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Resumo. Escoamentos incompressíveis podem ser resolvidos através de formulação acoplada ou 
segregada. No primeiro caso, as equações da conservação de movimento são utilizadas para se 
avaliarem as componentes da velocidade, enquanto a da continuidade é empregada para se 
determinar a pressão. Esta metodologia, contudo, acarreta um forte acoplamento entre os campos 
de velocidade e de pressão, uma vez que é necessário se determinar a distribuição de pressão que 
origina velocidades que satisfaçam às equações de conservação da massa e do movimento. Existem 
diversos algoritmos disponíveis na literatura que tratam do problema do acoplamento pressão-
velocidade. Uma maneira de se evitar tal problema é resolver todas as equações simultaneamente, 
obtendo-se assim um sistema linear envolvendo todas as variáveis. Este procedimento é largamente 
empregado pelo método denominado Control Volume Based Finite Element Method – CVFEM. O 
objetivo deste trabalho é comparar os algoritmos PRIME (Implicit Pressure Momentum Explicit) e 
SIMPLEC (SIMPLE Revised) com o CVFEM. Os resultados serão apresentados sob a forma de 
curvas de resíduo das equações versus número de iterações, tempo de CPU, assim como perfis de 
velocidade de problemas de benchmark selecionados. 
 
Palavras-chave: Algoritmos acoplados e segregados, método CVFEM, escoamento 
incompressível, volumes finitos. 
 
1. INTRODUÇÃO 
 

Escoamentos incompressíveis podem ser resolvidos empregando-se duas formulações: 
formulação segregada, em que as equações de transporte são resolvidas separadamente, associando-
se uma equação para o avanço de cada variável do problema (quantidade de movimento em x e y 
para u e v, respectivamente, e equação da continuidade para pressão p, no caso 2D), ou de forma 
acoplada, em que as equações governantes são resolvidas simultaneamente.  

Na formulação segregada, existe um forte acoplamento entre o campo de velocidade e o de 
pressão, devido ao fato de que se deve determinar um campo de pressão que origine um campo de 
velocidades que satisfaça às equações de conservação da massa e da quantidade de movimento, 
Patankar (1980) e Maliska (1995). Uma outra opção é resolver todas as equações simultaneamente, 
Raw (1985), Souza (2000). Por outro lado, quando as equações são resolvidas ao mesmo tempo, o 
sistema linear a ser resolvido a cada iteração aumenta uma vez que no caso 2D, por exemplo, u, v e 
p participam agora do sistema de equações. A solução acoplada da equação da continuidade e de 
Navier-Stokes, entretanto, vem se tornando uma alternativa viável e atraente, devido ao crescimento 
da capacidade de processamento e de armazenamento dos computadores. 

Este trabalho apresenta um estudo comparativo do desempenho da formulação acoplada e 
segregada. Dois algoritmos bastante utilizados quando do emprego de metodologias segregadas, o 
PRIME e o SIMPLEC e o método conhecido como CVFEM (Control Volume Finite Element 
Method) desenvolvido por Raw (1985) que resolve as equações simultaneamente são utilizados. 
Destaca-se que ambas metodologias, segregada e simultânea, empregam armazenamento co-
localizado das variáveis. Os resultados serão apresentados para dois problemas clássicos em 
Mecânica dos Fluidos, quais sejam, o problema da cavidade recirculante e o do escoamento entre 
placas planas e paralelas. 
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2. MODELO MATEMÁTICO 
 

Para o caso de escoamento bidimensional, incompressível e laminar, as equações de 
conservação da massa, da quantidade de movimento e de um escalar qualquer utilizando a 
convenção de Einstein podem ser escritas, respectivamente, como,  
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onde i  e j variam de 1 a 2 (para o caso 2-D) e φ é uma quantidade escalar qualquer. 
 
3. TRATAMENTO NUMÉRICO 
 

Apresentam-se, a seguir, os fundamentos do CVFEM. As metodologias PRIME e SIMPLEC são 
descritas em detalhes em Maliska (1995). 
 
3.1 – Método dos Volumes Finitos Baseado em Elementos Finitos 
 

No Método dos Volumes Finitos Baseado em Elementos Finitos, conhecida como CVFEM – 
Control Volume Based Finite Element Method, desenvolvida por Raw (1985), resolve as equações de 
transporte (massa e quantidade de movimento) simultaneamente. Nesta metodologia, os princípios 
dos métodos dos volumes finitos e de elementos finitos são combinados, resultando em um método 
que apresenta vantagens de ambos: esquema estritamente conservativo, discretização das equações 
governantes baseada em balanços de fluxos (volumes finitos), flexibilidade na discretização de 
geometrias complexas via malhas não-estruturadas (elementos finitos). 

Uma característica importante deste esquema numérico é o fato de empregar como função de 
interpolação uma equação que é o análogo direto da equação diferencial para a variável que está 
sendo avaliada. Isto permite que se representem todos os processos físicos relevantes do problema, 
proporcionando estabilidade do processo de solução. 

O domínio de cálculo é fracionado em regiões muito menores, denominados elementos, os quais 
neste trabalho, são quadriláteros. Distribuem-se nós em cada vértice dos elementos. Todas as 
incógnitas do problema (componentes da velocidade, pressão, temperatura etc) são localizadas 
nestes nós, o que implica em um arranjo co-localizado das variáveis. 

Um simples elemento é tratado de forma isolada, independentemente dos demais, como é feito 
no FEM padrão. Dentro deste elemento, um sistema de coordenadas s-t local e não-ortogonal é 
definido. As coordenadas s e t variam de –1 a 1, e os nós são numerados de 1 a 4, Fig. (1).  

O elemento é isoparamétrico, ou seja, todas as variáveis físicas e geométricas do problema são 
avaliadas em qualquer ponto interno ao elemento através da relação, 
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Fig. 1. Definição do elemento. 



onde Φ representa uma variável qualquer e os temos Ni correspondem às chamadas funções de 
forma, definidas por, 
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As derivadas de Φ em relação a x e y são definidas a partir da Eq. (3), 
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onde, 
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sendo J o jacobiano definido por, 
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As expressões para as derivadas em relação a s e t das funções de forma são obtidas diretamente 

das Eqs. (5) a (8). 
Um volume de controle é criado para cada nó, Fig. (2), utilizando as linhas s = 0 e t = 0 dos 

elementos que estão em volta do nó como as faces do volume de controle. Cada elemento então 
contém quatro quadrantes de quatro diferentes volumes de controle. Cada um desses quadrantes é 
denominado sub-volume de controle (SCV – “Sub-Control-Volume”) e estão ilustrados na Fig. (3). 

 
 



Eixo t = 0

Eixo s = 0

Elemento

Volume de controle

Nó  
 

Fig. 2. Definição do volume de controle. 
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Fig. 3. Definição dos sub-volumes de controle. 
 

O processo de discretização descrito resulta em volumes de controle internos definidos por oito 
segmentos de reta, dois em cada um dos quatro elementos que o “circundam” (quando a malha é 
estruturada). A obtenção das equações algébricas exige que integrações sejam realizadas sobre a 
superfície de controle. Estas integrais são avaliadas no ponto médio de cada segmento, os quais são 
denominados pontos de integração ou simplesmente ip (integration point), Fig. (4). Estes segmentos 
de reta serão referenciados como sub-superfícies (SS). 
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Fig. 4. Definição dos pontos de integração e das sub-superfícies de controle. 
 
3.1.3 – Discretização das Equações Governantes 
 

A discretização das equações de transporte é mostrada detalhadamente em Raw (1985). Uma 
breve descrição do tratamento da equação da conservação da quantidade de movimento em x é 
apresentada a seguir. No desenvolvimento que se segue, serão apresentados apenas os resultados 
referentes ao SCV1, mostrado na Fig. (3), o qual apresenta duas superfícies, SS1 e SS4, Fig. (4). 
Nas equações seguintes, foi adotada a seguinte convenção: variáveis maiúsculas representam 
valores nodais, minúsculas, referem-se aos pontos de integração. O primeiro sobrescrito indica a 
equação tratada (u para quantidade de momento em x, por exemplo), o segundo, a variável que o 
termo está multiplicando. Os sobrescritos t, s, c e d se referem, respectivamente, aos termos 
transiente, fonte, advectivo e difusivo. O subscrito i indica o sub-volume de controle e j, o nó ou 
ponto de integração, dependendo da grafia do coeficiente, se em letra maiúscula ou minúscula. 



Integrando-se a Eq. (2) sobre um volume de controle, obtém-se, 
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onde i = 1 corresponde à equação da quantidade de movimento em x e jdyidxnd

rrr +−=  é o vetor 
normal à superfície de controle. Considerando-se o sub-volume de controle 1 SCV1, Fig. (3),      
tem-se, 
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O sobrescrito * na Eq. (16) indica que o termo é avaliado na iteração anterior. Os fluxos 

convectivos e difusivos, para o SCV1, são avaliados nos pontos de integração 1 e 4, Fig. (4). Os 
termos difusivos são calculados como, 
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As contribuições de SS4 podem ser determinadas de modo semelhante, de modo que, 
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O termo de pressão é escrito como, 
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Finalmente, a partir das Eqs. (14) a (19), obtém-se a “equação” para o SCV, que de forma geral 

é dada por, 
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que, na forma matricial, 
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Os valores de u nos pontos de integração são avaliados empregando-se funções de interpolação 

completas, as quais correspondem ao análogo direto da equação diferencial referente à variável em 



questão. Detalhes podem ser encontrados em Raw (1985) e Souza (2000). Em forma matricial, tem-
se, 
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A pressão nos ips é avaliada através das funções de forma, de modo que, 
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A equação anterior pode ser reescrita em uma forma mais compacta: 
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Na equação matricial acima, cada linha representa a contribuição de um sub-volume de controle 

à correspondente equação do volume de controle nodal. Assim, a Eq. (21) não representa a equação 
para um simples volume, mas sim quatro contribuições para quatro equações diferentes. A equação 
final de cada volume é obtida através de um processo posterior de montagem, levando em 
consideração a contribuição de cada elemento. 
 
4. RESULTADOS E DISCUSSÕES 
 

Conforme mencionado anteriormente, dois problemas clássicos em Mecânica dos Fluidos foram 
selecionados para se compararem as formulações segregada e acoplada. São eles o problema da 
cavidade recirculante e o do escoamento entre duas placas planas e paralelas. A Fig. (5) apresenta as  
geometrias e condições de contorno utilizadas. 

O problema da cavidade foi resolvido para dois valores de número de Reynolds, 100 e 1000, 
baseado no comprimento da cavidade e na velocidade da tampa móvel (admitidas unitárias). O caso 
do escoamento entre placas planas e paralelas foi resolvido para Re = 20, baseado na distância entre 
as placas e na velocidade de entrada (também assumidas iguais à unidade). Todos os casos 
empregando-se formulação acoplada (método CVFEM) foram obtidos adotando-se o seguinte 
critério de convergência: urε e pε  < 10-6, onde, 
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Fig. 5. Geometria e condições de contorno: (a) cavidade recirculante; (b) escoamento entre placas 

planas e paralelas. 
 

Todas as soluções apresentadas a seguir foram obtidas empregando-se o método CVFEM, o 
PRIME, com função de interpolação WUDS e o SIMPLEC, com função de interpolação CDS. 
Detalhes das metodologias PRIME e SIMPLEC podem ser encontradas em Maliska (1995). 

A Figura (6 a) apresenta o perfil de u ao longo da linha média da cavidade, x = ½ ,para Re = 
100, com malhas de 11x11 e 21x21 volumes. Observa-se claramente que em todos os casos houve 
uma excelente concordância com os resultados obtidos por Guia et al. (1982). O PRIME e o 
SIMPLE apresentaram comportamento semelhante. Já a solução obtida com o método CVFEM 
(formulação acoplada) com a malha 11x11 apresentou uma melhor concordância do que aquelas 
geradas pelas formulações segregadas, ficando muito mais próxima da solução benchmark. Isto se 
deve ao fato de que nesta metodologia, a ordem da descretização espacial ser aproximadamente de 
segunda ordem, Raw (1985). Deve ser observado que os métodos PRIME e SIMPLEC utilizam 
apenas quatro pontos vizinhos na discretização das equações de conservação. 

A Figura (6 b) apresenta o perfil de u ao longo de x = ½ para Re = 1000. O PRIME com WUDS 
obteve resultados ruins para malhas mais grosseiras (31x31 e 41x41 volumes), aproximando-se de 
modo razoável da solução benchmark apenas quando se empregou uma malha bastante fina, com 
101x101 volumes. Já o SIMPLEC com CDS teve um desempenho melhor, aproximando-se bastante 
da solução benchmark com uma malha de 51x51 volumes. O melhor resultado foi obtido com a 
formulação acoplada: mesmo com uma malha de 31x31 volumes já se observa nitidamente uma 
excelente concordância com a solução de referência. 
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Fig. 6. Perfil de u em x = ½: (a) para Re 100; (b) para Re 1000. 

 
Com relação ao tempo de processamento, entretanto, os programas com a implementação das 

metodologias segregadas tiveram um desempenho muito superior àquele apresentado pelo código 
com o CVFEM. A exceção foi o PRIME com WUDS, para Re 1000, o qual exigiu uma malha 
muito fina (101x101 volumes) para se obter uma solução razoável. Neste caso, o tempo de 
processamento foi de aproximadamente 5 horas e meia. O CVFEM, como precisou de uma malha 
de apenas 31x31 volumes, consumiu quase uma hora. Com essa mesma malha, obteve-se a solução 
com o SIMPLEC e o PRIME em menos de 30 segundos, uma diferença muito grande. 
Considerando-se a qualidade do resultado, o SIMPLEC obteve uma solução bastante razoável com 
uma malha de51x51 volumes em aproximadamente 54 segundos. 

Mesmo para Re =100, os tempos de processamento exigidos pelo CVFEM foram muito 
superiores àqueles apresentados pelo SIMPLEC e o PRIME. A malha de 11x11 volumes precisou 
de 50 segundos para atingir a convergência, enquanto as formulações segregadas obtiveram o 
resultado em menos de 1 segundo. Com a malha de 21x21 volumes, a formulação acoplada precisou 
de quase 6 minutos, enquanto as segregadas aproximadamente 10 segundos. Os tempos de 
processamento para as várias malhas e formulações empregadas estão nas Tabs. (1) e (2). 
 

Tabela 1. Tempo de processamento em segundos, problema da cavidade recirculante, Re = 100. 
 

PRIME (WUDS) SIMPLEC (CDS) CVFEM 
11x11 21x21 11x11 21x21 11x11 21x21 

~1 7 ~1 7 50 354 
 

Tabela 2. Tempo de processamento em segundos, problema da cavidade recirculante, Re = 1000. 
 

PRIME (WUDS) SIMPLEC (CDS) CVFEM 
31x31 41x41 81x81 101x101 31x31 51x51 31x31 

30 180 5400 181800 25 54 3480 
 

O problema do escoamento entre placas planas e paralelas foi resolvido para Re = 20, 
empregando-se o PRIME com função de interpolação WUDS e o CVFEM, ambos com uma malha 
de 31x11 volumes. Os perfis de u em x = 3 m (saída) e em x = 2,8 m são apresentados na Fig. (7). 
Observa-se que, para ambas as formulações, os resultados foram muito satisfatórios: o perfil de u se 
desenvolveu completamente. Do mesmo modo que aconteceu para o problema da cavidade, o 
CVFEM apresentou resultados melhores para a mesma malha. Com relação ao tempo de 
processamento, novamente se observou um desempenho muito superior da formulação segregada: o 
PRIME obteve a solução em menos de 5 segundos, enquanto o CVFEM precisou de quase 3 
minutos. 



Um fator importante que afeta diretamente os tempos de processamento é o fato de que a 
implementação do PRIME e do SIMPLEC utiliza alocação estática das variáveis, ou seja, toda a 
memória utilizada é definida e reservada pelo compilador antes da execução. Já a implementação do 
CVFEM usa extensivamente alocação dinâmica: durante a execução, em cada iteração, o programa 
localiza e reserva a quantidade de memória necessária, o que, logicamente, aumenta o tempo de 
processamento. Este fator pode ter sido uma das possíveis causas do desempenho inferior da 
metodologia acoplada. No entanto, deve-se ser salientado a qualidade da solução obtida, mesmo 
com malhas razoavelmente grosseiras. 
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Fig. 7. Perfis de u, problema do escoamento entre placas planas e paralelas, Re =20. 
 
As dificuldades de cada metodologia devem ser também consideradas. Nos esquemas 

segregados, conforme mencionado anteriormente, existe um forte acoplamento entre o campo de 
pressão e o de velocidade. Como resultado, o tratamento das não-linearidades das equações de 
conservação se torna mais difícil, uma vez que se deve obter separadamente um campo de pressão 
que origine velocidades que satisfaçam por sua vez a equação da continuidade. O passo de tempo 
empregado, nestes esquemas, mesmo em problemas em regime permanente, passa a exercer uma 
grande influência no processo de convergência. De fato, o SIMPLEC apresenta severas restrições 
quanto ao máximo ∆t que pode ser utilizado, Marcondes (1998). Por outro lado, os sistemas lineares 
resultantes demandam um menor esforço computacional, por iteração. 

Nas metodologias acopladas como a descrita neste trabalho, obtém-se a convergência 
praticamente de forma independente do passo de tempo escolhido, mesmo em problemas 
fortemente convectivos. Entretanto, como as equações são resolvidas simultaneamente, o sistema 
linear resultante requer um esforço computacional considerável, fator que no passado limitava o uso 
de tais esquemas. O rápido desenvolvimento dos computadores digitais, ampliando a capacidade de 
processamento e de memória, tem tornado o uso de tais métodos uma alternativa cada vez mais 
atraente. 

 
5. CONCLUSÕES 
 

O presente trabalho comparou o desempenho de duas metodologias segregadas (PRIME e 
SIMPLEC) e uma totalmente acoplada baseada em elementos. Ambas as metodologias são baseadas 
no método dos volumes finitos e empregam o arranjo co-localizado de variáveis. Da comparação 



dos resultados pode ser verificado que a metodologia acoplada produziu resultados satisfatórios 
com malhas razoavelmente grosseiras comparadas com aquelas das metodologias segregadas. 
Observou-se também que o SIMPLEC empregado o esquema CDS apresentou soluções comparadas 
àquelas obtidas com a solução simultânea. Salienta-se no entanto, que os tempos da solução 
simultânea foram quase sempre superiores àqueles obtidos com as duas metodologias segregadas. 
Deve-se ser destacado no entanto, que estas metodologias dependem grandemente do passo de 
tempo empregado, enquanto que a solução simultânea pode trabalhar com passos de tempo bastante 
elevados.  
 
6. REFERÊNCIAS 
 
Ghia, U., Ghia, K. N. e Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes 

equations and a multigrid method, Journal of Computational Physics, v. 48, pp. 387-411, 1982. 
Marcondes, F., Coutinho, B. G. e Duarte, R. N. C., Algoritmos para o Acoplamento Pressão-

Velocidade em Arranjo Co-Localizado, V CEM-NE98, Fortaleza, 1998. 
Maliska, C. R., 1995, “Transferência de Calor e Mecânica dos Fluidos Computacional”, LTC, Rio 

de Janeiro, Brasil. 
Patankar, S. V., 1980, “Numerical Heat Transfer and Fluid Flow”, Hemisphere/McGraw-Hill, New 

York, pp. 96-100. 
Raw, M. J., A new control-vloume-based finite element procedure for the numerical solution of the 

fluid flow and scalar transport equations, tese de doutorado, University of Waterloo, 1985. 
Raw, M. J. e Schneider, G. E., A skewed positive influence coefficient upwinding procedure for 

control-volume-based finite element convection-diffusion computation, Num. Heat Transfer, 9, 1-
26, 1986. 

Souza, J, A., Implementação de um método de volumes finitos com sistema de coordenadas locais para 
a solução acoplada das equações de Navier-Stokes, dissertação de mestrado, Universidade Federal 
de Santa Catarina, 2000. 

 
SOLUTIONS OF INCOMPRESSIBLE FLUID FLOW EMPLOYING 
COUPLED AND SEGREGATED ALGORITHMS 
 
André Luíz de Souza Araújo 
Universidade Federal do Ceará, Fortaleza - CE, araujoals@yahoo.com 
 
José Maurício Alves de Matos Gurgel 
Universidade Federal da Paraíba, João Pessoa - PB, gurgel@les.ufpb.br 
 
Francisco Marcondes 
Universidade Federal do Ceará, Fortaleza - CE, marconde@dem.ufc.br 
 
Abstract. Incompressible fluid flow can be treated by segregated or coupled algorithms. In the 
former one, momentum equations are used to evaluated velocities and continuity equation are 
employed to obtain pressure field. Nevertheless, segregated procedures produces a strong coupled 
between pressure and velocity fields, since it is necessary to obtain a pressure field that result in a 
velocity field that satisfy both momentum and continuity equations. There are several algorithms 
that solved the pressure and velocity coupling. To avoid the pressure and velocity coupling both 
equations can be solved simultaneously getting a linear system involving all the unknows. One 
procedure is that solves velocity and pressure is the CVFEM (Control Volume Based Finite Element 
Method). The goal of present work is to compare the segregated algorithms (PRIME – Pressure 
Imlicit and Momentum Explict and SIMPLEC) with the coupled CVFEM. The results will be present 
in terms of CPU time and velocity profiles. 
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