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Abstract. Displacement of a liquid in a capillary tube by gas injection occurs in many situations, 
like enhanced oil recovery, coating of catalytic converters and gas-assisted injection molding. 
Generally the liquid being displaced is a polymeric solution or dispersion, which is not Newtonian. 
Viscoelastic forces alter the force balance in various parts of the flow and consequently change the 
amount of liquid left attached to the capillary wall. Models of such flows must rely on theories that 
can account for the different behavior of microstructured liquids in shear and extensional flow.  
Moreover, displacement flows involve a free surface, and the domain where the differential 
equations are posed is unknown a priori being part of the solution. These two characteristics make 
the problem extremely complex. Here, the two-dimensional free surface flow near the gas-liquid 
interface was modeled using one differential constitutive equation that approximates viscoelastic 
behavior of dilute polymer solutions, namely Oldroyd-B, together with momentum and continuity 
equations. The equation system was solved with the Finite Element Method. The resulting non-
linear system of algebraic equations was solved by Newton's method.  The results show the effect of 
the viscoelastic character of the liquid on the free surface shape and the film thickness attached to 
the capillary wall. 
 
Keywords: Free surface flow, two-phase viscoelastic flow, gas-assisted injection molding, gas-
liquid interface, elastic dumbbell models. 
  
1. INTRODUCTION   
  

The displacement of a liquid inside small passages and capillary tubes by another liquid or gas 
occurs in many practical situations. The most important examples are the flow inside the porous 
space in enhanced oil recovery methods, coating process of catalytic converter and inside tubes and 
gas assisted injection molding. These flows belong to a class of flows generally referred to as free 
surface flows; the configuration and position of the interface between the two fluids is unknown a 
priori and is part of the solution of the problem. 

Figure 1 shows the region close to the tip of the interface of a liquid being displaced by a gas. 
 



  

 
Figure 1. Sketch of a liquid-displacement problem. 

 
Since the frame of reference is attached to the bubble tip, all happens as if the tube wall is moving 
with the bubble speed U in the opposite direction. A certain amount of liquid remains attached to 
the capillary wall, as shown in the figure. The more liquid is
left on the wall the least efficient is the displacement process. This information is one of the main 
goals of theoretical and experimental analysis of displacement flows. A dimensionless measurement 
of the thickness of the liquid film attached to the wall used in the literature is the fraction coverage 
m, defined as the fraction of the tube cross-sectional area coated with liquid after bubble 
penetration, i.e.  
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where R0 is the tube radius and Rb is the radius of the penetrating bubble. In some of the situations 
described, the liquid being displaced is a polymeric solution or dispersion and is non-Newtonian. 
Viscoelastic forces near the interface changes the force balance in that region and consequently the 
configuration of the free surface and the fractional coverage. The two important dimensionless 
groups in the displacement of viscoelastic liquids in capillary tubes, our case of interest, are the 
capillary number Ca, which is the ratio of viscous to surface tension forces, and the Deborah 
number De, which is the ratio between a relaxation time characteristic of the liquid and a 
characteristic time of the deformation process: 
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Here η0 is the solvent viscosity, U is the bubble velocity, σ is the interfacial tension between the 
inviscid penetrating gas and the displaced liquid, λ  is a relaxation time characteristic of the liquid 
and 0/2 RUw =γ is the (Newtonian) shear rate at the wall, assumed to be characteristic of the process. 
 Different analyses on displacement of liquids in capillary tubes have been performed for 
Newtonian as well as for viscoelastic liquids, and a brief summary of these results is given in the 
following paragraphs.   
 The first experimental study of a long gas bubble penetrating through a liquid was performed by 
Fairbrother and Stubbs (1935), who studied the penetration of an air bubble through a Newtonian 
liquid in a circular tube. Their most important result is the proposition of a direct relation between 
the fractional coverage m with the capillary number Ca, given by m = Ca1/2. 
 Another classical work on liquid displacement in capillary tubes was developed by Bretherton 
(1960). He studied the motion of long air bubbles in capillary tubes filled with Newtonian viscous 
liquids. Bretherton assumed zero shear stress at the interface, as well as small capillary numbers. 
Bretherton performed experimental tests with tubes of diameters small enough to neglect gravity 
effects. His theoretical analysis showed that the velocity of the interface U exceeds the mean flow 
velocity by a value of WU, where W = 1.29(3Ca)2/3. Bretherton obtained W studying only the frontal 
and transition regions of the bubble. In a first approximation, he considered a planar flow at the 
region far from the bubble ends. Later he included curvature effects in the equations, obtaining 
results similar to the first approximation with a maximum error of 10%. The author compared some 



  

of his experimental results with theoretical predictions for W. A good agreement is observed 
between both experimental e theoretical data, mainly at the high capillary number range studied.  
 In the same year, Taylor (1960) published a work where he developed an experimental study on 
removal of Newtonian liquids from capillary tubes through gas injection. The main objective was to 
determinate the amount of liquid deposited on the tube wall during flow. Taylor showed the 
dependence of the fractional coverage m, with the capillary number, Ca. The plot suggests a limit 
value for m corresponding to approximately 0.56 when Ca tends to 2. Fairbrother and Stubbs had 
already proposed a direct relation of m with the capillary number, as mentioned. Taylor compared 
his experimental results with the empirical equation proposed by Fairbrother and Stubbs (1935) and 
verified that their relation is only valid for a narrow capillary number range of 0 < Ca < 0.09. 
Without making any visualization experiment, Taylor suggested three possible patterns for the 
streamlines relative to a frame of reference attached to the bubble tip. For small capillary numbers 
the flow would present reversions with points and rings of stagnation. Increasing the capillary 
number would decrease the reverse flow, allowing the existence of only one stagnation point. 
 Two years later, Cox (1962) published the continuation of the experiments initiated by Taylor 
and concluded that the fraction of mass deposited at the wall reaches an asymptotic value of 0.60 
when Ca tends to 10. Cox also developed a simplified theoretical analysis to calculate m. His 
analysis appears to fit in the cases where surface tension forces can be neglected in view of viscous 
forces (Ca >> 1). The investigation about the streamline patterns proposed by Taylor is performed 
by Cox (1964) through a visualization experiment. Cox confirmed the patterns for extreme values 
of the capillary number (Ca >> 1 and Ca << 1), but the transition pattern could not be confirmed. 
Still, the author showed the important conclusion that the bubble interface disturbs only the regions 
in its vicinity, being this disturbance approximately 1.5 times the tube diameter. 
 Having summarized the classical works on displacement of Newtonian liquids by gas injection, 
we present some relevant results for a similar problem, but now displacing a viscoelastic liquid. 
 Ro and Homsy (1995) presented a theoretical study about the effect of elasticity on the meniscus 
shape and on film thickness for the flow induced by a long air bubble steadily displacing a 
polymeric liquid confined by two parallel plates, i.e. Hele-Shaw flow. The authors sought 
asymptotic solutions by perturbation expansions to solve the problem, and the assumptions were 
that the displaced viscoelastic liquid wets the wall and that both capillary number and local 
Weissenberg number We, a measure of the elasticity of the flow, were small. The Oldroyd-B 
constitutive equation was used to model the viscoelastic liquid and the authors stressed that the 
transition region between the advancing meniscus and the entrained film is where the liquid 
rheology has its greatest effect. According to their analysis, as the liquid becomes more viscoelastic, 
the film thickness decreases and the pressure drop at the meniscus tip increases. A detailed analysis 
of their work allows concluding that the dominant mechanisms are the resistance to stream-wise 
strain, tending to lower the film thickness, and the buildup of shear stress, tending to raise the film 
thickness. 
 Huzyak and Koelling (1997) performed experimental investigations of penetration of a long 
bubble through a viscoelastic liquid in a capillary tube. The main goal was to identify the effects of 
liquid elasticity on the thickness of the liquid film attached to the wall. Experiments were performed 
with four test liquids including two Newtonian and two Boger liquids (highly elastic liquids 
showing constant shear viscosities). The authors obtained results for the fractional coverage m, as a 
function of capillary number and Deborah number, De. Deborah number measures the deviation of 
elastic fluids from Newtonian behavior. The authors observed that for small Deborah number, De < 
1, both viscoelastic liquids exhibit a fractional coverage identical to that of a Newtonian liquid at an 
equivalent capillary number. The fractional coverage for both viscoelastic liquids begins to increase 
relative to the Newtonian result at De ≈ 1. Fractional coverage continues to increase with Deborah 
number for all De ≥ 1. At De ≈ 5 fractional coverage is 30% greater than the Newtonian liquid 
result. They also found that the fractional coverage depend on the tube diameter for the viscoelastic 
liquids. It is important to point out that the experimental results of Huzyak and Koelling (1997) 
showed the opposite trend of the theoretical analysis of Ro and Homsy (1995). 



 
 Another important study dealing with viscoelastic free surface flows was recently presented by 
Lee et al. (2002). They applied a finite element formulation to study the effect of viscoelasticity on 
free surface flows, analyzing both a Hele-Shaw flow and the slot coating of viscoelastic liquids. The 
viscoelastic liquids were modeled by means of three distinct differential constitutive equations: the 
Oldroyd-B, FENE-CR and FENE-P models. The calculation showed the formation of an elastic 
stress boundary layer in the region adjacent to the interface, and the polymeric stresses associated to 
this boundary layer is found to be responsible for changes in the meniscus shape as well as the 
thickness variation of the film of liquid attached to the solid plates. 
 The goal of this work is to analyze the effect of the viscoelastic character of the displaced liquid 
on the free surface shape and on the film thickness attached to the capillary wall, by solving the 
momentum and continuity equations coupled with the Oldroyd-B model to describe the mechanical 
behavior of the flowing liquid. 
  
2. MATHEMATICAL FORMULATION   
  
 This section describes the governing equations, the constitutive model and boundary conditions 
for the situation studied here. 
 
2.1. Governing Equations 
 
 The two-dimensional, steady free surface flow of the displaced liquid in a capillary tube is 
described by the equations that impose conservation of mass and momentum: 
 
 0 . =∇ u ,                          (3) 
 τ.-0 ∇+∇= p ,                         (4) 
 
where u  is the velocity vector, p is the pressure and τ  is the extra-stress tensor. It is clear from Eq. 
(4) that inertial effects are neglected in our model. The governing equations are solved by 
considering a coordinate system attached to the bubble tip. 
 
2.2. Constitutive Equation 
 
 To analyze the physics of polymer stretching as well as to determine the flow field modification 
due to a diluted polymer solution in the displacement of viscoelastic liquids in capillary tubes, we 
choose the Oldroyd-B differential constitutive equation (Bird et al. (1987)), written below in tensor 
notation: 
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Here, the extra-stress tensor is split in a Newtonian solvent stress sτ , and a polymer stress pτ . The 

solvent and polymer contribution to the shear viscosity are denoted, respectively, by sη  and pη . 
The rate-of-deformation tensor is denoted by γ  and λ  is the relaxation time of the liquid. 

 2.3. Boundary Conditions 
 
 The boundary conditions applied on the free surface are:  
 



  

• kinematic condition 
0. =un ;                          (6) 

• stress balance 
( ) n

R
Ipn

m

στ =−. ;                        (7) 

 
Additional boundary conditions are stated below: 
 
• non-slip condition on the tube wall 

xeUu = ;                          (8) 
• symmetry condition at the centerline 

0. =un   , 0.. =nTt ;                      (9) 
• fully developed flow with pressure free at the outflow 

0. =∇un ;                             (10) 
• fully developed flow with pressure imposed at the inflow 

0. =∇un  , 0Pp = .                          (11)
               

In these equations, n  and t  are the unit vectors normal and tangent to the domain boundary, 
respectively. T  is the total stress tensor, xe  is the unit vector in the axial direction, U is the velocity 
at the tube wall, P0 is the imposed pressure at the inflow, σ is the surface tension and Rm is the local 
mean radius of curvature of the interface.  
 Boundary conditions for the Oldroyd-B constitutive equation are necessary only at the inflow. 
Accepting the suggestion of Pasquali and Scriven (2002), we preferred to neglect the polymeric 
stress convective term at the inflow:  
 

• neglect polymeric stress convective term at the inflow 
 0. =∇ pu τ .                          (12) 

 
3. NUMERICAL APPROACH   
  
 A finite element formulation is applied to study the displacement of viscoelastic liquids in 
capillary tubes. The solution method implemented is the DEVSS-G/SUPG formulation proposed by 
Guenette and Fortin (1995) and Brooks and Hughes (1982).  
 
3.1. Free Surface Parametrization 
 
 The relevant differential equations are posed in an unknown domain; the position of the liquid 
free surface is part of the solution. A simple way of solving this type of problem is to use a Picard 
iteration, i.e. solve the flow and the domain position separately. This procedure is not very efficient 
and in most cases the iteration does not converge. To compute a free boundary problem in a more 
efficient way, the set of differential equations posed in the unknown physical domain has to be 
transformed to an equivalent set defined in a known reference domain, usually called computational 
domain. This transformation is made by a mapping ( )ξxx =  that connects the two domains. The 
inverse of the mapping that minimizes the functional is governed by elliptic differential equations 
identical to those encountered in diffusion transport with variable diffusion coefficients. The 
coordinates of the reference domain satisfy 
 ( ) 0 . =∇∇ ξD ,                       (13) 
 
where D  is the diffusion coefficient tensor and ξ  are the coordinates of the reference domain. 



 
 Boundary conditions are needed to solve the second-order partial differential equations (13). 
Along solid walls and synthetic inlet and outlet planes, the boundary is located by imposing a 
relation between the physical coordinates x and r from the equation that describes the shape of the 
boundary, and stretching functions are used to distribute the points along the boundaries. The free 
boundary (gas-liquid interface) is located by imposing the kinematic condition (Eq. (6)). The 
discrete versions of the mapping equations are generally referred to as mesh generation equations. 
 
3.2. Interpolation Functions 
 
 The unknown fields are written as a linear combination of Lagrange polynomial basis functions. 
Thus, the velocity vector u , pressure p, nodal position vector x , interpolated velocity gradient 
tensor g  and polymeric stress tensor pτ  are approximated by, respectively: 
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Here, pjjjjj GXPU Ι,,,,  are the basis functions coefficients, and represent the unknowns of the 

discretized problem. The basis functions ( )ηξφ ,j  are biquadratic, ( )ηξχ ,j  are linear discontinuous 
and ( )ηξψ ,j  are bilinear, all chosen to satisfy the Babüska-Brezzi condition.  
 
3.3. Weak Formulation of the Governing Equations in the Reference Domain 
 
 The conservation of mass, conservation of linear momentum, interpolated velocity gradient and 
mesh generation equations are solved using the Galerkin method. For its hyperbolic nature, the 
Oldroyd-B differential constitutive equation is solved using the Petrov-Galerkin streamline 
upwinding method (SUPG). The weak forms of the governing equations are, in tensor notation: 
 

• Conservation of mass 
( )∫

Ω
Ω∇= JduRc χ.                       (15) 

• Conservation of linear momentum 
( ) ( ) Γ−Ω∇= ∫∫
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JdwTnJdwTtrRm ...                   (16) 

• Interpolated velocity gradient   
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• Mesh generation 
 ( ) ( )∫∫

ΓΩ
Γ∇+Ω∇∇−= dwnJdwRX ξξ .... DD                  (18) 

• Oldroyd-B constitutive model 
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Here, Ω  and Γ  denote the reference domain and its boundary, respectively. J is the Jacobian of the 
mapping between the physical and reference domain, χ  is the scalar weighting function for the 
conservation of mass equation, w  is the vector weighting function for the conservation of 
momentum and mesh generation equations, ψ  is the tensor weighting function for the interpolated 



  

velocity gradient, ϕ  is the tensor weighting function for the Oldroyd-B constitutive equation and I  

is the unit tensor. 
 
3.4. Solution of the Problem via Newton Iterations 
 
 The resulting nonlinear system of equations is solved by the Newton’s method: 
 
 ( )cRcJ −=δ. ,                       (20) 

 ccc kk δ+=+1 .                       (21) 
 
J  is the Jacobian matrix containing the derivatives of all equations with respect to all unknowns, c  
is the solution vector containing all the unknowns of the problem, cδ  is the increment in the 
solution vector, R  is a vector of weighted residuals and k indicates the present iteration.  
 
4. RESULTS   
  
4.1. Newtonian Results 
   
 Before presenting the analysis of the displacement of viscoelastic liquids in capillary tubes, 
some classical results for Newtonian liquids are presented in order to test the solution procedure, 
provide basic information on the subject and gain insight for more complex analysis later.   

Figure (2) shows the dependence of the liquid film thickness deposited at the tube wall on the 
capillary number. Simulations cover a capillary number range of 0.01 ≤ Ca ≤ 10. Besides 
theoretical predictions obtained in the present work, we reproduce the experimental data obtained 
by Taylor (1960). The agreement between both results is excellent. The result obtained by Cox 
(1962), which suggests a constant value of 0.6 to the fractional coverage for capillary number above 
10, is also confirmed. The experimental results obtained by Taylor, as well as the theoretical 
predictions of the present work, show that for a given viscosity and a given surface tension the film 
thickness deposited at the wall is controlled by the velocity of the interface. Therefore, processes 
whose objective is to obtain a thin film thickness must be performed at low flow rates. 

 
Figure 2. Newtonian liquid film thickness as a function of Ca. 

 
 Taylor (1960) suggested three different streamline patterns for a viscous liquid displaced by an 
inviscid fluid. For m > 0.5 there would be no flow reversion ahead of the bubble; for m < 0.5 one 
flow reversion ahead of the bubble would occur, with a stagnation point at the tip of the bubble and 
a stagnation ring right above it; and for m = 0.5 there would be flow reversion ahead of the bubble, 
but now showing two stagnation points: one at the tip of the bubble and the other a little far from 
the bubble, at the symmetry line. 
 In order to confirm Taylor’s affirmatives, Goldsmith and Mason (1963) and Cox (1964) 
investigated experimentally the streamlines in front of the interface, and confirmed only two of the 



 
patterns predicted by Taylor: the ones for m < 0.5 and m > 0.5. According to the last two authors’ 
observations, these same streamline patterns are recovered in the present work simulations. Figures 
(3a) and (3b) show the streamlines ahead of the interface corresponding to the results obtained by 
Goldsmith and Mason and Cox.  
 

               
   

(a)               (b) 
Figure 3. Newtonian flow field as a function of Ca. Figure (3a) shows the streamlines for Ca = 0.02 

(m < 0.5) and Fig. (3b) shows the streamlines for Ca = 1.00 (m > 0.5). 
 
4.2. Viscoelastic Results 
 
 The evolution of the polymeric stress for the Oldroyd-B model as Deborah number rises is 
shown in Fig. (4).  

 
 

(a) Ca = 0.10 , De = 0.50 

 
(b) Ca = 0.10 , De = 1.00 

 

 
(c) Ca = 0.10 , De = 3.00 

 
Figure 4. Polymer stress evolution as a function of De. The axial component of polymeric stress 

tensor field is shown in the background of figures (a), (b) and (c). Front lines represent streamlines. 
The flow states shown are at Ca = 0.10, but at all capillary numbers analyzed, a stress boundary 
layer appears attached to the free surface at high values of De (Fig. (4c)). Similar plots with the 
other components of the polymeric stress tensor were produced in order to study their contributions, 
but we have observed that the maximum stretch of the polymer molecules occurs downstream from 
the stagnation ring, i.e. the component of the stress tensor in the flow direction (shown here) is the 
most dominant in the flow. According to Lee et al. (2002), as shown in Fig. (4c), the maximum 



  

polymeric stress is located downstream from the stagnation ring. Right after this point, a highly 
convergent flow is set in the region adjacent to the interface, and it appears that the stress boundary 
layer occurs due to the extension experienced by fluid elements in this region. An examination of 
the flow streamlines reveals that the contraction nature of the flow only affects fluid elements in the 
vicinity of the interface, while most of the streamlines remain rectilinear and parallel to the wall of 
the tube. This supports a mechanism proposed by Lee et al. (2002) that the extensional flow along 
the interface is responsible for the stress boundary layer formation.  
 Huzyak and Koelling (1997) performed experiments to investigate the penetration of a long 
bubble through a viscoelastic liquid in a capillary tube. In their work, the results were presented in 
terms of capillary number and Deborah number for four test fluids with rheological properties 
designed such that the effects of liquid elasticity could be isolated from shear thinning phenomena 
(Boger’s fluids). In order to perform a comparison between their experimental data with our 
theoretical predictions, Fig. (5) shows an evolution of the ratio between the liquid film thickness 
obtained with a viscoelastic liquid (m) and that obtained with a Newtonian liquid at the same 
capillary number (mN) plotted against Deborah number. The experimental data corresponding to 
one of the viscoelastic liquids developed by Huzyak and Koelling (B-35), is compared with the 
theoretical predictions for an Oldroyd-B liquid for Ca = 0.10. A value of reduced fractional 
coverage, m/mN = 1.0 implies that the amount of liquid attached to the wall when a viscoelastic 
liquid is displaced is the same as when a Newtonian liquid is displaced. 
 

 
Figure 5. Reduced fractional coverage m/mN as a function of Deborah number. The circles 

correspond to experimental viscoelastic data obtained by Huzyak and Koelling, while the squares 
correspond to the present work numerical simulation data of an Oldroyd-B fluid for Ca = 0.10. 

 
 The agreement between the experimental results of Huzyak and Koelling’s and the theoretical 
predictions reported here is good. At small Deborah number, De < 0.3, the reduced fractional 
coverage varies between 0.98 < m/mN < 1.02, indicating a Newtonian-like behavior. For 0.3 < De < 
1, the film thickness at the wall when viscoelastic liquid is displaced is slightly thinner than the 
Newtonian case. At high Deborah numbers, De > 1, the amount of liquid left on the capillary wall 
rises as the liquid becomes more viscoelastic. At De = 3.5, it is 10% thicker than the Newtonian 
case. 
 The evolution of the stress field presented in Fig. (4) explains the thickening of the liquid film as 
Deborah number rises. As the liquid becomes more viscoelastic, the polymeric stress at the interface 
just downstream of the stagnation ring becomes higher. This high normal stress pulls the liquid and 
consequently moves the stagnation ring towards the bubble tip. This effect is clearly shown in Fig. 
(4c), where the streamline closest to the free surface is sharply bended towards the high normal 
stress region. As the stagnation rings moves upstream, the amount of liquid that turns around in the 
recirculation flow falls and consequently the deposited film thickness rises.  
 Figure (6) presents the predicted liquid film thickness at the capillary wall as a function of 
Deborah number at different capillary numbers. At small capillary numbers (Ca = 0.05 and Ca = 
0.10) the behavior discussed in Figs. (4) and (5) is reproduced. At higher capillary numbers, the 



 
ratio m/mN remains constant and equal to 1 up to De ≈ 1. As Deborah number rises, the deposited 
film thickness increases. At a given Deborah number, the amount of film thickening falls as 
capillary number rises. An interesting observation that needs a more detailed analysis is that the 
film thickening due to elastic effects follows a logarithmic dependence on Deborah number. 
 

 
Figure 6. Evolution of reduced fractional coverage m/mN as a function of Deborah number for 

different capillary numbers. 
 

5. FINAL COMMENTS   
  
 A two dimensional viscoelastic flow near the gas-liquid interface of a long bubble displacing a 
liquid in a capillary tube was presented. The presence of the free surface, that makes the domain of 
integration unknown a priori, and the differential constitutive model needed to describe the behavior 
of dilute polymeric solutions make the solution of the problem extremely complex. A fully coupled 
formulation was used and the differential equations were solved by the Finite Element Method. 
 The results show that viscoelastic forces tend to increase the amount of liquid left attached to the 
tube wall, a trend observed experimentally by other researchers. This work describes the 
mechanism responsible for this behavior. 
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