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Resumo. Apresenta-se uma avaliagcdo psicrométrica de um calorimetro desenvolvido para avaliar o
desempenho térmico de evaporadores em regime permanente. O calorimetro fornece a taxa de
calor absorvido pelo evaporador, propiciando andlises qualitativas do desempenho para uma dada
geometria. Analisa-se a estabilizacdo do processo em funcdo da umidade absoluta, uma vez que
dgua ndo é reposta ao processo. Propde-se uma avaliacdo da dindmica da umidade durante o
processo transiente, a fim de esclarecer a hipotese de sua estabilizacdo quando no regime
permanente.
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1. INTRODUCAO

Os evaporadores sdo importantes componentes para o funcionamento de um ciclo frigorifico.
Neste contexto os refrigeradores e os condicionadores de ar sdo os equipamentos mais comumente
utilizados que se beneficiam do funcionamento desses trocadores. Ou seja, supor a utilizagdo de
evaporadores otimizados significa dispor de um melhor rendimento para o ciclo, e
conseqiientemente redugdo do consumo de energia.

Um método para a avaliacdo desses evaporadores estd na utilizagdo de calorimetros que
introduzem uma condi¢@o de contorno ao evaporador similar aquela na qual o componente estaria
submetido quando em funcionamento normal nos equipamentos domésticos.

Um calorimetro, de modo geral, realiza trocas térmicas em um equipamento sob condi¢des
controladas no sentido de determinar uma condi¢do estavel de funcionamento. Desse modo, é
possivel averiguar quanta energia foi reposta ao processo, uma vez que o evaporador foi o
responsavel pela retirada da mesma. Desta forma, determinar a energia reposta significa determinar
quanto calor foi absorvido pelo trocador.

Para tanto, nosso estudo se concentra nos mecanismos higroscopicos de estabilizagdo dos
dispositivos calorimétricos, em especial aquele de insuflamento fechado.

O objetivo desse trabalho estd na descricdo de um processo calorimétrico por meio de uma
andlise psicrométrica do processo feito pelo evaporador testado.



2. DESCRICAO DO CALORIMETRO

O calorimetro, objeto do estudo, foi desenvolvido para opera¢do com ciclo em loop, isto é,
recondicionando completamente o ar que participou das trocas de energia com o evaporador. Essa
tecnologia de circulagdo € usada por outros pesquisadores em seus trabalhos (Park, 2002, Liang,
2001 e Wang, 2000), devido a melhor estabilidade conseguida pela realimentacdo do ar de modo
continuo. Embora, Jabardo (2002) tenha utilizado um calorimetro similar, porém com
recondicionamento parcial.

Como o evaporador retira uma taxa de transferéncia de calor do ambiente a ser monitorado, o
calorimetro através de um sistema de compensacio de calor aciona uma resisténcia elétrica que
dissipa energia em uma taxa que pode ser ajustada de modo que a temperatura interna do
calorimetro se mantenha constante. O sistema de ventilacdo também dissipa poténcia, tanto sob a
forma de eixo quanto dissipagcdo pela carcaga, ocasionando uma energia adicional ao processo.
Além dessas parcelas, ha a taxa de transferéncia de calor que atravessa as paredes do calorimetro
devido a diferenca de temperatura entre os lados interno e externo do equipamento. A Fig. (1)
mostra a disposicao esquematica dos principais componentes no ambiente calorimétrico.
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Figura 1. Disposi¢do dos elementos principais do calorimetro.

A temperatura externa das paredes do calorimetro € estabilizada por meio de uma camara
externa com controle independente. Esta condi¢do é importante para a determinacdo das perdas
pelas paredes do calorimetro. E desejivel que esse fluxo de energia seja o minimo possivel e
devidamente contabilizado pelo sistema.

Os dados térmicos do calorimetro foram obtidos com termopares tipo T (cobre-constantan) e
monitorados por um sistema de aquisicdo de sinais com tecnologia VXI. Toda a malha foi calibrada
e devidamente compensada quanto ao erro sistemdtico e o sistema oferece uma incerteza de
medi¢do maxima de +0,3°C para medi¢des com temperatura. Grandezas elétricas apresentam uma
incerteza de 0,2% da medida instantinea e foram obtidas por meio de transdutores digitais para
aquisicdo de até 11 grandezas elétricas (Yokogawa 2480D) e saida MODBUS RTU 485 a dois fios.
O sistema de aquisi¢cd@o central integra a comunicagio com os transdutores digitais e com as placas
analdgicas (temperatura).

Os dados de umidade do ambiente interno do calorimetro s@o caracterizados pelas relacdes de
saturacdo adiabatica entre a temperatura de bulbo timido e seco. A medi¢do € assegurada porque o
fluxo é forcado e completamente recondicionado. O fluxo de ar é da ordem de 5Sm/s conseguidos
por um motoventilador de 75W.



3. MODELO
3.1. Avaliacao psicrométrica no evaporador

Observando a massa no ar que atravessa o volume de controle composto pelo evaporador,
escreve-se o sistema de equagdes abaixo por meio do balanco e energia e massa conforme:
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Mas, na condi¢@o de regime permanente 0 processo se torna:

Qevap - mar,seco,em ‘har,umido,ent - mar,seco,saida 'har,umida,saida - magua “Yagua (2)
m

agua — mar,umido,ent mar,umido,saida

O que resulta em:

Qevap - ma.r,seco,em '(har,umida,ent - har,umido,saida )_ (mar,umida,ent - mar,umido,saida )‘hagua (3)

Mas lembrando que:

ar,umido = mar,seco (W + 1) (4)

E que a entalpia de ar imido corresponde, por ASHRAE (1997), como sendo:
Py wmido = 1,006T 5 + w(2501+1,805T ) [k%g } 5)

para temperaturas dadas em Kelvin.

Finalmente, agrupando em (w,,,..., — W, ) Tesulta em:

entrada

ermp = 1’006(TBS,em — T suida )+ 1’805(Went Tig ont = Wisida L s saida )+ (Went ~ Wedida )-(250 1- h’agua ) (0)
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Quando ndo ha realimentacdo de dgua ao processo, no regime permanente do calorimetro, a
umidade absoluta do meio controlado permanece uniforme e, 8 medida que o regime transiente vai
se estabilizando, a umidade absoluta tende a uma constante.



Assim a Eq. (6) pode ser escrita, no regime permanente, como:

Q('vap

ar,seco

= (1,006 + 1805W)(T5 0 = T e ) 7

A Eq. (7) corresponde a taxa de transferéncia de calor sensivel perdido pelo ar no escoamento
interno ao calorimetro quando este atravessa o evaporador. Assim, a umidade interfere diretamente
no resultado da medicdo tanto quanto o regime seja instavel ou transitério.

3.2. Avaliacao da desumidificacio do ambiente interno

Por meio da equacdo do balanco de massa, com Lews=1 (Threlkekd, 1970) para a hipotese
comum para o ar dos trocadores de calor domésticos quando os coeficientes convectivos de calor e
massa se relacionam, podendo-se escrever o dominio compreendido pelo ambiente interno do
calorimetro como na Eq. (8):
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Onde B [1/s] € o coeficiente de decaimento combinado para o modelo proposto.

w e w,_. sdo as umidades instantdnea e minima (fruto da condic¢do de orvalho), respectivamente.
p € a densidade da massa de ar seco.

Otermo A, = representa a drea de troca do evaporador.

evap

V., representa o volume interno do calorimetro.
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Rearranjando os termos e aplicando o processo a todo o intervalo, temos:

w,

min dW t
—= —BI dt 9)
Wy w= Wmin 0
Entao:
= Wnin | _ _ py (10)
WO - Wmin
E que:
|W_Wmin =|W0 _Wmin e_BI (11)

Mas, como o sistema esta secando w(t) e wy s20 maiores que Wy, logo:

w(t)=(w, —w_, Je™™ +w,_, (12)

min
Por outro lado, sabe-se que:

Pv

w=0,622
Pt — Pv

13)



Em que:
Pv ¢a pressdo de vapor do ar imido.

Pt ¢a pressdo atmosférica.

Além disso, ASHRAE (1997), mostra um ajuste recomendado para a pressdo de saturagdo do ar
Umido na temperatura de orvalho como sendo:

[iwz +C3T oy +CyT iy +CsTogy +CoLn(Topy )]
Psat(TORV ) =\ fowv

C, =-5800,2206

C, =1,3914993

C, =-0,048640239

C, =0,000041764768

C, =-0,000000014452093

C, =6,5459673

, com as temperaturas em Kelvin.

(14)

Lembrando da Eq. (12) e caracterizando-a no tempo:
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Finalmente, aplicando as Eq. (13) e (14) sobre a Eq. (15) obtém-se:

W, 1

0,622
Pt

-1

C,
[ L+ Cy+ CiT gy +CaTgry +CsTopy +Coln(Topy )] ( 1 6)
T()RV

B : w(t)

0,622
Pt

-1

C 2 3
( —+Cy+C3Topy +CyTory +CsTory +CoLn(Topy )
ORV

e

Assim, tem-se caracterizado o tempo necessdrio para a estabilizacdo do processo calorimétrico
iniciado a partir de qualquer condigdo inicial. Assim, sabe-se que, de fato, ocorrera estabilizacio do
calorimetro segundo o dominio da umidade.

De acordo com as Egs. (12) e (16) a Fig. (2) mostra a extrapolacdo dos efeitos relativos do
coeficiente de decaimento da umidade no processo.
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Figura 2. Processo de desumidificag¢@o para temperatura de orvalho de 6°C sob diversas condi¢des
do coeficiente de decaimento massico B [1/s].

A Fig. (3) demonstra o processo de desumidificacio quando alterada a condicdo de orvalho. A
medida que o gradiente de umidade € maior na condi¢do inicial, mais expressivo é o decaimento.
Porém o tempo de estabilizacdo para a umidade € maior.
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Figura 3. Influéncia da temperatura de orvalho sobre o processo de desumidificacdo.

4. RESULTADOS

Os dados foram levantados para o evaporador com as caracteristicas da Tab (1):



Tabela 1 Especificacdo do evaporador submetido ao calorimetro (Modelo 1).

Diametro Densidade de
Comprimento N° de aletas Area de troca
Modelo P externo do aletamento 5
do tubo (mm) tubo (mm) (larg. x altura) (aletas/mm) (m”)
154
01 6667 7,5 0,55 3,978
(280x44,3)mm

O evaporador modelo 01 é composto por 22 linhas (rows) em duas se¢des de tubos na dire¢do

do fluxo de ar.

A Fig. (4) compara a Eq. (12) com o resultado de um ensaio calorimétrico com temperatura de
controle interno a 10°C. O coeficiente de decaimento B foi ajustado de modo iterativo conforme os
dados experimentais. Observa-se a caracteristica do modelo ajustado, Eq. (12), e os dados do ensaio.
O ensaio real foi estabilizado a 10°C no ambiente interno do calorimetro e 32°C no ambiente
externo. Nota-se grande similaridade dos resultados uma vez que o processo real é alcangado por
meio de chaveamento de um sistema de dissipa¢do de energia, uma limita¢do construtiva.
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Figura 4. Desumidifica¢do modelada e ensaiada a 10°C. Camara externa a 32°C.

Na Fig. (5) € mostrado desempenho comparativo do funcionamento do calorimetro apds
estabilizacdo, segundo diversas temperaturas de controle.
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Figura 5. Influéncia da temperatura interna do calorimetro na estabiliza¢do da umidade.
4.1. Ensaio do calorimetro a 10°C.

E possivel notar nas Figs. (6) e (7) o funcionamento do calorimetro evidenciado por meio de sua
pressdo de vapor e a temperatura de controle de estabilizacdo. Nota-se a regido mais densamente
marcada na qual a abscissa € a temperatura de controle. Estdo registradas as condi¢des de regime
permanente do ar interno, do ponto de vista do contetido de umidade.

Devido a temperatura da superficie do evaporador, sob teste, estar em torno de 9,1°C e a
temperatura inicial do processo 18°C, conforme a Fig. (6), a refrigeracdo e a desumidificacio
ocorreram sob condi¢do de saturacdo. O processo ocorreu até que a ciclagem atingiu a condig¢do
permanente.
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Figura 6. Estabilizacdo do calorimetro sob 10°C.



Nota-se na Fig. (7) o processo de estabilizacdo a 6°C.
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Figura 7. Estabilizacdo do calorimetro sob 6°C.

5. CONCLUSOES

O processo calorimétrico € submetido a grandes variagdes higrotérmicas durante o seu
funcionamento. A medida que o processo se estabiliza as varidveis convergem para o resultado do
ensaio. Entretanto, ficou claro, por meio dos desdobramentos das equacdes acima, entender como
ocorre essa estabilizagdo do ponto de vista da umidade e como essa varidvel estd relacionada com a
medicdo do calorimetro, uma vez que o calor sensivel pode ser escrito por meio dos balangos
madssico e energético tanto no ar interno do calorimetro quanto pelo préprio evaporador.

Outra condi¢do estaria na verificagdo da influéncia do fluxo de ar do calorimetro e como essa
variagdo interfere nos resultados. Por meio da Eq. (7) nota-se a proporcionalidade direta da vazio
mdssica de ar seco com o resultado efetivo do calorimetro que é a determinagdo da taxa de
transferéncia de calor retirado pelo evaporador de teste. O controle deste parametro € interessante,
pois cada evaporador, dependendo de suas caracteristicas de funcionamento, estd submetido a
vazdes diferentes, logo taxas de transferéncia de energia diferentes. Entretanto, uma ressalva € feita
quanto a vazdo minima que deve ser tal que propicie as medi¢des de bulbo imido, pois caso fosse
inferior uma desestabilizacdo das temperaturas do conteido de dgua do saturador adiabdtico e do
meio.

O processo transiente pode ser avaliado segundo a condicdo de orvalho resultado da variacdo da
temperatura interna do calorimetro e na variacdo do coeficiente de decaimento da umidade no
tempo.
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