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Abstract. Integral equations formulation for steady flow problems of a viscous fluid is presented 
based on the boundary elements Method (BEM). The Continuity, Navier Stokes and Energy 
equations are used for calculation of the flow field. The governing differential equations, in terms of 
primitive variables, are derived using velocity-pressure-temperature formulation. The related 2-D 
fundamental solution tensors are derived. Applications to simple flow cases, such as the driven 
cavity, step and deep cavity are presented. Convergence difficulties are indicated, which have 
limited the applications to flows of low Reynolds numbers. 
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1.INTRODUCTION. 
 

The need for solution of the system of partial differential equations which model the flow of 
a fluid in channels such as pipes, blade passages, nozzles and others, appeared the very day the fluid 
flow was modeled. The difficulties involved in obtaining closed solutions, even for very simple 
flows, required the development of clever techniques, but only with the application of numerical 
solutions to those equations system, some flows of practical interest were calculated. Several 
computational techniques have been used. Finite difference, finite element, finite volume and 
boundary element are among those, just to name the most known. As new algorithms were 
discovered and faster computers were produced, each of those methods evolved in all areas in the 
past years. Finite difference methods have been, and already are, implemented to solve flow 
problems. Finite elements gained attention in the past decades; in the seventies it was still crawling. 
Both are bases for commercial codes for the solution of flows of almost every kind. Computer effort 
has been limiting the application of the numerical methods in the sense that every new discovered 
method of solution claims reduction in CPU time and storage requirements, but the reasons that 
these methods are so CPU time and storage hungry are intrinsic. Nevertheless, the boundary 
element method has progressed differently depending on the areas where it has been applied - 
fastest in areas related to solid mechanics, slowest in the ones related to fluid mechanics. The 
method is similar to the finite element method. While the latter solves an algebraic equation system 
obtained from integrals over elements in which the volume is divided (finite element), the former 
solves integrals over the boundary of such elements (boundary element). Surface integrals are 
obtained by transformation of volume integrals using the Green-Gauss theorem. The boundary 
element technique may reduce the computational effort because of the problem deals with contour 
variables only. For the development of the computational code and the formulation of the problems, 
the works of Tosaka et. Al (1985), Kakuda and Tosaka (1988) and Tosaka and Fukushima were 
used. Despite integral methods were available many decades ago for the application to flow 
problems of practical interest, a comprehensive study of the formulation and application to flow 
problems are still being considered more recently, as they are expected to alleviate sensibly the 
storage and hopefully CPU time, because roughly the degrees of freedom is reduced in the 
boundary element method. 

Although this apparent advantage, requiring less computational effort when volume 
integrals are transformed into surface integrals, some disadvantages arise, such as higher 



mathematical complexity in order to get an usable computational formulation; the need for the 
calculation of infinite integrals; dense matrices whose inversion is more time consuming than the 
band matrices in the finite difference and finite element schemes. Application of the method to the 
calculation of flows, using the classical problems of a) stepped channel, b) box with moving lid, and 
c) deep cavity flow are presented. 
 
2. STATEMENT OF THE PROBLEM. 
 

Let Ω be a domain in R2 and Γ its closed boundary; in
r  be the normal vector to the boundary; 

the fluid be a perfect gas, incompressible and viscous; (x, y) be a point of domain. The steady state 
conservation equations in cartesian co-ordinates can be written as: 
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The variables are: 
 
u, v flow relative velocities in the x and y directions 
ρ, P, T static density, pressure and temperature 
µ, ν absolute and cinematic viscosities 
k, vc , pc  thermal conductivity and specific heats at constant volume and 

pressure 
 

Let the following change of variable take effect in the conservation equations: 
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where ∞  refer to the far stream condition. Re and Pr are the Reynolds and Prandtl numbers, 
respectively. 

Then, the conservation equations become:  
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y-momentum 
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For the sake of simplicity, the asterisk will be dropped in what follows. 
The independent variables of the problem are u, v, T and P. It is possible to rewrite the 

conservation equations in matrix form as 
 

[L] {U} ={B} (7)
 
where [L] is a linear partial differential operator, {U} = { }tPTvu is the vector of the unknowns  
and {B} the vector of nonlinear convected terms. Depending on the assumptions made, [L] and {B} 
can take different forms. For instance, vector {B} can be linearised and the linear terms included in 
[L]. 

Let, for the moment, all non-linear terms be included into {B}. Then 
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(I, J=1, 2, 3, 4) 
For the sake of simplification, let 
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3. THE METHOD. 
 

It is not known any analytical solution of equation (7). Let JU~  be an approximate solution in 
the sense of 0~

≅=− RBUL IJIJ , that is, JU~  differs from JU  very little but it is not equal to JU . 
A possible solution can be obtained provided that 
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where IKW  is an appropriate weight function. As it will be shown later, IKW is chosen as the 
fundamental solution tensor for the adjoint of IJL . 

Hörmander´s (1965) method is used for the calculation of the weight function and 
fundamental solution. Although it does not provide IKW  directly, it allows, as a first step, the 
combination of several partial differential operators IJL  into a single differential operator, from 
which the tensor IKW  is calculated. The weight tensor JKW or the fundamental solution may be 
determined as a solution of steady Stokes problem with heat transfer: 
 



0)( =−δδ+ yxWL IKJKIJ  (11)
 
where )( yx −δ  is the Dirac delta function and IJL  is the adjoint operator of IJL . 

Hörmander’s method is simultaneously applied to the Navier Stokes equations, continuity 
and energy for incompressible and steady flow: 
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After a left multiplication of equation (11b) by 1][ −L  one finds [W]: 
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whose terms are ij
ji

ij mx )()1( +−= , where the terms ijm are the minors of [L], and 
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Thus, 
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Let 
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Then 
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whose solution *φ  is: 
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where yxr −=  denotes the distance between x and y. 

Therefore, the fundamental solution tensor JKW can be determined explicitly from equations 
(13) and (16) in conjunction with (19) as follows: 

 











 −
++

π
=

2

2

11
)(

1)ln(
4
1

r

yy
rW i  







 −
π

−=
242

)(
2
1

r

yy
W i  








 −−
π

−=
221

)()(
4
1

r

yyxx
W ii  432313 WWW ==  

031 =W  )ln23(
4
Re

33 rW +
π

=  










 −
π

=
241

)(
2
1

r

xx
W i  







 −
π

=
214

)(
Re2

1
r

xx
W i  

2112 WW =  






 −
π

=
224

)(
Re2

1
r

yy
W i  











 −
++

π
=

2

2

22
)(

1)ln(
4
1

r

xx
rW i  4434 WW =  

032 =W                                                     (20) 

 
4. DISCRETIZATION 
 

Let the Green-Gauss theorem be applied to equation (10) so that the domain integral is 
transformed into an integral over the contour Γ , divided into ne boundary elements. Then, 
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which tells that the system of differential equations has been transformed into a system of algebraic 
equations (21) that involves the values of the variables at each boundary element. If one finds the 
values of the variables at the elements in the boundary, the solution n the boundary is obtained. 

After the application of the Green-Gauss theorem and integrating by parts overΩ, one 
arrives at the following equation that holds for every boundary element as well: 
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where summation is implied by repeating indices. 
It is worth mentioning that the second member of equation (22) comprises integrals over the 

boundary and over the domain, these due to the non-linear convective terms IB . 
In equation (22), IKC  is the tensor coefficient dependent on the geometry of the boundary. Its 

value is ½, 1 or 0, provided the point y lies over a locally regular boundary, in the domain or outside 
the boundary, respectively. If y lies at a corner of Γ , its value is πα 2 , where α  is the angle formed 
by the left and right tangents to Γ . Also, 
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where the coma (,) indicates derivative with respect to the following index and summation is 
implied by repeating indices. 

From equation (24) the values of IK∑  are calculated: 
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For constant boundary element, one has 
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Substituting the indicated expressions into equation (22): 
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Since the constants terms listed in equation (28), for each element, can be factored, the system 

of algebraic equations becomes then evident. 
 
5. NUMERIC IMPLEMENTATION. 
 
Boundary: Let the boundary Γ be divided into m constant elements, with the collocation points 
(nodes) located at mid position of each element. Application of equation (29) to m nodes gives a set 
of 4m equations with 4m unknowns. For the solution of this system of equations two auxiliary 
matrices are assembled, for each element: 
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from which 
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Integrals (32) and (33) are carried out numerically, using one-dimensional Gaussian 
quadrature, if YX ≠ . When X =Y  the integrands of (32) and (33) become infinite, requiring the 
calculation in the sense of Cauchy principal value. Among several techniques available to perform 
these calculations, in this work the method of Telles6 was chosen. 
Domain: To calculate the integrals over Ω, the domain is divided into M elements by an appropriate 
net. Triangular cells will be used in this work. 
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Gauss quadrature is also used. ωj is the Gauss weight function at point j, SΩe is the area of 

element e, and J is the number of Gauss integration points. Hammer technique, as described by 
Partridge et al7, with seven integration points in each triangular cell of the sub domain, was used to 
determine the domain integral. 

In equation (29) the values ii Tu ,  are known; iτ  and iq  are unknown gradients of velocity 
and temperature. 

Defining 
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equation (29) is rewritten as 
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Boundary conditions : The application of the boundary conditions to equation (37), it is worth 
noting that elements of δ and of τ have some prescribed values. Therefore it is convenient to 
rearrange δ and τ such that the unknowns come first and then the prescribed values, that is, 
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Rearrangement of matrices ][H , [G] and {D } accordingly, results in 
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Rearrangement of equation (39) such that only the unknowns are in the left side, gives 
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Matrix [A] is dense so that inversion is time consuming. The inversion is carried out using 

the Gauss elimination algorithm. Solution of equation (40) gives the values of the unknowns on  the 
boundary. 
Computer Program: A modular computer program has been developed that is able to handle 
geometries composed of rectangles, written in FORTRAN and run in a 2.0 GHz personal computer. 
The computer program implementation was carried out with the following steps: 

- Definition of the geometry by a combination of rectangles. 
- Boundary discretization using elements of same size. 
- Domain grid generation using triangular elements. 
- Numbering elements counterclockwise. 
- Imposition of the boundary conditions and initialization of domain variables (velocity, 

temperature and pressure) using reasonable guesses according to the problem being 
solved. 

- Assembly of matrices egαβ  and ehαβ  for each element e. 
- Assembly of matrices [G] and [H] for all elements on the contour. 
- Numeric evaluation of domain integrals equation (34). 
- Solution of equation (40) for the determination of the variables on the boundary. 
- Solution of equation (22) at internal nodes, with KIC =1. 

 
6. APPLICATION. 
 

For the demonstration of the method applicability, three problems were chosen: a) the 
recirculating flow in a square cavity driven by a lid sliding at uniform velocity, b) the flow facing a 
forward step and c) the flow over a deep cavity. In the situation (b) and (c) are consider heat transfer 
with forced convection for low Reynolds number. 

Driven cavity flow: The flow in the box is depicted using streamlines, as shown in Fig. 1. 
The boundary conditions are the no-slip in the box boundaries, that is, zero at the non moving 
surfaces and the velocity of the moving slid at the upper surface. Constant temperature was set on 
the boundary. Grid for Fig. 1a is 40×40 and for Fig. 1b is 30×30. Criteria of convergence were 
based on the difference between the previous and the current calculated values for velocities, 
pressure and temperature. Convergence was achieved up to Reynolds number of 400. Recirculation 
was detected at the bottom-right of the cavity. 

Flow in a stepped channel: Streamlines of the flow in a forward facing step is shown in Fig. 
2a. Boundary conditions are: parabolic distribution of velocities at inlet, no-slip condition on the 
walls and constant wall temperature. The results shown are for a grid of 26×30. The predicted 
reattachment point is in agreement with other predicted numerical methods such as the volumes 
finite methods, see Fig 2.b.(De Lemos, Rocamora ) 

In figures 3 and 4 the temperature contour is show when the upper surface is heated, and 
other are kept constant. According to this, the results of the temperature field are immediately 
obtained, due do to the consideration the fundamental tensors and the fundamental solutions 
coupled energy equation. 

Deep cavity flow: Figure 4a shows the streamlines for Re=10, grid 40× 40 and ε = 0.0001, 
where one can see satisfactory results but with a mesh moderately refined with a grid of 20× 20 and 
ε = 0.00001, it is also possible to obtain good results in short processing time, (Figure 4.b). For 
methodology validation, the finite volume method was used with refined grid in the corner regions 
(Figure 4c). The computational processing time was also compared and it was concluded that the 
method of boundary elements is faster when compared to method finite volumes. Finally, in Fig. 5 
one can see the comparison with the different velocity distributions obtained from BEM and FVM. 
 The velocities were taken from the middle of the cavity. It is important to notice that the 
Boundary Elements Method with a grid of 20×20, gives good result when compared to the Method 
of Finite Volumes. Applications such as the flow field in turbines and compressors, or in 
turbomachinery in general, cannot be studied with this formulation because of low Reynolds 
number restriction, but are being studied with a new formulation using linearization of the terms B 
of Eq. (10). This may became very attractive if one considers the low computational coast due to 
the variables which would be analyzed under boundary regardless the use of refined grids. 
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Figure 1a: Streamlines in the driven cavity flow 

a) Re = 300, grid 40×40, ∈=0.0001 
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Figure 1a: Streamlines in the driven cavity flow 

b) Re = 400, grid 30×30, ∈=0.001. 
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Figure 2a. BEM. Streamlines in the channel              Figure 2b. MFV. Streamlines in the channel       
flow, Re = 30, grid 26×30, ∈=0.0001                        flow, Re = 30, grid 26×30,  
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Figure 3a.- Chanel flow contour temperature 
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Figure 3b. Channel flow deep contour temperature 
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Figure 4b - Streamlines in the deep cavity flow 

Re = 10, grid 40x40, ∈=0.0001 
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Figure 4d - Streamlines in the deep cavity flow 

Re = 10, grid 20x20, ∈=0.00001 
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Figure 4.c.-MFV Streamline in deep cavity flow       Figure 5.- Velocities distribution u in 
                  Re=10, grid 20×20, ε= 0.0001  medium section of deep cavity flow 
 
 
7. CONCLUSION. 
 

The boundary element method can be applied to the calculation of incompressible viscous 
flows as demonstrated above. Although coarse grids were used, the results are quite satisfactory, 
capturing regions of reverse flows. Comparison of CPU times for the boundary element method and 
for a finite difference scheme indicated that the results obtained for the boundary element 
calculations are much faster. Consequently, it is important to investigate other applications such as 
the flow in blade passages and the ultimate goal for the research under way. Those problems require 
a method that converges for much higher Reynolds number, study that this being developed. 
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