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Resumo. Escoamentos incompressiveis podem ser resolvidos através de formulagdo acoplada ou
segregada. No primeiro caso, as equacoes da conservacdo de movimento sdo utilizadas para se
avaliarem as componentes da velocidade, enquanto a da continuidade é empregada para se
determinar a pressao. Esta metodologia, contudo, acarreta um forte acoplamento entre os campos
de velocidade e de pressdo, uma vez que € necessario se determinar a distribuicdo de pressao que
origina velocidades que satisfacam as equacdes de conservacdo da massa e do movimento. Existem
diversos algoritmos disponiveis na literatura que tratam do problema do acoplamento pressao-
velocidade. Uma maneira de se evitar tal problema é resolver todas as equacdes simultaneamente,
obtendo-se assim um sistema linear envolvendo todas as variaveis. Este procedimento € largamente
empregado pelo método denominado Control Volume Based Finite Element Method — CVFEM. O
objetivo deste trabalho é comparar os algoritmos PRIME (Implicit Pressure Momentum Explicit) e
SIMPLEC (SMPLE Revised) com o CVFEM. Os resultados serdo apresentados sob a forma de
curvas de residuo das equagoes versus nimero de iteracdes, tempo de CPU, assim como perfis de
vel ocidade de problemas de benchmark sel ecionados.

Palavras-chave: Algoritmos acoplados e segregados, método CVFEM, escoamento
incompressivel, volumes finitos.

1. INTRODUCAO

Escoamentos incompressiveis podem ser resolvidos empregando-se duas formulagOes:
formulagéo segregada, em que as equacdes de transporte sdo resolvidas separadamente, associando-
Se uma equagao para 0 avanco de cada variavel do problema (quantidade de movimento em x ey
para u e v, respectivamente, e equacdo da continuidade para pressdo p, no caso 2D), ou de forma
acoplada, em que as equagdes governantes sdo resolvidas simultaneamente.

Na formulacdo segregada, existe um forte acoplamento entre o campo de velocidade e o de
pressdo, devido ao fato de que se deve determinar um campo de pressdo gue origine um campo de
velocidades que satisfaca as equacOes de conservacdo da massa e da quantidade de movimento,
Patankar (1980) e Maliska (1995). Uma outra opcéo é resolver todas as equaces simultaneamente,
Raw (1985), Souza (2000). Por outro lado, quando as equagdes sdo resolvidas ab mesmo tempo, o0
sistema linear a ser resolvido a cada iteragdo aumenta uma vez que no caso 2D, por exemplo, u, v e
p participam agora do sistema de equacdes. A solucéo acoplada da equacdo da continuidade e de
Navier-Stokes, entretanto, vem se tornando uma alternativa viavel e atraente, devido ao crescimento
da capacidade de processamento e de armazenamento dos computadores.

Este trabalho apresenta um estudo comparativo do desempenho da formulagdo acoplada e
segregada. Dois algoritmos bastante utilizados quando do emprego de metodologias segregadas, o
PRIME e o SIMPLEC e o método conhecido como CVFEM (Control Volume Finite Element
Method) desenvolvido por Raw (1985) que resolve as equacbes simultaneamente sdo utilizados.
Destaca-se que ambas metodologias, segregada e simultdnea, empregam armazenamento co-
localizado das variavels. Os resultados serao apresentados para dois problemas classicos em
Mecanica dos Fluidos, quais sgjam, o problema da cavidade recirculante e o do escoamento entre
placas planas e para elas.
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2. MODELO MATEMATICO

Para 0 caso de escoamento bidimensional, incompressivel e laminar, as equagbes de
conservagdo da massa, da quantidade de movimento e de um escalar qualquer utilizando a
convencéo de Einstein podem ser escritas, respectivamente, como,
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ondei ejvariandela?2 (parao caso 2-D) e ¢ é uma quantidade escalar qualquer.

3. TRATAMENTO NUMERICO

Apresentam-se, a seguir, os fundamentos do CVFEM. As metodologias PRIME e SIMPLEC séo
descritas em detalhes em Maliska (1995).

3.1 —Método dos Volumes Finitos Baseado em Elementos Finitos

No Método dos Volumes Finitos Baseado em Elementos Finitos, conhecida como CVFEM —
Control Volume Based Finite Element Method, desenvolvida por Raw (1985), resolve as equacdes de
transporte (massa e quantidade de movimento) simultaneamente. Nesta metodologia, 0s principios
dos métodos dos volumes finitos e de elementos finitos sGo combinados, resultando em um método
gue apresenta vantagens de ambos: esquema estritamente conservativo, discretizacdo das equacdes
governantes baseada em balancos de fluxos (volumes finitos), flexibilidade na discretizacdo de
geometrias complexas via mal has ndo-estruturadas (elementos finitos).

Uma caracteristica importante deste esquema numeérico é o fato de empregar como funcéo de
interpolacdo uma equacdo que é o andlogo direto da equacdo diferencia para a varidvel que esta4
sendo avaliada. Isto permite que se representem todos os processos fisicos relevantes do problema,
proporcionando estabilidade do processo de solucéo.

O dominio de calculo é fracionado em regides muito menores, denominados elementos, os quais
neste trabalho, sdo quadriléteros. Distribuem-se nés em cada vértice dos elementos. Todas as
incognitas do problema (componentes da velocidade, pressdo, temperatura etc) sdo localizadas
nestes nés, o que implicaem um arranjo co-localizado das variaveis.

Um simples elemento é tratado de forma isolada, independentemente dos demais, como é feito
no FEM padrdo. Dentro deste elemento, um sistema de coordenadas st local e ndo-ortogonal é
definido. As coordenadas set variam de—1 a 1, e os noés sdo numerados de 1 a4, Fig. (1).

O elemento € isoparamétrico, ou sgja, todas as variaveis fisicas e geométricas do problema sio
avaliadas em qualquer ponto interno ao elemento através da relacéo,
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Fig. 1. Definicdo do elemento.



onde @ representa uma variavel qualquer e os temos N; correspondem as chamadas fungdes de

forma, definidas por,
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As derivadas de @ em relacdo ax ey sdo definidas a partir da Eq. (3),
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As expressdes para as derivadas em relacéo a s e t das fungdes de forma sdo obtidas diretamente

dasEgs. (5) a(8).

Um volume de controle é criado para cada nd, Fig. (2), utilizando as linhass=0 et = 0 dos
elementos que estdo em volta do né como as faces do volume de controle. Cada elemento entdo
contém quatro quadrantes de quatro diferentes volumes de controle. Cada um desses quadrantes é
denominado sub-volume de controle (SCV —“ Sub-Control-Volume”) e estéo ilustrados na Fig. (3).
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Fig. 2. Definicdo do volume de controle.

Fig. 3. Definicdo dos sub-volumes de controle.

O processo de discretizacdo descrito resulta em volumes de controle internos definidos por oito
segmentos de reta, dois em cada um dos quatro el ementos que o “circundam” (quando a maha é
estruturada). A obtencdo das equagdes algébricas exige que integracbes sejam realizadas sobre a
superficie de controle. Estas integrais sdo avaliadas no ponto médio de cada segmento, os quais S0
denominados pontos de integracdo ou simplesmente ip (integration point), Fig. (4). Estes segmentos
de reta serdo referenciados como sub-superficies (SS).
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Fig. 4. Definicdo dos pontos de integracao e das sub-superficies de controle.
3.1.3 - Discretizacdo das Equacgdes Gover nantes

A discretizacdo das equacdes de transporte € mostrada detalhadamente em Raw (1985). Uma
breve descricéo do tratamento da equacdo da conservacdo da quantidade de movimento em x é
apresentada a seguir. No desenvolvimento que se segue, serdo apresentados apenas os resultados
referentes a0 SCV1, mostrado na Fig. (3), 0 qual apresenta duas superficies, SS1 e S$4, Fig. (4).
Nas equacdes seguintes, foi adotada a seguinte convencéo: variaveis mailsculas representam
valores nodais, minusculas, referem-se aos pontos de integragdo. O primeiro sobrescrito indica a
equacdo tratada (u para quantidade de momento em X, por exemplo), 0 segundo, a variavel que o
termo estd multiplicando. Os sobrescritos t, s, ¢ e d se referem, respectivamente, aos termos
transiente, fonte, advectivo e difusivo. O subscrito i indica o sub-volume de controle e j, 0 n6 ou
ponto de integracdo, dependendo da grafia do coeficiente, se em letra mailscula ou mindscula.



Integrando-se a EQ. (2) sobre um volume de controle, obtém-se,
pu dA+[\pu,u; Jdn; - uBa—+— n. +( pdn, —[s, dA=0 (13)
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onde i = 1 corresponde & equacio da quantidade de movimento em x e dii=—dxi +dyj é o vetor
normal a superficie de controle. Considerando-se o sub-volume de controle 1 SCV1, Fig. (3),
tem-se,
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O sobrescrito * na Eg. (16) indica que o termo é avaliado na iteracdo anterior. Os fluxos
convectivos e difusivos, para o SCV1, sdo avaliados nos pontos de integracéo 1 e 4, Fig. (4). Os
termos difusivos sdo cal culados como,
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As contribui¢des de S$4 podem ser determinadas de modo semelhante, de modo que,
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O termo de pressdo € escrito como,
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) dalj nalmente, a partir das Egs. (14) a (19), obtém-se a “equagdo” para o SCV, que de forma geral
€ dada por,
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Os valores de u nos pontos de integracdo sao avaliados empregando-se funcdes de interpolacéo
completas, as quais correspondem ao andlogo direto da equacao diferencial referente a variavel em



guestdo. Detalhes podem ser encontrados em Raw (1985) e Souza (2000). Em forma matricial, tem-
se

i =lcc* fu} +lcc {B +{rec] (22)

A pressdo nos ips é avaliada atraveés das funcdes de forma, de modo que,
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onde CC™=N, |ipi . Substituindo-se as Egs. (23) e (24) em (22), obtém-se, finalmente,
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A equacdo anterior pode ser reescrita em umaformamais compacta:

[~ o} + e~ Jo} +[E* {A ={r} (25)

Na equacdo matricial acima, cada linha representa a contribui¢éo de um sub-volume de controle
a correspondente equacdo do volume de controle nodal. Assim, a Eq. (21) néo representa a equagao
para um simples volume, mas sim quatro contribuicdes para quatro equacgdes diferentes. A equagao
fina de cada volume é obtida através de um processo posterior de montagem, levando em
consideracao a contribuicdo de cada el emento.

4. RESULTADOSE DISCUSSOES

Conforme mencionado anteriormente, dois problemas classicos em Mecanica dos Fluidos foram
selecionados para se compararem as formulacfes segregada e acoplada. S&o eles o problema da
cavidade recirculante e o do escoamento entre duas placas planas e paralelas. A Fig. (5) apresentaas
geometrias e condigdes de contorno utilizadas.

O problema da cavidade foi resolvido para dois valores de nimero de Reynolds, 100 e 1000,
baseado no comprimento da cavidade e na velocidade da tampa moével (admitidas unitarias). O caso
do escoamento entre placas planas e paralelas foi resolvido para Re = 20, baseado na distancia entre
as placas e na velocidade de entrada (também assumidas iguais a unidade). Todos os casos
empregando-se formulagdo acoplada Egmétodo CVFEM) foram obtidos adotando-se o seguinte
critério de convergéncia: €,e €, <10, onde,

(26)
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Fig. 5. Geometria e condi¢des de contorno: (a) cavidade recirculante; (b) escoamento entre placas
planas e paralelas.

Todas as solugdes apresentadas a seguir foram obtidas empregando-se 0 método CVFEM, o
PRIME, com funcéo de interpolagdo WUDS e o SIMPLEC, com fungdo de interpolagdo CDS.
Detal hes das metodol ogias PRIME e SIMPLEC podem ser encontradas em Maliska (1995).

A Figura (6 a) apresenta o perfil de u ao longo da linha média da cavidade, x = 2 ,para Re =
100, com malhas de 11x11 e 21x21 volumes. Observa-se claramente que em todos os casos houve
uma excelente concordancia com os resultados obtidos por Guia et a. (1982). O PRIME e o
SIMPLE apresentaram comportamento semelhante. Ja a solucdo obtida com o método CVFEM
(formulagdo acoplada) com a maha 11x11 apresentou uma melhor concordancia do que agquelas
geradas pelas formulacbes segregadas, ficando muito mais proxima da solucdo benchmark. Isto se
deve ao fato de que nesta metodologia, a ordem da descretizacao espacial ser aproximadamente de
segunda ordem, Raw (1985). Deve ser observado que os métodos PRIME e SIMPLEC utilizam
apenas quatro pontos vizinhos na discretizacdo das equagdes de conservacao.

A Figura (6 b) apresenta o perfil de u ao longo de x = ¥z para Re = 1000. O PRIME com WUDS
obteve resultados ruins para malhas mais grosseiras (31x31 e 41x41 volumes), aproximando-se de
modo razoavel da solucdo benchmark apenas quando se empregou uma malha bastante fina, com
101x101 volumes. JAo SIMPLEC com CDS teve um desempenho melhor, aproximando-se bastante
da solucéo benchmark com uma malha de 51x51 volumes. O melhor resultado foi obtido com a
formulacdo acoplada: mesmo com uma malha de 31x31 volumes j& se observa nitidamente uma
excelente concordancia com a solucéo de referéncia.
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Fig. 6. Perfil de u em x =¥z (@) para Re 100; (b) para Re 1000.

Com relacdo ao tempo de processamento, entretanto, os programas com a implementacéo das
metodol ogias segregadas tiveram um desempenho muito superior agquele apresentado pelo codigo
com o CVFEM. A excecdo foi o PRIME com WUDS, para Re 1000, o qual exigiu uma malha
muito fina (101x101 volumes) para se obter uma solugdo razoavel. Neste caso, 0 tempo de
processamento foi de aproximadamente 5 horas e meila. O CVFEM, como precisou de uma malha
de apenas 31x31 volumes, consumiu quase uma hora. Com essa mesma malha, obteve-se a solugédo
com o SIMPLEC e o PRIME em menos de 30 segundos, uma diferenca muito grande.
Considerando-se a qualidade do resultado, 0 SIMPLEC obteve uma solucéo bastante razodvel com
uma malha de51x51 volumes em aproximadamente 54 segundos.

Mesmo para Re =100, os tempos de processamento exigidos pelo CVFEM foram muito
superiores aqueles apresentados pelo SIMPLEC e o PRIME. A malha de 11x11 volumes precisou
de 50 segundos para atingir a convergéncia, enquanto as formulagdes segregadas obtiveram o
resultado em menos de 1 segundo. Com a malha de 21x21 volumes, a formul acéo acoplada precisou
de quase 6 minutos, enquanto as segregadas aproximadamente 10 segundos. Os tempos de
processamento para as varias malhas e formul agbes empregadas estéo nas Tabs. (1) e (2).

Tabela 1. Tempo de processamento em segundos, problema da cavidade recirculante, Re = 100.

PRIME (WUDS) SIMPLEC (CDS) CVFEM
TIX1T 21x21 TIX1T 21x21 TIX1T 2Ix21
-1 7 -1 7 50 354

Tabela 2. Tempo de processamento em segundos, problema da cavidade recirculante, Re = 1000.

PRIME (WUDS) SIMPLEC (CDS) CVFEM
3IX31 AIx41 81x81 101x101 3Ix31 5IX51 3Ix31
30 180 5400 181800 25 54 3480

O problema do escoamento entre placas planas e paralelas foi resolvido para Re = 20,
empregando-se o PRIME com funcdo de interpolagdo WUDS e o CVFEM, ambos com uma malha
de 31x11 volumes. Os perfis de u em x = 3 m (saida) e em x = 2,8 m sdo apresentados na Fig. (7).
Observa-se que, para ambas as formulagdes, os resultados foram muito satisfatorios: o perfil de u se
desenvolveu completamente. Do mesmo modo que aconteceu para 0 problema da cavidade, o
CVFEM apresentou resultados melhores para a mesma maha. Com relagdo ao tempo de
processamento, novamente se observou um desempenho muito superior da formulacdo segregada: o
PRIME obteve a solugdo em menos de 5 segundos, enquanto o CVFEM precisou de quase 3
minutos.



Um fator importante que afeta diretamente os tempos de processamento € o fato de que a
implementa?éo do PRIME e do SIMPLEC utiliza alocagdo estatica das variaveis, ou sgja, toda a
memoria utilizada é definida e reservada pelo compilador antes da execucéo. Jaaimplementacdo do
CVFEM usa extensivamente alocacéo dindmica: durante a execucao, em cada iteragcdo, o programa
localiza e reserva a quantidade de memoria necess&ria, 0 que, logicamente, aumenta o tempo de
processamento. Este fator pode ter sido uma das possivels causas do desempenho inferior da
metodologia acoplada. No entanto, deve-se ser salientado a qualidade da solucao obtida, mesmo
com mal has razoavel mente grosseiras.
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Fig. 7. Perfis de u, problema do escoamento entre placas planas e paralelas, Re =20.

As dificuldades de cada metodologia devem ser também consideradas. Nos esguemas
segregados, conforme mencionado anteriormente, existe um forte acoplamento entre o campo de
pressao e o de velocidade. Como resultado, o tratamento das ndo-linearidades das equactes de
conservagdo se torna mais dificil, uma vez que se deve obter separadamente um campo de pressao
gue origine velocidades gque satisfagcam por sua vez a equacdo da continuidade. O passo de tempo
empregado, nestes esquemas, mesmo em problemas em regime permanente, passa a exercer uma
grande influéncia no processo de convergencia. De fato, o SIMPLEC apresenta severas restricoes
guanto ao maximo At que pode ser utilizado, Marcondes (1998). Por outro lado, os sistemas lineares
resultantes demandam um menor esfor¢o computacional, por iteracéo.

Nas metodologias acopladas como a descrita neste trabalho, obtém-se a convergéncia
praticamente de forma independente do passo de tempo escolhido, mesmo em problemas
fortemente convectivos. Entretanto, como as equagdes sdo resolvidas simultaneamente, o sistema
linear resultante requer um esforco computacional consideravel, fator que no passado limitava o uso
de tais esquemas. O rpido desenvolvimento dos computadores digitais, ampliando a capacidade de
processamento e de memoria, tem tornado o0 uso de tais métodos uma alternativa cada vez mais
atraente.

5. CONCLUSOES
O presente trabalho comparou 0 desempenho de duas metodologias segregadas (PRIME e

SIMPLEC) e uma totalmente acoplada baseada em elementos. Ambas as metodol ogias sdo baseadas
no método dos volumes finitos e empregam o arranjo co-localizado de varidveis. Da comparacdo



dos resultados pode ser verificado que a metodologia acoplada produziu resultados satisfatorios
com mahas razoavelmente grosseiras comparadas com aguelas das metodologias segregadas.
Observou-se também que o SIMPLEC empregado o esqguema CDS apresentou solucdes comparadas
aquelas obtidas com a solugdo simulténea. Salienta-se no entanto, que os tempos da sol:(?éo
simultanea foram quase sempre superiores aqueles obtidos com as duas metodologias segregadas.
Deve-se ser destacado no entanto, que estas metodologias dependem grandemente do passo de
tgmg(é empregado, enquanto gue a solucéo simultanea pode trabalhar com passos de tempo bastante
evados.
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Abstract. Incompressible fluid flow can be treated by segregated or coupled algorithms. In the
former one, momentum equations are used to evaluated velocities and continuity equation are
employed to obtain pressure field. Nevertheless, segregated procedures produces a strong coupled
between pressure and velocity fields, since it is necessary to obtain a pressure field that result in a
velocity field that satisfy both momentum and continuity equations. There are several algorithms
that solved the pressure and velocity coupling. To avoid the pressure and velocity coupling both
equations can be solved simultaneously getting a linear system involving all the unknows. One
procedure is that solves velocity and pressure is the CVFEM (Control Volume Based Finite Element
Method). The goal of present work Is to compare the segregated algorithms (PRIME — Pressure
Imlicit and Momentum Explict and SMPLEC) with the coupled CVFEM. The results will be present
in terms of CPU time and vel ocity profiles.

Key-words: Coupled and  segregated  algorithms, Element-Based-Finite-Volume
Method,incompressible fluid flow.
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