrismos obtém-se 0 seguinte sstemallinear matricia
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com i,j=12,..,Nnés. Maores detahes sobre a formulagcdo descrita anteriormente podem ser
encontrados em Roméao (2004).

2.2 Méodo dos M inimos Quadrados

A agproximagdo pelo Méodo dos Minimos Quadrados tem como caracteridtica inicid a adigéo
de duas variaveis extras no problema atraves das seguintes equaces
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com iss0 0 problema deixa de ser representado por uma equacdo diferencia parcia de segunda
ordem para ser representado por uma sstema com trés equagOes diferenciais parciais de primeira
ordem. Sendo assim, e subgtituindo-se as Egs. (8a-b) na Eq. (1), obtém-se
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Assm como no Méodo de Gaderkin deve-se, primeiramente, definir as aproximaghes espacials,
entretanto no Mé&odo dos Minimos Quadrados utilizado neste trabdho trés varidvels so

goroximadas, no caso, asvaiaveis u, d, e q,, por U, g, e g, , daseguinte maneira
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ecomo U, g, e (jy s30 gproximantes de u, g, € d,, entdo a partir das Egs. (9), (10) e (11) pode-se
definir os seguintes residuos
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A idda bésica do Méodo dos Minimos Quadrados é de determinar G°T V° que sga um
minimizador do funciond (Jang, 1998)
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ou sga, naprimeiravariagio de U, g, e g, resulte
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Fazendo os devidos agebrismos e as devidas integragOes, a Eq. (19) gera o seguinte sistema
linear matricid,
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comi,j=1,...,Nnés.
3. APLICACOESNUMERICAS

Todos os coeficientes envolvidos nos ssemas matriciais (5) e (20), respectivamente de
Gderkin e dos Minimos Quadrados (LSFEM), estdo descritos em funcéo das coordenadas espaciais
X e y. Neste trabaho sera utilizado o Mé&odo de Quadratura de Gauss (Reddy, 1993) para calcular
as integrais encontradas nos sistemas matricials, para isso, € necessaio reescrever as integrals em
termos das coordenadas de referénciax e h (- 1£x,h £1), conforme descrito em Roméo (2004).
As funcbes de interpolaco em coordenadas de referéncia para dementos quadrilaterais e
triangulares podem ser em encontradas em Dhatt et d. (1984).

Logo a seguir, sdo apresentadas duas aplicagBes numeéricas: A primera trata de um
problema puramente difusvo e a segunda trata-se de um problema convectivo-difusvo com termos
convectivo dominantes, com o objetivo de andisar a performance dos Méodos de Gderkin e dos
Minimos Quadrados para trés tipos de mahas previamente determinadas.

Aplicacdo 1: Difusdo Pura em dominio multiplamente conexo

ﬂzu(i, y) , Tuxy) _

Equacéo Gover nante:
% Ty*

ydl

[ =]
e

]
L]

125 _______ w=2 | w=1 | ]
=10 w =1 u=1 u=2 w=12 w=1

0,75 e s e

o] 05 15 «=0 25 35 4 %

Figura 1 — Geometria cartesiana multiplamente conexa com condigdes de contorno de primeiro tipo



Egsa gplicacdo tem como objetivo agpresentar um caso de difusio pura em uma geometria
catesana multiplamente conexa. Os resultados numeéricos sBo comparados com a solugdo pelo
software Ansys. A maha utilizada nesta gplicaco possui 966 dementos triangulares com sais nés
cada, Fig. 2.

Figura 2 — Maha com 966 eementos triangulares

X
Figura4 — Solucdo numéricade u(x, y) pelo Méodo de Galerkin.



Figura5 — Solucdo Numéricade u(x, y) pelo Méodo dos Minimos Quadrados.

Os resultados numeéricos apresentados nas Figs. 4 e 5 comparados com a solugéo pelo Ansys,
Fig. 3, mostram que os Métodos de Gaerkin e dos Minimos Quadrados apresentam resultados com
boa concordancia para a geometria cartesiana multi plamente conexa.

Aplicacéo 2: Conveccdo-Difusdo em dominio simplesmente conexo

Essa gplicacdo tem como principd objetivo avdiar a mdhoria na solucdo numérica de um
problema convectivo-difusvo o quanto mas refina-se a maha Para ta andise seréo adotadas

malhas com 100, 900 e 2500 elementos quadrilaterais com oito nds cada, sendo idénticos todos os
elementos adotados em cada mal ha.
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Figura 6 — Geometria cartesiana S mplesmente conexa com condi¢des de contorno de primeiro tipo.

Andisando a Fig. 7 nota-se que o Méodo de Gaerkin gpresenta grandes oscilagbes numéricas,
principadmente nas regides dos contornos x =0 e y =0, oscilagbes Suavizadas pelo Método
dos Minimos Quadrados. Vae ressdtar que a malha com 100 eementos triangulares apresenta um
h=01/2 » 01414, noqua h éamaior arestado elemento.

Para a maha com 900 dementos, Fig. 8, percebe-se que as ostilagcbes numéicas dos dois
métodos comecam a diminuir, tendo como maior destagque a solucdo numeérica peo Méodo dos
Minimos Quadrados que j& ndo apresenta oscilagbes numéricas. Por fim, para a malha com 2500
edementos, Fig. 9, os Méodos de Gaerkin ainda ndo fornece bons resultados, enquanto isso, é

notdvel que o Méodo dos Minimos Quadrados mehora expressvamente seus resultados o quanto
mais refinada é amaha
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Figura 7a-b — Solugbes numéricas de u(x, y) obtidas pelos Método de Galerkin (a esquerda) e dos
Minimos Quadrados (a direita) para umamalha com 100 elementos quadrilaterais com 8 nds cada.
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Figura 8a-b — Solugbes numéricas de u(x, y) obtidas pelos Método de Galerkin (a esquerda) e dos
Minimos Quadrados (a direita) para umamalha com 900 € ementos quadrilaterais com 8 nos cada.
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Figura 9a-b — Solugbes numéricas de u(x, y) obtidas pelos Método de Galerkin (a esquerda) e dos
Minimos Quadrados (a direita) para uma malha com 2500 elementos quadrilaterais com 8 nds cada.
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4. CONCLUSOES

O Méodo dos Minimos Quadrados mostrou-se uma poderosa ferramenta na solugcdo de
problemas convectivo-difusivos. Quando o mesmo foi aplicado a um problema puramente difusvo
em uma geometria catedana multiplamente conexa apresentou resultados semehantes  aos
apresentados pelo Méodo de Gaerkin e aos resultados obtidos usando o software Ansys.
Entretanto, quando o Méodo dos Minimos Quadrados foi aplicado a0 problema convectivo
dominante proposto, apresentou resultados mais suaves até mesmo para uma maha com 100
elementos, consderada grosseira. Para a mesma maha o Méodo de Galerkin apresentou grandes
oscilagbes, as quais ndo foram totalmente suavizadas com o refinamento da maha Para 0 mesmo
refinamento da maha citado, 900 e 2500 dementos, 0 Método dos Minimos Quadrados apresentou
excelentes resultados.
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Abstract: Convection dominated flows result in a hyperbolic system of equations which leads to
ill-conditioned matrices and oscillatory approximations when using the classical Galerkin finite
element formulation. In this work a Least-Square Finite Element Method, LSFEM, is presented for
a detailed study of steady-state convective-diffusive problems in two dimensions. The second-order
differential equation describing the convection-diffusion phenomenon is transformed into an
equivalent system of first-order partial differential equations which is discretized by a least-squares
finite element formulation, resulting in a algebraic system, symmetrical and positive defined. The
performance of such LSFEM is verified by solving some test problems.
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