ESTUDO BIDIMENSIONAL DO ESCOAMENTO E TRANSFERENCIA
DE CALOR NUM CANAL EM U

Marcio de Oliveira

UNIFEI — Universidade Federal de Itajuba
maroli@unifei.edu.br|

Genésio José Menon

UNIFEI — Universidade Federal de Itajuba
genesio@unifei.edu.brf

Resumo. E realizado um estudo do escoamento e da transferéncia de calor em um canal em U com
restricdes considerando regime turbulento. As equacdes de conservagdo em coordenadas cartesianas
sdo discretizadas através do método de volumes finitos. E utilizada uma malha cartesiana nio
ortogonal. O arranjo de malha utilizado foi o co-localizado. Para o acoplamento entre a pressdo e a
velocidade foi utilizado o algoritimo SIMPLE. Foi utilizado o modelo de turbuléncia sub-malha
fungdo estrutura de velocidade de segunda ordem. O niimero de Nusselt local na superficie do canal
¢ determinado para alguns nimeros de Reynolds.
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1. INTRODUCAO

O estudo em canais com restri¢des retangulares tem sua importancia relacionada a aplicagdes em
sistemas de resfriamento e também em resfriamento de turbinas. Com a insercdo das referidas
restricdes, 0 escoamento no canal se torna mais turbulento, melhorando os coeficientes de
transferéncia de calor, e aumentando a eficiéncia no resfriamento. Muitos estudos numéricos em
passagens com restrigdes foram realizados considerando os modelos de turbuléncia tanto RANS
bem como os modelos Sub-Malha. A seguir sdo apresentados alguns trabalhos relevantes
encontrados na literatura.

lacovides et al (2001) realizaram um estudo de transferéncia de calor bidimensional em
passagens com restri¢des, usando modelos de turbuléncia para baixos nimeros de Reynolds. O
estudo ¢ realizado em canais anulares, tubos e canais planos. Apresentam os resultados da
velocidade média para um canal anular com restrigdes, o nimero de Nusselt local para tubos e
canais planos com restrigdes. Realizam diversas comparagdes para alguns modelos de turbuléncia.

lacovides et al (1999) descreveram o calculo da transferéncia de calor convectiva através de
passagens de resfriamento em turbinas Blade. O principal objetivo do trabalho e estudar a influéncia
das restricdes sobre o escoamento médio e turbulento. A geometria estudada ¢ em U. Alguns
modelos de turbuléncia sao utilizados no calculo do escoamento e da transferéncia de calor .

Chung et al (2003) estudaram numericamente o escoamento e a transferéncia de calor em um
canal em U. Consideram regime laminar e escoamento bi-dimensional. Apresentam resultados de
recolamento para alguns numeros de Reynolds. Também calculam o numero de Nusselt na
superficie da parede. Apresentam as linhas de corrente e a distribuigdo de temperatura para alguns
casos estudados.
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Murata et al (2000) investigaram os efeitos de restri¢cdes, a forga de Coriolis e a razdo de aspecto
no escoamento 3D em canais com turbuléncia. Utilizaram como modelo de turbuléncia o modelo
sub-malha dindmico. Também consideram a variagio do numero de rotacdo. O método de
discretizagdo das equacgdes utilizado foi o0 método de diferencgas finitas. Sdo apresentados resultados
dos vetores de velocidades médios para alguns planos. O nimero de Nusselt local ¢ calculado na
superficie que possui as restrigdes.

Cui et al (2002) utilizando simulagdo de grandes escalas, estudaram o escoamento em um canal
com restricoes em regime turbulento. Sdo considerados trés tipos de restricdes. O modelo de
turbuléncia utilizado é o modelo sub-malha dinamico. E utilizado o método de volumes finitos para
discretizagdo das equacdes de conservagdo. O perfil de velocidades médias e as linhas de corrente
médias sdo determinadas. Os resultados obtidos sdo comparados com resultados experimentais. Os
vetores de velocidade instantaneos sdo apresentados e estudados.

No presente trabalho estuda-se a convecgdo for¢ada turbulenta em um canal em U com restri¢des
retangulares. As equagdes de conservacao utilizadas sdo para regime ndo permanente. Foram
utilizados valores do nimero de Reynolds iguais a 1x10% 5x10* e 1x10°; ntimero de Prandtl Pr=0,1.
Os nimeros de Nusselt local médio sdo calculados.

2. DESCRICAO DO PROBLEMA

A figura 1 apresenta a geometria estudada no presente trabalho. Um canal de dominio Q, em U,
onde a superficie S; ¢ a entrada do canal com altura H. O Fluido entra com um perfil de velocidade
turbulento desenvolvido e temperatura Tc. A superficie S, ¢ adiabatica. A superficie S;, ¢
isotérmica e com temperatura Ty. A superficie S4 € a saida do canal.
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Figura 1 - Geometria estudada.
2.1 Hipdteses para o Problema
Para todos os problemas estudados, sdo consideradas as seguintes hipoteses:

- regime ndo permanente;

- regime turbulento;

- escoamento bidimensional;

- escoamento incompressivel;

- as propriedades fisicas do fluido sdo constante.



3. EQUACIONAMENTO

As equagdes de conservacdo que governam o escoamento € O campo térmico sdo,
respectivamente:
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onde u; sdo as componentes de velocidades na dire¢ao x e y respectivamente, p ¢ a pressao, T € a
temperatura, p ¢ a massa especifica do fluido, [ € o coeficiente de viscosidade, I' ¢ a difusividade
térmica.

Apos aplicar a operagdo de filtragem e simplificagdes conforme Krajnovic (1998) e Padilla
(2000), omitidas devido ao espaco, obtém-se as seguintes equagoes:
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onde v ¢ viscosidade cinematica do fluido, v, a viscosidade turbulenta, o ¢ a difusividade térmica
e calculada por: a=v/Pr. Sendo Pr o namero de Prandtl. A difusividade térmica turbulenta é
calculada por: a; =v, /Pr, . Sendo Pr; o nimero de Prandtl turbulento (Pr=0,4).

3.1. Modelo sub-malha func¢éo estrutura de velocidade (FE)
Neste modelo de turbuléncia implementado, a viscosidade turbulenta ¢ determinada por:
/2
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onde C; =1,4 ¢ a constante de Kolmogorov e A¢é o tamanho caracteristico da malha. A funcdo
estrutura de ordem 2 da velocidade ¢ dada por:
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onde A= aj d, a , sendo X o vetor posi¢do do centro do volume de referénciae dy (k=1a4)a
k=1

distancia entre o centro do volume de referéncia até o centro do volume vizinho. Mais detalhes
deste modelo fungdo estrutura de velocidade ( FE ) podem ser vistos no trabalho de Métais et al.
(1996).

3.2. Condig0es Iniciais e de Contorno

No canal, fig. (1), foram impostas as seguintes condig¢des iniciais e de contorno:

EmS;: u=uy,,v=0 T="Tc, (entrada do fluido); (10)
oT T
EmS,: u=v=0, Srel =0 (superficie adiabatica); (11)
X
Em S;5: u=v=0, T=T, (superficie isotérmica). (12)
Em S, : du _ =0,v=0, or =0 (saida do fluido) (13)
0x 0x

Nas restrigoes, serdo consideradas que possuem a mesma condutividade do fluido.
4. METODO NUMERICO

As equacdes de conservacao de massa, quantidade de movimento e energia, sdo escritas em
coordenadas cartesianas ndo ortogonais e foram discretizadas através do método de volumes finitos.
O arranjo de malha utilizado foi o co-localizado. Os detalhes do calculo do fluxo nas superficies
usando apropriadas interpolacdes podem ser vistos no trabalho de Ferziger et al (1997) e Tasnim et
al (2002). Para o acoplamento entre a pressao e a velocidade foi utilizado o método SIMPLE. Para o
calculo do sistema de equagdes obtidos ¢ utilizado o método iterativo SIP (Strongly Implicit
Procedure).

O ntimero de Nusselt local ¢ calculado como:

et BE R

5. VALIDACAO

Para validar o codigo computacional desenvolvido em FORTRAN, foi realizado um estudo do
escoamento em um canal e comparado com os resultados do trabalho de Comini et al (1997). O
estudo ¢ realizado considerando regime laminar e convec¢do mista, acrescentado o termo de
empuxo na equagdo de conservacdo. A fig. 2 apresenta a geometria utilizada nesta comparacdo. As
dimensdes utilizadas para o canal sao: H=1, L=5. As condi¢des de contorno para as velocidades u e

v, € a temperatura T sdo: na superficie S; ( entrada do canal ) u = 6yﬁ(1 - y), v =0 e temperatura
T =1-y; na superficie S: u=v=0 e T =0; para a superficie S; ( saida do canal ) 9 =0, ¢

superficie S4 u=v=0 e T=1. O pardmetros utilizados foram: niimero de Reynolds Re =10,



niimero de Prandt Pr =0,67 e niimero de Froud Fr=1/150. Foi utilizada uma malha com 3600

volumes. O incremento de tempo A, =0,01 e os resultados apresentados até 20000 iteragdes. Para

o célculo do numero de Nusselt foi utilizado a seguinte equagao:

Nu = 2qyPrH
HCp (Tw ~ Thux )

(15)
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Figura 2 — Geometria do canal.

A figura 3 apresenta o numero de Nusselt para a superficie S, do canal.
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Figura 3 — Numero de Nusselt médio.

O valor médio do numero de Nusselt obtido foi Nu = 2,4. Este valor quando comparado

com o resultado de Comini et al (1997) ¢ satisfatorio.

Para validar o modelo de turbuléncia foi estudado o caso do degrau. A figura 4 apresenta a
geometria estudada. No teste foi considerado os seguintes parametros: numero de Reynolds Re =
1,32 x10°, ntimero de Prandtl Pr = 0,7. Utilizou-se um perfil de velocidade desenvolvido na entrada

do canal.
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Figura 4 — Geometria do canal com degrau.



Foi identificado o ponto de recolamento e comparou-se como resultado de Kim ( 1978), Brito et
al (2000) e Pirani et al (2002). A tabela 1 apresenta a comparagao dos resultados.

Tabela 1: Comparagao entre o presente trabalho e literatura.

Ponto de Recolamento

Kim (1978) | Brito etal Pirani et al Presente
(2000) (2002) Trabalho
7,1+1,0 6,1 7,7 6,2

6. RESULTADOS

Inicialmente foram feitos testes de malha para verificar os melhores resultados. Foi selecionado
a malha 240x90. Considerou-se casos com a restricdo ¢ sem a restricdo no canal em U. As
dimensdes do canal sdo H=3, L=15, R=3,5 e relacdo H/h=10. O niimero de Prandtl utilizado foi
Pr=0,1. O incremento de tempo A, =0,01. Foram obtidos resultados para os seguintes nimeros de

Reynolds: Re = 1x10* 5x10* e 1x10°. Para os casos estudados foram calculados o numero de
Nusselt local na superficie S; pela Eq. (14). Esta superficie foi dividida em 240 pontos. Os calculos
foram iniciados a partir da iteragdo de ntimero 1000, devido as instabilidades iniciais. A cada
iteracdo foi realizado o calculo do Nusselt médio. As temperaturas utilizadas sao: Tc=0 e Ty=1.

A figura 5 apresenta o resultado do célculo do nimero de Nusselt médio no tempo para o caso
Re=1x10", considerando a restricio ( CR) e ndo considerando a restricio (SR). Verifica-se na figura
5 que ocorre um variagdo maior a partir da inser¢do das restricdes no canal, aumentando a
transferéncia de calor. Foi calculado o Nusselt médio da superficie a partir destes valores e foram

obtidos: Nusg = 15,0 e Nuck = 17,3, confirmando o aumento.

—— Re=10000 CR
—— - Re=10000 SR

Nu
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Figura 5 — Numero de Nusselt médio no tempo na Superficie Ss, Re = 1x10”.

A figura 6 apresenta o resultado do célculo do niimero de Nusselt médio no tempo para o caso
Re=5x10", considerando a restri¢io ( CR) e ndo considerando a restricio (SR). Foi calculado o

Nusselt médio da superficie a partir destes valores e foram obtidos: Nusg = 30,8 € Nucg = 37.8.
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Figura 6 — Numero de Nusselt médio no tempo na Superficie S;, Re = 5x10%;

A figura 7 apresenta o resultado do calculo do niimero de Nusselt médio no tempo para o caso
Re=1x10, considerando a restri¢io (CR) e ndo considerando a restrigdo (SR). Foi calculado o

Nusselt médio da superficie a partir destes valores e foram obtidos: Nusg = 40,7 ¢ Nuck = 49.4.
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Figura 7 — Numero de Nusselt médio no tempo na Superficie S;, Re = 1x10°;

A figura 8a apresenta os vetores de velocidade na regido inferior do canal, proximo a restrigao,
na superficie S;, para uma determinada iteracdo. Verifica-se a formagao de recirculacdo menor na
parte anterior a restrigdo. Apos a restricao verifica-se uma recirculagdo menor e outra maior. A fig.
8b apresenta, na parte curva do canal os vetores de velocidade. Também verifica-se a formagdo de
uma recirculagdo apds a restrigao.

A figura 9a apresenta os vetores de velocidade apos a curva do canal. Verifica-se a formacao de
uma recirculagdo maior na parte inferior. Devido as caracteristicas do escoamento ¢ da geometria, a
formagao da recirculacdo pode ser vista também no trabalho de Chung et al (2003).
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Figura 9 — Vetores de Velocidade para algumas regides do canal, Re = 5x10°.

Figura 8 — Vetores de Velocidade para algumas regides com restri¢do, Re = 5x10".
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A figura 10a e 10b apresenta a fungao corrente e a distribuicdo de temperatura para uma sec¢ao

A figura 9b pode-se observar os vetores de velocidade para a parte superior do canal, onde existe
do canal.
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Figura 10 — Fungao Corrente Y e a distribuig



7. COMENTARIOS E CONCLUSOES

Neste trabalho foi estudado a convecgdo for¢ada em canais em U, com restricdes
considerando regime turbulento e utilizando o modelo de turbuléncia sub-malha fun¢do estrutura de
2% Ordem.

O primeiro teste de validagdo do modelo considerou-se convecgdo mista em um canal, sem
restrigdo. O célculo do nimero de Nusselt médio apresentou resultados satisfatorios quando
comparados com os resultados de Comini et al ( 1997). No segundo teste de validagdo, foi estudado
o caso padrdo do escoamento em um canal com degrau, avaliando-se o modelo de turbuléncia
implementado. Também os resultados foram satisfatorios quando comparados com a literatura.

Foram obtidos resultados do nimero de Nusselt médio no tempo para os seguintes numeros
de Reynolds: Re=1x104; 5x10% e 1x10° , em um canal em U, com e sem restri¢des.

Verificou-se que o nimero de Nusselt médio passa a ter uma variagdo maior quando se
insere as restricoes no canal. Com o aumento do nimero de Reynolds, também ocorre um aumento
no numero de Nusselt Médio.

Para canais com restricdo, ha formacdo de recirculagdes, tornando o escoamento mais
turbulento. Ocorre maiores gradientes de temperatura proximo a superficie do canal, aumentando o
coeficiente de troca de calor. Quanto maior o nimero de Reynolds, maior a variagdo do niamero de
Nusselt, melhorando consideravelmente a troca de calor.

A utilizagdo de restricdes em canais contribui para melhorar a transferéncia de calor e com isto
uma melhor eficiéncia no resfriamento. Com o uso das restri¢des e devido as caracteristicas do
escoamento, o mesmo se torna turbulento. O Estudo numérico deste escoamento deve utilizar
modelos apropriados de turbuléncia para descrever corretamente 0 mesmo.

A utilizacdo do modelo sub-malha funcdo estrutura de velocidade de segunda ordem, foi
satisfatorio. Mas novos casos em canais com restricdo devem ser estudados e comparados com a
literatura para melhor avaliagcdo do modelo .
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STUDY TWO-DIMENSIONAL FLOW AND HEAT TRANSFER IN
CHANNEL U-BEND

Abstract. A study of the flow and heat transfer is considered in channel U-Bend with rib and
considering a turbulent regime The conservation equations are discretized using the finite volume
method. A non-orthogonal Cartesian grid is used. The grid arrangement used was the colocalized
For the pressure-velocity coupling, the SIMPLE method was carried out. A sub-grid velocity
structure function of second order model of turbulence was used in this work. The local Nusselt
number is evaluated in surface channel for Reynolds numbers.

Palavras Chaves: Forced Convection, Large Edge Simulation, Turbulence.



