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Abstract. In the present work, the magnetohydrodynamic flow and heat transfer (MHD) of a 
Newtonian, electrically conducting, viscous and incompressible fluid inside a parallel-plates 
channel is studied through the so-called Generalized Integral Transform Technique (GITT). The 
main goal is to investigate the effects on the flow of the external magnetic field, which is 
perpendicular to the flow, as well as to analyze the variation of the fluid viscosity with temperature 
through this hybrid technique. In order to study as many physical possibilities as possible 
maintaining, however, a simple mathematical formulation for the problem, two kinds of analyses 
are considered. The first, which evidences the transient regime, assumes that flow is sustained by a 
constant pressure gradient only; whereas the second, the steady-state situation, considers both a 
constant pressure gradient and a movement of the upper plate, as well as the action of an inflow 
and an outflow perpendicular to the plates (porous plates). Results for velocity and temperature 
fields are obtained within the governing parameters, namely, pressure gradient, suction velocity, 
upper plate velocity and Hartmann numbers, for typical situations. A convergence analysis is also 
performed showing the consistency of the results. Finally, the results obtained by the present 
approach are compared with literature published data, showing excellent agreement. 
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1. INTRODUCTION 

 
The magnetohydrodynamic flow and heat transfer (MHD) of a viscous, electrically conducting 

fluid presents important industrial applications, mainly, in the petroleum industry, nuclear reactors 
engineering and, more recently, in the field of the metallurgy. Generators, pumps, accelerators and 
hydromagnetic flowmeters are examples of such applications. Beginning in the twenties, the 
numerical studies about magnetohydrodynamics reappeared strongly in the sixties of the past 
century until the present days. 

The MHD flow of a viscous, electrically conducting fluid inside a parallel-plates channel has 
been considered by many researchers for various situations (Tao, 1960; Nigam and Singh, 1960; 
Alpher, 1961 and Sutton and Sherman, 1965). The simplest analysis involving this geometry was 



  

the study of the thermally developing flow considering the Hartman (1937) profile for the velocity 
field (Nigam and Singh, 1960). Implied in this was the hypothesis of small temperature differences 
so that the velocity field could be decoupled from the temperature one, i.e., these studies were based 
on constant physical properties. However, in order to make more realistic predictions the variations 
of these properties would be taken into account. The first work that took into account variable 
properties on the entrance flow in a channel was conducted by Klemp et al. (1990). Attia and Kotb 
(1996), considering an exponential variation of the viscosity, porous plates, as well as the 
movement of the upper plate, studied the steady flow and heat transfer. Isothermal and non-steady 
MHD flow of blood through porous channel was studied by Rao and Rao (1988), considering 
constant physical properties. In their study, Rao and Rao (1988) considered blood as a Newtonian 
fluid. Later, Attia (1999) included the effect of an exponential variation of the viscosity with 
temperature on the unsteady flow. 

In all analyzed cases the results were obtained through application of purely numerical methods, 
or analytical solutions were obtained for limiting situations. The present work reproduces such 
studies through the so-called GITT (Generalized Integral Transform Technique), a hybrid 
numerical-analytical spectral based approach (Cotta, 1993, Cotta, 1998 and Santos et al., 2001). In 
order to investigate as many physical possibilities as possible maintaining a simple mathematical 
formulation for the problem, two kinds of analyses are considered. The first one, which evidences 
the transient regime, assumes that the flow is only sustained by a constant pressure gradient; 
whereas the second, the steady-state situation, considers a constant pressure gradient and a mobile 
upper plate, as well as action of an inflow perpendicular to the plates (porous plates). 
 

2. MATHEMATICAL FORMULATION 
 

A schematic representation of the MHD parallel-plate channel is illustrated in Fig. 1. It consists 
of two parallel and electrically insulated porous or non-porous plates separated by a distance h, 
maintained at constant and different temperatures. Within this channel flows a Newtonian, viscous, 
incompressible and electrically conducting fluid, which is initially at rest and submitted to a 
perpendicular, uniform and constant magnetic field. Viscous dissipation is also taken into account. 
  

 h 

B0 (magnetic field) 

x* 

  y* 

u*(0,t*) = 0 ;     T*(0,t*) = T1 

u*(h,t*) = 0 ;     T*(h,t*) = T2 

  vw (porous plates) 

  
Figure 1. Schematic representation of the analyzed problem 

 
Under the above hypothesis, the dimensionless mathematical formulation for the one-

dimensional transient MHD problem is given as: 
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Subjected to initial and boundary conditions: 
 

ˆ( ,0) 0
 ;     0,      0 1

( ,0) 0 
u y

t y
T y

= ⎫
= < <⎬= ⎭

 (3,4) 

 
ˆ(0, ) 0

  ;      0,     0
(0, ) 0 

u t
y t

T t
= ⎫

= >⎬= ⎭
 ; 

ˆ(1, )
 ;      1,     0

(1, ) 1 
uu t R

y t
T t

= ⎫
= >⎬

= ⎭
 (5-8) 

 
In the above formulation, the following dimensionless groups were employed: 
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where h is the distance between plates, y is the transversal coordinate, x is the longitudinal 
coordinate, T1 and T2 are the temperatures of the lower and upper plates, respectively, u1 is the 
upper plate velocity, vw  is the inflow velocity and B0 is the external applied magnetic field. The 
physical properties ρ, the fluid density, cp, the specific heat, k, the fluid conductivity, µ0, the 
dynamic viscosity, ν0, the cinematic viscosity and σ, the electrical conductivity are evaluated at the 
reference initial/lower plate temperature, T0=T1. With the dimensionless groups adopted the 
following dimensionless parameters were introduced, namely, Ru, Rv, Pr, Ec and Ha; the Reynolds, 
Prandtl, Eckert and Hartaman numbers, respectively. 

As employed in previous references, the following exponential variation was adopted for the 
dynamic viscosity: 
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where a is the viscosity parameter defined as 
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3. SOLUTION METHODOLOGY 
 
3.1. Filtering Process 

In order to employ the GITT approach in its more efficient form, it is necessary to homogenize 
the boundary conditions in the direction to be integral transformed, in this case the y direction, 
through a filtering process. This is accomplished by splitting up the analyzed potentials as: 
 

ˆ( , )  ( , ) ( )Fu y t u y t u y= +  ; ( , )  ( , ) ( )FT y t y t T yθ= +  (12,13) 
 

For simplicity, in order to avoid computationally involved mathematical expressions, the filters 
employed in the present analysis are the solutions of the steady-state version of the original 
problems, making Rv=0 and Ec=0: 
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Therefore, the governing equations of the MHD flow with heat transfer become: 
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Subjected to the initial and boundary conditions:  
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3.2. Integral Transformation 

Following the basic steps in the integral transform approach, appropriate eigenvalue problems 
that permit the integral transformation process must be chosen. For these classes of problems, they 
can be easily found in Cotta (1993), Cotta (1998) and Santos et al. (2001). According to such 
eigenvalue problems, the following integral-transform pairs are developed: 
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To perform the integral transformation, Eqs. (16) and (18) should be multiplied by the velocity 

eigenfunction, ( )i yΩ  and Eqs. (17) and (19) multiplied by the temperature eigenfunction, ( )i yτ ; 
after that they are integrated over the domain of solution [0,1]. After employing the inversion 
formulae, Eqs. (24) and (26), and boundary conditions, Eqs. (20) to (23), the resultant transformed 
equations are written as: 
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where the coefficients are defined as: 
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Therefore, the integral transformation process eliminates the transversal coordinate, y, and 

offers an ordinary differential system for the transformed potentials in the time variable. The 
infinity system, Eqs. (26) to (29), should be truncated to sufficiently large finite orders, NU and NT 
(for the velocity and temperature expansion, respectively), in order to achieve numerical results to 
within a user prescribed accuracy target. This is attained through well-established subroutines for 
initial value problems such as DIVPAG from the IMSL package (IMSL, 1987). Once these 
transformed potentials have been numerically evaluated at any time, t, the related potentials for the 
velocity and temperature are analytically recovered, by recalling their inversion formulae. 
 

4. RESULTS AND DISCUSSION 
 

A Fortran code was built and implemented on an Atlhon XP2000 computer imposing a relative 
error criterion of 10-6 for subroutine DIVPAG (IMSL, 1987), i.e., an error control in the sixth 
significant digit for all transformed potentials is searched. Results for the main potentials are 
illustrated and critically compared against previously reported numerical results, for various 
combinations of the dimensionless parameters Ha, Ru, Rv, a, G, Pr and Ec. Convergence behaviors 
for velocity and temperature fields are showed for different time and transversal coordinate. All 
figures presented here are illustrate by employing N=NU=NT=200 in the eigenfunction expansions. 

Tables (1) and (2) illustrate the convergence behavior of the centerline velocity and centerline 
temperature, respectively, at two time instants for different values of the viscosity parameter, a, 
Hartmann number, Ha, and Pr=1 and Ec=0.050875. The situations are showed considering that the 
upper plate is fixed (Ru=0), i.e., the flow is only sustained by a negative gradient pressure, G=40. In 
addition, neither inflow nor outflow through the plates is permitted to occur (Rv=0). 
 

Table 1. Convergence behavior of the centerline velocity, at t=0.5 and t→∞, for different values of the 
viscosity parameter, a, and Hartman number, Ha. (Ru=0, Rv=0, G=40, Pr=1 and Ec=0.050875) 

u(0, 0.5) 
 Ha=0 Ha=1 Ha=2 

N a= - 0.5 a=0 a=0.5 a= - 0.5 a=0 a=0.5 a= - 0.5 a=0 a=0.5 
10 1.566 1.7486 1.898 1.491 1.662 1.801 1.296 1.435 1.549 
50 1.566 1.7486 1.898 1.491 1.662 1.801 1.297 1.435 1.549 

300 1.566 1.7486 1.898 1.491 1.662 1.801 1.297 1.435 1.549 
U(0, ∞) 

 Ha=0 Ha=1 Ha=2 
N a= - 0.5 a=0 a=0.5 a= - 0.5 a=0 a=0.5 a= - 0.5 a=0 A= 0.5 
10 1.755 2.500 4.081 1.637 2.264 3.425 1.362 1.760 2.317 
50 1.754 2.500 4.086 1.637 2.264 3.428 1.362 1.760 2.318 

300 1.754 2.500 4.086 1.637 2.264 3.428 1.362 1.760 2.318 



  

Table 2. Convergence behavior of the centerline temperature, at t=0.5 and t→∞, for different values of the 
viscosity parameter, a, and Hartman number, Ha. (Ru=0, Rv=0, G=40, Pr=1 and Ec=0.050875) 

T(0, 0.5) 
 Ha=0 Ha=1 Ha=2 

N  a= - 0.5 a=0 a=0.5 a= - 0.5 a=0 a=0.5 a= - 0.5 a=0 a=0.5 
10 0.3804 0.3720 0.3655 0.3935 0.3888 0.3856 0.4212 0.4242 0.4277 
50 0.3798 0.3713 0.3646 0.3930 0.3882 0.3848 0.4208 0.4236 0.4271 

300 0.3798 0.3713 0.3646 0.3930 0.3882 0.3848 0.4208 0.4236 0.4271 
T(0, ∞) 

 Ha=0 Ha=1 Ha=2 
N a= - 0.5 a=0 a=0.5 a= - 0.5 a=0 a=0.5 a= - 0.5 a=0 a=0.5 
10 0.7990 0.9252 1.232 0.8091 0.9417 1.234 0.8170 0.9388 1.142 
50 0.7979 0.9240 1.232 0.8082 0.9407 1.234 0.8163 0.9381 1.141 

300 0.7979 0.9240 1.232 0.8081 0.9407 1.234 0.8163 0.9381 1.141 
 

According to Tabs. (1) and (2) above both potentials showed an extremely fast convergence, 
mainly for the centerline velocity since, as one can see, low orders in the eigenfunction expansions 
are required. This behavior can be easily explained since, for the range of values of parameters Rv 
and a, the solution of the original problem is practically obtained by the filtering solution. 

Table 3 shows the convergence behavior of the steady-state centerline velocity for different 
values of the viscosity parameter, a, and Hartmann number, Ha. Now, the upper plate is given a 
horizontal velocity, Ru=1, and a positive pressure gradient is applied in the horizontal direction,  
G= -5, while the suction parameter Rv is still set equal to zero. 
 
Table 3. Convergence behavior of the steady-state velocity at the centerline, u(0, ∞), for different values of 

the viscosity parameter, a, and Hartmann number, Ha. (Ru=1, Rv=0, G= -5, Pr=1 and Ec=1) 
U(0, ∞) 

 a = 0.0 a = 0.5 
N  Ha = 0 Ha = 2 Ha = 10 Ha = 0 Ha = 2 Ha = 10 
10 - 0.1250 - 0.1159 - 0.04259 - 0.4341 - 0.3071 - 0.04941 
50 - 0.1250 - 0.1159 - 0.04259 - 0.4343 - 0.3072 - 0.04804 

300 - 0.1250 - 0.1159 - 0.04259 - 0.4343 - 0.3072 - 0.04803 
 

As previously commented, the filtering solution showed itself an excellent procedure, since it 
recovers the original potential (no terms are required in the velocity expansion) for large values of 
time, and Rv=0 and a=0. For cases where the viscosity parameter differs from zero, i.e., when the 
momentum and energy equation are fully coupled, a noticeable effect in the improvement of the 
convergence is still verified, even for high values of the Hartmann number. A comparison between 
the fully converged results provided by the present approach, available in Tab. 3 for a=0, and the 
numerical results of Attia and Kotb (1996) is visualized in Fig. 2a showing the influence of the 
Hartmann number on the flow. 

The same trends verified in Tab. 3, for convergence behavior, are also observable in Tab. 4, 
which illustrates the influence of the inflow/outflow parameter and of the positive pressure gradient 
over the overall convergence. 
 

Table 4. Convergence behavior of the steady-state velocity at the centerline, u(0, ∞), for different 
values of the suction parameter, Rv. (a=0, Ha=0, Ru=1, G= -5, Pr=1 and Ec=1) 

 u(0, ∞) 
N Rv=0 Rv=1 Rv=5 Rv=10 
10 - 0.1250 - 0.2349 - 0.3496 - 0.2430 
50 - 0.1250 - 0.2348 - 0.3483 - 0.2400 

300 - 0.1250 - 0.2348 - 0.3483 - 0.2400 



 

Additionally, Fig. 2b, which illustrates the converged results from Tab. 4, offers a comparison 
between the present results and those of Attia and Kotb (1996), showing the interesting intrinsic 
MHD behavior, namely, increasing the inflow parameter (up till 5) increase the reversed flow 
depth, since the gradient pressure is positive, but for higher inflow parameter (Rv=10) a reduction in 
the recirculation flow depth is clearly noticed.  
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Figure 2. Influence of (a) Hartmann and (b) inflow parameters on the steady-state centerline velocity 
 

Figures 3a and 3b bring comparisons between the present results and those of Attia (1999) for 
the steady-state velocity and temperature profiles, respectively, for different values of viscosity 
parameter, a. The following values for the dimensionless parameters were employed Ha=0.5, Ru=0, 
Rv=0, G=40, Pr=1 and Ec=0.050875. The asymmetry effect introduced in the steady-state velocity 
profile by considering the viscosity as a temperature dependent variable is clearly visualized in Fig. 
3a. Some lost of adherence between results provide by two approaches are also observed, mainly 
for high values of viscosity parameter, a. 
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Figure 3. Influence of the viscosity parameter, a, on the steady-state 

(a) centerline velocity and (b) centerline temperature 
 

Tables 5 and 6 illustrate the time variation of the centerline velocity and centerline temperature, 
respectively, through a comparison of the present converged results against previous reported 
numerical results by Attia (1999). Simulations were performed by employing different values of the 
viscosity parameter, a, and two values of Hartman number (Ha=0 and Ha=1,0). Neither movement 
of the upper plate is permitted to occur nor inflow/outflow through the plates. Flow of a typical 
fluid (Pr=1 and Ec=0.050875) is sustained by a negative pressure gradient, G=40. 



  

Table 5. The time variation of the centerline velocity, u(0,t), for different values of the viscosity 
parameter, a, and Hartman number, Ha. (Ru=0, Rv=0, G=40, Pr=1 and Ec=0.050875) 

Ha=0 
 a= -0.5 a= -0.2 a= -0.1 a=0 a=0.5 a=1.0 

T  Present Attia 
(1999) Present Attia 

(1999) Present Attia 
(1999) Present Attia 

(1999) Present Present 

0.5 1.566 1.593 1.679 1.714 1.715 1.752 1.749 1.789 1.898 2.012 
1.0 1.792 1.797 2.082 2.091 2.182 2.192 2.281 2.294 2.769 3.205 
2.0 1.762 1.765 2.158 2.160 2.313 2.315 2.481 2.483 3.528 4.801 
3.0 1.755 1.758 2.154 2.156 2.317 2.318 2.498 2.498 3.832 6.022 
4.0 1.754 1.758 2.154 2.156 2.316 2.318 2.500 2.499 3.967 7.112 
5.0 1.754 --- 2.154 --- 2.316 --- 2.500 --- 4.030 8.168 

10.0 1.754 --- 2.154 --- 2.316 --- 2.500 --- 4.085 14.42 
∞ 1.754 --- 2.154 --- 2.316 --- 2.500 --- 4.086 ∞ 

Ha=1 
 a= -0.5 a= -0.2 a= -0.1 a=0 a=0.5 a=1.0 

t  Present Attia 
(1999) Present Attia 

(1999) Present Attia 
(1999) Present Attia 

(1999) Present Present 

0.5 1.297 1.313 1.383 1.405 1.410 1.433 1.435 1.461 1.549 1.634 
1.0 1.393 1.397 1.578 1.583 1.640 1.646 1.702 1.709 2.007 2.278 
2.0 1.366 1.369 1.589 1.592 1.671 1.674 1.758 1.760 2.255 2.827 
3.0 1.362 1.366 1.587 1.589 1.671 1.673 1.760 1.762 2.304 3.041 
4.0 1.362 1.366 1.587 1.589 1.670 1.673 1.760 1.762 2.315 3.130 
5.0 1.362 --- 1.587 --- 1.670 --- 1.760 --- 2.317 3.169 

10.0 1.362 --- 1.587 --- 1.670 --- 1.760 --- 2.318 3.198 
∞ 1.362 --- 1.587 --- 1.670 --- 1.760 --- 2.318 3.199 

 
 
Table 6. The time variation of the centerline temperature, T(0,t), for different values of the viscosity 

parameter, a, and Hartman number, Ha. (Ru=0, Rv=0, G=5, Pr=1 and Ec=1) 
Ha = 0 

 a= -0.5 a= -0.2 a= -0.1 a=0 a=0.5 a=1.0 

t  Present Attia 
(1999) Present Present Attia 

(1999) Present Attia 
(1999) Present Attia 

(1999) Present Attia 
(1999)

0.5 0.3798 0.395 0.3745 0.3728 0.388 0.3713 0.386 0.3646 0.379 0.3596 0.374 
1.0 0.6566 0.665 0.6616 0.6627 0.673 0.6635 0.675 0.6633 0.676 0.6559 0.669 
2.0 0.7907 0.793 0.8431 0.8628 0.866 0.8834 0.887 0.9880 0.993 1.055 1.060 
3.0 0.7978 0.799 0.8619 0.8887 0.890 0.9189 0.920 1.122 1.122 1.329 1.333 
4.0 0.7979 0.799 0.8631 0.8911 0.893 0.9234 0.925 1.181 1.178 1.549 1.548 
5.0 0.7979 0.799 0.8631 0.8913 0.893 0.9239 0.925 1.208 1.203 1.743 1.738 

10.0 0.7979 --- 0.8631 0.8913 --- 0.9240 --- 1.231 --- 2.642 --- 
∞ 0.7979 --- 0.8631 0.8913 --- 0.9240 --- 1.232 --- ∞ --- 

Ha = 1 
 a= -0.5 a= -0.2 a= - 0.1 a=0 a=0.5 a=1.0 

t  Present Attia 
(1999) Present Present Attia 

(1999) Present Attia 
(1999) Present Attia 

(1999) Present Attia 
(1999)

0.5 0.4208 0.436 0.4224 0.4230 0.439 0.4236 0.439 0.4271 0.443 0.4305 0.447 
1.0 0.6983 0.704 0.7229 0.7314 0.737 0.7400 0.746 0.7831 0.789 0.8231 0.829 
2.0 0.8098 0.809 0.8697 0.8926 0.889 0.9171 0.914 1.062 1.053 1.231 1.215 
3.0 0.8160 0.815 0.8816 0.9077 0.904 0.9362 0.931 1.124 1.110 1.391 1.363 
4.0 0.8163 0.815 0.8823 0.9088 0.905 0.9380 0.933 1.137 1.122 1.458 1.422 
5.0 0.8163 0.815 0.8824 0.9089 0.905 0.9381 0.933 1.140 1.125 1.486 1.447 

10.0 0.8163 --- 0.8824 0.9089 --- 0.9381 --- 1.141 --- 1.508 --- 
∞ 0.8163 --- 0.8824 0.9089 --- 0.9381 --- 1.141 --- 1.508 --- 



 

According to Tab. 5, unless the forth digit, the present results adhere very well with those of 
Attia (1999) for all situations analyzed. As one can see from this table and from Figs. 4a and 4b, 
increasing the Hartmann number cause a deceleration on the flow, since the electromagnetic force, 
contrary to movement, is augmented. On the other hand, Tab. 6 and Figs. 5a and 5b show clearly 
that differently from the velocity, the temperature field is less influenced to Hartmann number. 
Some small discrepancies between the present results and those of Attia (1999) are again 
visualized. It is believed that as authors did not showed a grid convergence history and since the 
present results are fully converged in all digits showed, they may be considered as reference results. 
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Figure 4. Influence of the viscosity parameter and Hartmann number, (a) Ha=0 and (b) Ha=1, 

on the evolution of the centerline velocity 
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Figure 5. Influence of the viscosity parameter and Hartmann number, (a) Ha=0 and (b) Ha=1, 

on the evolution of the centerline temperature 
 

Another interesting feature illustrated by Tab. 6, but not visualized in Fig. 5b, is the slightly 
opposite behavior of the temperature with Hartmann number and viscosity parameter. For negative 
values of the viscosity parameter, an increase in Hartmann number (from 0 to 1) leads to an 
increase in the temperature field in all time instants, whereas for positive values of a, an increase in 
Ha leads to a decrease in the temperature field, notably for times reaching the steady-state regime. 
 

5. CONCLUSION 
The proposed integral transform approach provided reliable and cost-effective simulations of the 

unsteady and steady-state one-dimensional MHD flow with heat transfer in the laminar flow of 



  

Newtonian fluid within parallel-plate channels. Benchmark results for the centerline velocity and 
centerline temperature were systematically tabulated and graphically presented for different values 
of Hartmann and viscosity parameter, illustrating the effectiveness of the present methodology. 
Comparisons with previous work in the literature were also performed, demonstrating excellent 
agreement and furnishing direct validations of the present results as well as showing that they were 
consistent. 
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