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Resumo. O presente trabalho descreve um programa de computador que implementa o método de 
Hardy-Cross para a resolução de escoamentos no interior de redes de condutas. O programa é 
construído numa plataforma gráfica, com vista a maximizar a sua funcionalidade. São obtidos valores 
de pressão e caudal em cada ramal do sistema de condutas, sendo igualmente possível resolver o 
problema inverso, no qual se procura dimensionar determinado elemento da rede de forma a atingir 
um caudal num ramal especificado. 
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1. INTRODUÇÃO 

 
Os sistemas de redes de condutas encontram um campo de aplicação prática muito variado, desde 

redes de distribuição de gás até sistemas de ar condicionado. Se bem que problemas simples possam ser 
resolvidos analiticamente, sistemas mais complexos necessitam de métodos iterativos para serem 
solucionados. O método mais popular para abordar este tipo de situações é o método de Hardy-Cross 
(Cross, 1936), o qual foi desenvolvido inicialmente para cálculo manual. Este método baseia-se numa 
correcção aditiva de caudal a aplicar em cada ramal do sistema de condutas, para que a solução se 
aproxime da satisfação da conservação de energia ao longo de cada circuito na rede. Apesar de 
existirem soluções baseadas em folhas de cálculo e aplicações matemáticas (Hodge e Taylor, 2002; 
Huddleston, 2003), a implementação em código de programação com interface gráfica torna-se mais 
poderosa e funcional. O presente trabalho serve, primariamente, o propósito de uma aplicação 
académica. A sua interface gráfica e a facilidade com que um problema pode ser construído e 
modificado permite ao estudante analisar como pequenas alterações poderão influenciar 
significativamente o escoamento na rede.  

 
2. FUNDAMENTOS TEÓRICOS 

 
Descreve-se, seguidamente, a teoria subjacente ao problema da resolução de redes. Antes de 

prosseguir, torna-se conveniente estabelecer algumas definições: 

Designa-se por rede um conjunto de ramais inter-conectados.  

A junção de dois ou mais ramais designa-se por nodo. Os ramais interiores ligam dois nodos, 
enquanto os ramais exteriores se encontram ligados somente a um nodo. 

A cada nodo corresponde um índice. Ao domínio exterior corresponde o índice “0”. 

Ramais interiores podem ser compostos de vários sub-ramais, cada um com o seu próprio diâmetro, 
comprimento e rugosidade.  

A ligação entre dois sub-ramais pode ser efectuada por intermédio de uma válvula, uma bomba, ou 
simplesmente uma mudança no diâmetro (acidentes). 



 

Os acidentes são responsáveis por perdas localizadas. As bombas são também definidas como 
acidentes.  

Os caudais que circulam nos ramais são definidos como positivos quando se dão no sentido do nodo 
de menor índice para o nodo com maior índice.  

 
2.1. Conservação de Massa 

 
Basicamente, a resolução de uma rede de condutas passa pela satisfação da conservação de massa 

em cada nodo e conservação de energia ao longo de circuitos.  
A satisfação de conservação de massa é obtida assegurando que a soma dos caudais que chegam a 

determinado nodo é igual à soma dos caudais que dele partem, ou seja (cf. Fig. 1): 
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Figura 1. Representação de caudais em cada nodo 
 

2.2. Conservação de Energia 
 
A equação de conservação de energia escrita entre os dois nodos extremos de um ramal (1 e 2), 

estabelece que: 
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onde: 
 p - pressão k - coeficiente de perda de carga localizada 
 v - velocidade th  - perda de carga em turbinas 
 z  - cota ph  - altura de elevação de bombas  
 f - factor de atrito de Darcy-Weisbach L∆  - comprimento do ramal 
 Q - caudal volúmico g - aceleração da gravidade 
 d - diâmetro do tubo ρ - massa volúmica do fluido 
 
A Eq. (2) pode ser escrita na seguinte forma: 
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sendo: 
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onde o somatório é feito para todos os sub-ramais e acidentes em cada ramal.  

Generalizando a Eq. (3) para uma direcção arbitrária do escoamento, obtém-se: 
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onde xδ  identifica o sentido do escoamento da seguinte forma: 

 
( )x sgn b aδ = −   (6) 

 
sendo ‘a’ e ‘b’ os números identificativos dos nodos extremidade do ramal e:  

 
( )y sgn Qδ =   (7) 

 
Os caudais, assim como a altura de elevação das bombas, são definidos como positivos se estes 

apontam no sentido do nodo menor para o nodo maior.  
 

2.2.1. Conservação de energia ao longo de um circuito fechado 
 
Durante o processo iterativo, a perda de carga total ao longo de um circuito fechado será diferente 

de zer, a menos que a solução final tenha sido alcançada. Assim, pode-se escrever: 
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onde o expoente ‘*’ indica que se trata da perda de carga correspondente à solução não convergida. 
Surge então a necessidade de corrigir os caudais em cada ramal, por meio de uma quantidade Q∆ : 
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onde, partindo do pressuposto de que as correcções de caudal são suficientemente pequenas, os termos 
de ordem superior foram desprezados. Como condição necessária para que a conservação de massa não 
seja alterada pelas correcções de caudal, a grandeza Q∆  deverá ser a mesma em cada ramal de cada 
circuito fechado. Assim, combinando as Eqs. (8) e (9), obtém-se a seguinte equação para o cálculo das 
correcções de caudal: 
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As correcções são aplicadas em cada ramal, sendo empregue um factor de sub-relaxação, de forma 

a assegurar a convergência do processo iterativo: 
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2.2.2. Conservação de energia ao longo de circuitos abertos 
 

Os circuitos abertos são estabelecidos através da ligação de dois ramais exteriores nos quais a 
pressão é imposta como condição fronteira. Com base nisto, a equação de conservação de energia toma 
a seguinte forma: 
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onde ‘nk’ é o número de ramais interiores que formam o circuito aberto. A explicitação da correcção de 
caudal é feita da seguinte forma: 
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Esta correcção é também aplicada ao último ramal exterior do circuito, assegurando assim, a 

satisfação da conservação de massa no nodo correspondente. Se o primeiro ramal exterior possui, como 
condição fronteira, imposição de caudal e pressão, não é necessário efectuar nenhuma correcção de 
caudal. Se só pressão é imposta, a correcção de caudal é assegurada por imposição de satisfação global 
de conservação de massa.  

 
2.3. Condições Fronteira 

 
No presente contexto, entendem-se por condições fronteira as variáveis (pressão, caudal) e 

correspondentes valores impostos nos ramais exteriores da rede. A correcta imposição de condições 
fronteira deverá obedecer às seguintes regras, para que o problema tenha uma única solução física: 

- A soma de todas as variáveis impostas como condição fronteira deve ser igual ao número total 
de ramais exteriores. 

- A imposição simultânea de pressão e caudal poderá ser efectuada num só ramal exterior. 
Consequentemente, só um ramal exterior poderá ser deixado sem imposição de variáveis.  

- Em, pelo menos, um ramal exterior, deverá ser conhecida a pressão. Esta é uma condição 
necessária para que se possa calcular a pressão em qualquer ponto da rede.  



 

- Por questões relacionadas com o processo de resolução, pressão e caudal deverão ser impostos 
no mesmo ramal exterior, sempre que possível. Isto aplica-se ao caso em que, em determinada rede, são 
conhecidos os caudais em todos os ramais exteriores. Neste caso, o ramal exterior onde a pressão vai 
ser especificada, deverá ter imposto o correspondente valor de caudal. 

 
3. IMPLEMENTAÇÃO 

 
3.1 Inicialização dos Caudais 

 
O campo inicial de velocidades deve, necessariamente, satisfazer a equação de conservação de 

massa em cada nodo da rede. Este aspecto é crucial, uma vez que os ajustes de caudal subsequentes 
para assegurar a conservação de energia não irão modificar o balanço mássico em cada nodo. Começa-
se por arbitrar valores para os caudais em todos os ramais exteriores e interiores, à excepção daqueles 
em que o caudal é imposto. Os valores iniciais de caudal nos ramais interiores são obtidos pela 
resolução do sistema de equações (14), o qual representa a conservação de massa em todos os nodos, à 
excepção de um. No nodo em falta, o balanço global assegura a satisfação da conservação de massa. 
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Os termos jb  representam o caudal no ramal exterior ligado ao nodo de índice j, “nn” é o número 

total de nodos e “nb” é o número total de ramais interiores. O coeficiente genérico ija  é nulo se o ramal 
“j” não se encontra ligado ao nodo “i”. Em caso contrário, o seu valor é calculado da seguinte forma: 

 
( )ij xa sgn n i= −   (15) 

 
em que o ramal “i” liga os nodos “j” e “nx”. A solução para este sistema de equações é obtida através 
do método de Gauss-Seidel. 

 
3.2. Construção dos Circuitos Fechados 

 
Como já referido anteriormente, a aplicação da equação de conservação de energia ao longo de um 

circuito fechado traduz-se na imposição de uma perda de carga nula ao longo do circuito. O número de 
circuitos a considerar para este efeito deverá ser igual ao número máximo de circuitos independentes 
que é possível construir na rede em análise. Na presente implementação, o processo de geração dos 
circuitos independentes é totalmente automático. Numa fase inicial, são gerados todos os possíveis 
circuitos fechados circuitos fechados existentes na rede. Os circuitos são seguidamente representados 
como linhas na matriz da Eq. (16): 
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onde “c” é o número de circuitos encontrado e ija  é um coeficiente calculado de acordo com a seguinte 
equação: 

 
( )ija sgn b a= −   (17) 

 
sendo “a” e “b” os índices dos nodos que o ramal “j” liga, segundo a direcção em que o circuito é 
percorrido. Se o ramal “j” não estiver presente no circuito considerado, o correspondente índice será, 
naturalmente, nulo. O próximo passo consiste em condensar a matriz (16), de forma a rejeitar as linhas 
linearmente dependentes. Este processo é efectuado através do método de Gauss-Seidel, conduzindo a 
uma matriz que representa o número máximo de circuitos linearmente independentes na rede. 

 
3.3. Construção dos Circuitos Abertos 

 
Circuitos abertos ligam ramais exteriores com imposição de pressão como condição fronteira. Na 

presente implementação, todos os circuitos abertos começam no mesmo ramal exterior. O sistema de 
busca assegura que um “caminho” entre os dois ramais exteriores em questão é sempre encontrado. 
Como forma de reduzir ao mínimo os erros de arredondamento, um sistema de optimização é aplicado 
à posteriori, como forma de minimizar o número de ramais que compõem cada circuito aberto. 

 
3.4. Método de Resolução 

 
Como já referido, dois tipos de problemas podem ser abordados com o presente software: 
 
Problema de cálculo de caudais: 
Neste caso, o dimensionamento da rede encontra-se feito, sendo, portanto, conhecidos os 

comprimentos, diâmetros, rugosidades dos ramais e sub-ramais, assim como as características de todos 
os acidentes da rede. O objectivo, neste caso, é calcular o caudal e a pressão em toda a rede. Para isso, 
as Eqs. (10) e (13) são aplicadas sucessivamente até que as correcções de caudal Q∆  se encontrem 
todas abaixo de um determinado valor 

max
∆  previamente estabelecido: 
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Problema de dimensionamento: 
Neste caso, é imposto, como condição fronteira adicional, um caudal em determinado ramal interior 

(variável objectivo). Assim sendo, será necessário deixar livre uma variável, a qual será ajustada de 
forma a se alcançar o objectivo proposto. A variável livre poderá ser: 

- O diâmetro de um ramal ou o diâmetro de todos os ramais da rede. 

- O comprimento de um ramal ou o comprimento de todos os ramais da rede. 

- A altura de elevação de uma bomba, a perda de carga de uma turbina, ou o coeficiente de perda 
de carga de uma válvula ou outro acidente. 

A resolução deste tipo de problemas consiste, de facto, em resolver um número “n” de problemas 
de caudal, em que, ao longo do processo, o valor da variável livre vai sendo continuamente ajustado de 
acordo com as mudanças da variável objectivo, de acordo com a seguinte fórmula: 
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onde φ é a variável livre e gQ  é a variável objectivo (caudal). O expoente “a” controla a sensibilidade 
da variável livre às mudanças na variável objectivo. No caso em que a variável livre é o diâmetro do(s) 
ramal (ramais), o seu valor é igual a 0.5. Em todos os outros casos, o seu valor é igual à unidade. 

Este tipo de problemas poderá ser de difícil convergência, ou mesmo apresentar divergência, 
especialmente nos casos em que a variável livre tem pouca influência na variável objectivo. Pode até 
acontecer que, do ponto de vista físico, o objectivo seja impossível de alcançar, não se conseguindo, 
naturalmente neste caso, a convergência do processo de resolução. 

 
4. A INTERFACE GRÁFICA E APRESENTAÇÃO DE EXEMPLOS 

 
Configuração geométrica da rede 
A rede representada na Fig. 2 servirá como exemplo para a descrição do programa. A Caixa de 

Diálogo para desenho da rede encontra-se representada na Fig. 3. O utilizador serve-se do “rato” para 
desenhar a rede, sendo os nodos e ramais automaticamente numerados. Existem ferramentas 
disponíveis para a correcção da rede, através da remoção ou inserção de nodos ou ramais. Esta mesma 
Caixa de Diálogo contém outros campos para a especificação das dimensões dos ramais, imposição de 
condições fronteira e características de acidentes. Neste exemplo, todos os ramais possuem um 
comprimento de 10 m, excepção feita aos ramais 10 e 12, com comprimentos de 5 m e 15 m, 
respectivamente. Todos os diâmetros são de 1cm com uma rugosidade absoluta de 0.02 mm.  

Como já referido anteriormente, as condições fronteira são impostas em todos os ramais exteriores. 
Ao presente problema, correspondem as condições apresentadas na Tab. 1. 
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Figura 2. Representação esquemática da rede de exemplo 
 



 

 
 

Figura 3. Caixa de Diálogo para a definição da rede 
 

Tabela 1. Condições fronteira para a rede de exemplo. 
 

Ramal Diâmetro [cm] Variáveis Impostas Valor 
22 1.0 Pressão e Caudal 1 kPa; 2 l/s 
21 1.0 Pressão 5 kPa 
20 1.0 Pressão 10 kPa 
23 1.0 Nenhuma -- 

 
Acidentes 
Perdas localizadas ou bombas separam sub-ramais contíguos. A especificação das suas 

características é feita numa sub-janela da Caixa de Diálogo apresentada anteriormente, como se pode 
observar na Fig. 4. No presente exemplo, não existem acidentes.  

 
 

 
 

Figura 4. Sub-janela para definição dos acidentes 
 



 

A Interface de Cálculo 
Pode ser observada, na Fig. 5, a Caixa de Diálogo de controlo do processo de cálculo. O utilizador 

tem a possibilidade de especificar diversos parâmetros, como sejam o número máximo de iterações e 
factores de sub-relaxação, entre outros. Durante o cálculo, pode ser monitorizada a evolução dos 
valores de algumas variáveis.  

A convergência do processo iterativo é bastante rápida, como pode ser apreciado no gráfico da Fig. 
6, o qual representa a evolução dos resíduos ∆ (Eq. 18) em função do número de iterações “n”. Neste 
caso, com um factor de sub-relaxação de 0.8, um total de 39 iterações foi necessário para ser alcançada 
a convergência, a qual foi definida para um ajuste percentual máximo de caudal em cada ramal de 1e-5. 
O tempo de cálculo para este exemplo é praticamente desprezável.  

 

 
 

Figura 5. A interface de cálculo 
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Figura 6. Historial de convergência 



 

A Interface de Pós-Processamento 
A Fig. 7 representa a interface de pós-processamento. Para além de dados relativos ao cálculo, tais 

como os circuitos abertos e fechados considerados, pode ser visualizada a direcção do escoamento em 
cada ramal, assim como dados de pressão, caudal e velocidade média do escoamento em localizações 
pontuais. 

 

 
 

Figura 7. Interface de pós-processamento 
 

5. CONCLUSÕES 
 
O presente trabalho descreve uma implementação do método de Hardy-Cross para a resolução de 

redes de condutas, tendo sido apresentado, por limitações de espaço, somente um exemplo de 
aplicação. Uma das principais características do software é a sua capacidade para automaticamente 
construir os trajectos de circuitos abertos e fechados, ao longo dos quais a equação de conservação de 
energia é aplicada. As ferramentas de pós-processamento revelam-se também de grande utilidade na 
análise da solução obtida. Os testes feitos indicam que a convergência obtida pelo presente método é 
bastante boa. O software é particularmente vocacionado para aplicações académicas, permitindo ao 
utilizador resolver problemas de cálculo de caudal assim como problemas de dimensionamento da rede.  
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