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Resumo. Este trabalho apresenta a modelagem estática de um sistema de refrigeração de 
compressão a vapor utilizando modelo Black-box (Redes Neurais Artificiais) com o algoritmo de 
treinamento “back-propagation”. O modelo é fortemente dependente dos componentes do sistema 
(compressor, condensador, dispositivo de expansão, evaporador, etc.). Em geral,das características 
dos componentes do sistema com múltiplas-entradas e múltiplas-saídas (MIMO - multi-input multi-
output). Foram usados dados experimentais de um protótipo de sistema de refrigeração montado 
no laboratório de Energia e Sistemas Térmicos – LEST/FEMEC/UFU. Os resultados do modelo 
apresentaram-se satisfatórios para obter diferentes variáveis, tais como; potência consumida, 
vazão mássica; coeficiente de performance do sistema. Esta forma de modelar proporciona 
informação sobre comportamento de cada um dos parâmetros de cada componente, operando 
como uma ferramenta que pode ser utilizada para desenvolver modelagem semi-empirica 
simplificada. 
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1. INTRODUÇÃO 
 

Os sistemas de refrigeração tornam-se a cada dia mais imprescindíveis para a vida moderna, e a 
medida que as necessidades de conforto humano e conservação de produtos ganham maior destaque 
no mundo contemporâneo nos leva melhorar sistemas já  existentes, através de estudos 



generalizados para melhorar a eficiência e consumo de energia para este tipo de sistemas de 
refrigeração. 

Encontra-se na literatura diferentes linhas de modelagem de este tipo de sistema, modelos 
altamente detalhados como o proposto por Rigola et al (1996) são mais úteis na otimização do 
‘design’ de compressores e não na predição do comportamento do compressor. Em outra linha de 
modelagem estão modelos mais simplificados baseados em correlações estatísticas, parâmetros de 
performance e simplificações fundamentadas em conceitos físicos (Chi, 1982, Yassuda, 1983, 
MacArthur, 1984, e Braun, 1999). Modelos dessa natureza são úteis em projeto, otimização, 
investigação de controle e detecção de falhas em sistemas de refrigeração. A principal dificuldade 
relacionada com estes modelos é a obtenção dos parâmetros que são propostos para descrever o 
comportamento do compressor, como: eficiências de processos, coeficiente de inércia de válvulas, 
coeficientes politrópicos, parâmetros geométricos e coeficientes locais de troca térmica, porém, o 
desenvolvimento de modelos teóricos rigorosos pode não ser praticável para processos complexos 
se o modelo requer um grande número de equações diferenciais com um número significativo de 
parâmetros desconhecidos. Uma alternativa é desenvolver uma aproximação empírica do modelo 
diretamente de dados experimentais. Estes modelos são muitas vezes referenciados como black box 
(modelos tipo caixa preta). O processo a ser modelado é considerado como uma caixa preta onde as 
entradas e saídas são conhecidas, mas o comportamento interno da 'caixa preta' é desconhecido. 
 
2. REDES NEURAIS ARTIFICIAIS (ANN) 
 

A arquitetura da ANN utilizada é um perceptron multicamadas (MLP), que consiste de uma 
camada de entrada, um de saída um o mais camadas ocultas, e n neurônios em cada camada, a 
forma pela qual os neurônios estão interconectados (topologia ou arquitetura da rede) causa um 
enorme efeito na operação da rede. As camadas de uma rede neural são interconectadas através de 
parâmetros internos denominados  pesos ( w ). O algoritmo de “backpropagation” com a função de 
ativação sigmóide es usado para treina a rede, que utiliza o método iterativo do gradiente 
descendente que minimiza o erro meio quadrático entre a saída desejada e a saída da rede. 

O modelo típico do neurônio utilizado no algoritmo de backpropagation, é apresentado na Fig. 
(1), onde as entradas nx  são conectadas pelos seus respectivos pesos nw  para o processamento de 
sua saída por intermédio da função de ativação )(Iφ . 
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Figura 1. Neurônio de processamento do algoritmo backpropagation com função de ativação 

sigmóide. 
 

Para o melhor entendimento da implementação, suponhamos uma rede neural com uma camada 
de entrada uma oculta e uma saída para o mapeamento de um problema com nx  entradas e ny  
saídas como mostra a Fig. (2) 
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Figura 2. Esquema de rede neural com uma camada oculta, mostrando os símbolos e os índices. 
 
Uma vez propagadas as entradas da rede, define-se o erro médio quadrático: 
 

[ ]22
rkrY Φ−=ε                                                         (1) 

 
Onde  rY  são as saídas desejadas e rkΦ  são as saídas propagadas da rede, A Atualização de 

pesos na camada de saída. São mudadas em proporção ao erro quadrático médio em relação aos 
respectivos pesos. A equação (2) é o calculo da derivada para uma rede de duas camadas (oculta e 
saída). 
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Onde qp.η  “learning” e uma constante de proporcionalidade associado a uma taxa de 

aprendizagem dos pesos kpqw . . 
Para resolver esta derivada parcial utiliza-se a regra da cadeia que resulta na Eq. (3). 
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Onde: 
 [ ] [ ]kqkqkqqkpq T .... 12 Φ−ΦΦ−=δ                                            (4.7e) 
 
Logo os pesos são atualizados seguindo a equação (4), de recorrência: 
 

jpkpqqpkpqkpq NwNw ..... )()1( Φ⋅⋅+=+ δη                 (4) 
 
Note que N é número de iterações ou épocas. 
 Para o cálculo dos pesos que estão entre a camada de entrada e a camada oculta utiliza-se as 
seguintes derivadas. 
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Onde ph.η  e outra constante proporcional de aprendizagem relativa à atualização dos pesos jhpw .  
novamente utilizando a regra da cadeia  a equação (5), pode ser escrita; 
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Onde: 
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logo os pesos jhpw .  são atualizados seguindo a equação 8, de recorrência: 
 
 jhphhpjhpjhp xNwNw ... )()1( δη+=+                                 (8) 
 
 Nas duas equações aparece o termo η  referente  à taxa de aprendizado, esta variável determina 
pequenas mudanças nos pesos da rede de uma iteração a outra. 
Uma outra maneira de evitar bruscas oscilações sem a necessidade de escolher uma taxa de 
aprendizado pequena é a inserção do termo momentum, a sim as equações ficam rescritas: 
 
 jpkpqqpkpqkpq NwNw ..... )()1( Φ⋅⋅+⋅=+ δηα                           (9) 
 
 jhphhpjhpjhp xNwNw ... )()1( δηα +⋅=+                               (10) 
 

Onde α  é usualmente um número positivo chamado constante de momentum, e controla o ciclo 
de realimentação da variação do peso. 
 
3. MÉTODO DE MODELAGEM DO SISTEMA DE COMPRESSÃO A VAPOR 
 
 No nosso estudo foi utilizado um protótipo de sistema de refrigeração de compressão de vapor, 
tendo como fluido primário o refrigerante R134a e fluido secundário água. O sistema é composto 
basicamente por: compressor hermético (~300W) de velocidade variável, condensador, evaporador 
de fluxo cruzado, e uma válvula de expansão eletrônica. O sistema foi totalmente instrumentado 
com sensores de temperaturas tipo PT-100 e sensores de pressão manométrica piezos-resistivos. 
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Figura 3. Diagramas da bancada experimental e modelagem do sistema. 



A figura (3b) mostra a estrutura da modelagem do sistema utilizando redes neurais artificiais, 
cada componente do sistema foi modelado separadamente. Uma das grandes vantagens de utilizar 
este tipo de modelo é que no é exigido um conhecimento a priori da planta para a modelagem dos 
componentes. 

 

 
Figura 4. Diagrama de blocos do protótipo de refrigeração 

 
Na figura 4 pode-se observar que cada componente tem suas respectivas estradas e saídas, que 

facilitam a sua modelagem já que não possuem nenhuma dependência explicita do tempo, por se 
tratar de uma modelagem estática. 
 
4. ANALISE DE RESULTADOS 
 

A tabela a seguir apresenta os índices de desempenho conseguidos em cada componentes do 
sistema. O erro mínimo foi atingido no condensador Iw= 0.275e-4, com uma taxa de aprendizagem 
de  4.0=η   

 
Tabela 1. Índices de desempenho 

 
Componentes Erro Iterações 
Compressor 0.3e-3 200 
Condensador 0.275e-4 270 
Válvula de expansão 0.267e-3 300 
Evaporador 0.472e-3 250 
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Figura 5. Exemplo da simulação do compressor. 

 
Na figura 5 se observa que a modelagem realizada permite mudar dados de entrada 

),,,( cdevamb TTTw& ,de forma aleatória o e modelo calcula a resposta do componente  

),,( refexex mPT & e os efeitos sobre todo o sistema. 
 

A seguir pode-se observar algumas simulações feitas para validar o modelo caixa preta com 
dados experimentais, com os ajustes dos pontos experimentais segundo as correlações lineares 
propostas pelo modelo. 
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Figura 6. Comparação de potencia consumida simulada e experimental. 
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Figura 7. Comparação da temperatura de exaustão do compressor simulada e experimental. 
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Figura 8. Comparação da vazão mássica simulada e experimental. 
 
5.CONCLUSÕES 
 

A utilização de redes neurais artificiais como modelo caixa-preta, apresenta resultados 
satisfatórios na modelagem do sistema de refrigeração de compressão de vapor. Uma das vantagens 
desta metodologia consiste na informação obtida sobre o comportamento do sistema o qual permite 
visualizar quando é possível linealizar os modelos e, portanto fazer modelagens simplificadas, 
assim como determinar parâmetros semi-empíricos, além de exigir um pequeno esforço 
computacional, que é característica importante em modelos para a simulação global de sistemas. No 
futuro pretende-se realizar uma maior quantidade de ensaios, com aquisição em tempo real da 
potência consumida, para que se possamos avaliar melhor o desempenho do modelo e a influência 
do transiente do compressor no comportamento do sistema, bem como a dinâmica do sistema onde 
se terá em consideração a evolução das variáveis no tempo. 
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Abstract. This work presents a static modeling from a steam compressure refigeration system using 
a black-box (Artificial Neural Network) with a training algorithm “back propagation”. Model is 
strongly dependant on the components (compressor, condenser, expansion device, evaporator, etc.) 
features of the MIMO (Multiple Input Multiple Output) system. Experimental data from a 
refrigeration system prototype, located in the Laboratory of Energy and Thermal Systems 
LEST/FEMEC/UFU, were used. Results from the model were satisfatories for different system 
parameters, like: consumed power, massic flow, system performance coefficient.This way of 
modeling provides information about the behavior of each component parameters, operating like a 
tool to be used to develop simplified semi-empirical modeling. 
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