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Resumo. O presente trabalho apresenta resultados referentes a um escoamento laminar
completamente desenvolvido através de uma matriz porosa, sendo esta modelada como um arranjo
periédico composto de hastes quadradas. O objetivo deste trabalho é validar a metodol ogia através
da comparacdo com os valores encontrados na literatura e investigar a influéncia da porosidade,
do numero de Reynolds e da morfologia no comportamento da queda de pressao macroscopica. As
equacdes que regem o escoamento sdo discretizadas através do método de volumes finitos e o
sistema de equacdes algébrico € resolvido pelo método SIP. Para o acoplamento pressio-
velocidade, 0 método SSMPLE é aplicado.

Palavras-chave: matriz porosa, solucdo numérica, escoamento laminar, hastes sdlidas,
propriedades macroscopica.

1. INTRODUCAO

Em funcéo da grande aplicacéo tecnoldgica envolvendo o escoamento de fluidos em meios
porosos, € de extrema importancia o estudo do comportamento macroscépico das propriedades ao
longo da estrutura porosa.

Kuwahara et. al. (1994) e Nakayama et. al. (1995) testaram varios model os numéricos de meios
porosos formados por hastes cilindricas, quadradas e esféricas, e encontraram que o modelo bi-
dimensional e o tri-dimensional levam a expressoes semel hantes para a permeabilidade.

Kuwahara et. al. (1998), utilizando um modelo de turbuléncia de baixo Reynolds (modelagem
microscopica), resolveram 0 escoamento interno a um meio poroso infinito formado por hastes
quadradas com um arranjo espacialmente periodico. Eles constataram a presenca de turbuléncia
para Re;>10" e que, nessas condicBes, 0 modelo estendido Darcy-Forchheimer apresenta bons
resultados.

Pedras e de Lemos (2001a-b) desenvolveram um modelo macroscdpico de turbuléncia onde uma
constante foi introduzida na equacdo da energia cinética de turbuléncia. O valor desta constante foi
obtido através de experimentacdo numérica aplicada a um meio poroso formado por hastes
cilindricas com um arranjo espacia mente periddico. Esta constante foi gjustada para hastes elipticas
longitudinais e transversais em Pedras e de Lemos (2001c) e Pedras e de Lemos (2003).

Prinos et. al. (2003) analisaram numérica e experimentalmente as caracteristicas do escoamento
turbulento em um canal aberto com uma camada porosa, donde concluiram que a estrutura da
camada porosa (“staggered” e “non-staggered’) tem pouca influéncia na caracteristica do
escoamento proximo ainterface entre os meios limpo e poroso.



Este trabalho além de validar a metodol ogia numérica empregada através da comparacdo com
os dados de Kuwahara et. al. (1998), investiga a influéncia da porosidade, do nimero de Reynods e
da morfologia da matriz porosa no comportamento da queda de pressdo macroscopica.

2. MODELO MATEMATICO
2.1 GEOMETRIA E CONDICOESDE CONTORNO

O escoamento em consideracdo € esguematicamente mostrado na Figura 1a, sendo o meio
poroso formado por hastes quadradas com arranjo espaciamente periédico. Este tipo de meio
poroso satisfaz a condicdo de homogeneidade e, dependendo do angulo de incidéncia do
escoamento, sua permeabilidade pode ser representada por uma constante (“isotropia’). A estrutura
deste meio poroso infinito serd representada por uma Unica célula com condicBes de contorno
simétricas e periodicas (Figura 1b).
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Para que o escoamento fosse macroscopicamente desenvolvido e unidimensional na direcéo
longitudinal, x, foram aplicadas, na célula periddica (Figura 1b), as seguintes condi¢des de contorno
para as equacdes (3) e (4):



Nas paredes das hastes,

u=0 1)

em y=0 e y=H linhas de simetria:

Uymo = U Vo =Vl =0 )
2.2 EQUACOES GOVERNANTES

A equacao da continuidade microscopica para um fluido incompressivel € dada por:

N.u=0 ©)

A equacdo da quantidade de movimento (Navier-Stokes) para um fluido com r e mconstantes,
pode ser escrita como:

éfu | « u & o2
r =— +N.(uu);=- Np + niN?u 4
i ( )H p (4)

3. METODO NUMERICO

O método numeérico utilizado para a resolucdo das equacdes que integram 0 modelo do
escoamento € baseado num codigo computacional em volumes finitos em coordenadas
generalizadas, embora a malha utilizada seja cartesiana. A Figura 2 mostra um volume de controle
genérico juntamente com as coordenadas generalizadas h-x. A discretizacdo de uma equacdo de
conservagao bidimensional e em regime permanente para uma quantidade | qualquer, pode ser
expressa como:

Figura2: Notagéo e Volume de Controle.

l+1,+1,+1,=§ )



l., I, I, el representam, respectivamente, os fluxosde | faces leste, oeste, norte e sul do
volume de controlee S o seu termo fonte. Uma divulgagado da metodol ogia numerica desenvolvida

esta apresentada em Pedras e de Lemos (2001b). Neste trabalho, todos os resultados numéricos
foram convergidos até que os valores dos residuos para as variaveis dependentes do problema
atingissem um valor menor que 10, onde o residuo é definido como a diferenca entre o lado
esguerdo e o direito da equacao algébrica correspondente.
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4. RESULTADOSE DISCUSSAO

:|uD|H
n
viscosidade cinemética, H é o comprimento caracteristico, u, €é a velocidade de Darcy ou

2
superficial e o valor daporosidade, f =1- % , onde H é aalturado canal e D € o tamanho do lado

Os calculos foram efetuados variando o numero de Reynolds, Re,, ,onden éa

da haste quadrada.
Usando a relagdo de Dupuit-Forchheimer, u, =f (u)' chega-se a velocidade de Darcy, onde
<u>i ¢ amédia intrinseca. A média intrinseca é a média volumétrica de uma propriedade qual quer,

] , associada ao fluido, ponderada pelo volume de fluido DVs, contido num volume elementar
representativo, DV
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Figura 3: Queda de pressdo como funcédo do Rey paraa célula da Figura 1b.

Na Figura 3 o termo (d&pfi /dx) ,, representa o gradiente adimensional da média intrinseca da

~

pressao,



(7)

sendo que o gradiente da média intrinseca da presséo foi calculado através do campo de pressdo
microscopico,
dapi 1
dx 2H(H - D)

-0
@/2 ﬂ( p|x:2H } p|x:0)dy (8)

Resultados para a queda de pressdo em um largo intervalo de Rey sdo apresentados na Figura 3,
sendo esses comparados com os resultados de Kuwahara et. al. (1998) e Pedras e de Lemos
(2001b). Os resultados obtidos para escoamento laminar e para ambos os modelos de turbuléncia
usados (low and high Re) apresentaram uma boa concordancia com os dados numéricos de
Kuwahara et. al. (1998) mostrados. Como esperado, os resultados apresentados por Pedras e de
Lemos (2001b) apresentaram valores de pressdo ligeiramente menores que os agqui apresentados.
Isto parece ser devido a morfologia da estrutura porosa, que foi simulada utilizando um arranjo
infinito de hastes cilindricas.

A Figura 4 apresenta resultados para o efeito de Rey e f para o gradiente de presséo
adimensional. Para a mesma vaz&o a figura indica que a queda de pressdo aumenta com a reducao

da porosidade, isto € uma reducdo de f implica no aumento de (u)i para manter a mesma

velocidade de Darcy, u, . Além disso, comparando com os dados de Pedras e de Lemos (2001b)

para haste cilindrica, verifica-se que, para baixos valores de Reynolds, 0 comportamento da queda
de pressdo € similar. Para atos valores de Reynolds, porém, o efeito da morfologia comega a
aparecer através do distanciamento das curvas. Conforme esperado, o gradiente de presséo
necessario para superar aresisténcia do escoamento € aumentado.

As Figuras 5 e 6 mostram, respectivamente, o campo de velocidade e presséo para Rey=123,88
e f variando de 0,36 a 0,84. O tamanho dos vetores € uniforme para aumentar a visualizagdo. O
escoamento acelera nas fronteiras superior e inferior da haste quadrada e descola atrés. O aumento
da pressdo nas paredes frontal, superior e inferior e recuperacdo apds o obstéculo. Para baixa
porosidade e mesma vaz&o, o tamanho da regiio de esteira é reduzido drasticamente. E importante
salientar que, devido ao aumento da vel ocidade de entrada, a queda de pressdo aumenta ao invés de
diminuir.
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Figura4: Gradiente da pressao adimensional como funcdo da porosidade, f e Rey.
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Figura 5: Campo de velocidade para Rey=123,88: a) f =0,36, b) f =0,64 e c) f =0,84.
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Figura 6: Campo de pressdo para Rey=123,88: a) f =0,36, b) f =0,64 e c) f =0,84
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A Tabela 1 apresenta as médias intrinseca e volumétrica da vel ocidade, o gradiente de pressdo e
média intrinseca calculada segundo a Equacéo (8), o nimero de Reynolds e permeabilidade da
estrutura porosa.

O vaor da permeabilidade, Knym, mostrado na Tabela 1, foi obtido pelo cdlculo do gradiente de
pressdo macroscopico através da célula periddica usando creeping flow, Rey<l, através da relagdo
linear entre a vazdo volumétrica e o gradiente de pressdo hidraulico proposta por Darcy, (1856), e



também utilizando a correlacdo para hastes quadradas proposta por Kuwahara et. al. (1998) que é
dada por:

f°D?
K=——F— 9
120(1- f )? ©

onde K é apermeabilidade, D € alturado obstéculo e, f € aporosidade.

Verificase que a permeabilidade, Knm, calculada, exceto para f=0,84, é maior que a
permeabilidade, Kyc, apresentada por Pedras e de Lemos (2001b) para haste cilindrica, com
porosidade f=0,80. Este comportamento se deve ao fato da permeabilidade ser funcdo da
morfologia da estrutura porosa e é coerente com a correlacfes para hastes quadrada e cilindrica
proposta em Kuwahara et. al. (1998).

Tabela. 1. Parametros para analise microscopica.

Porosidade Req  [auA [m/s]lup [mVs] |-RigpA [N/m®] [Permeabilidade [m]

_ T
0,38 1,53 1045,52° 10°11,71 10* K”“m‘§’78 ,10 6

£20.36 Keq (9=6,08" 10
o 10,00 2,27 1031,46" 10°4,61° 103 f =0,40 — cilindro
123,882,14° 10%1,80° 102[1,14" 10 Knhe=5,22" 10°®

_ , -5
0,38 18,63 1095,52° 10°2,13 10° K”“m‘f’m ,10 5

£ 20,64 Keq (9=6,07" 10
: 10,00 2,28 1091,46" 10°55,49" 10 f =0,60 - cilindro
123,882,81° 1091,80° 1022,14" 10 Knc=4,45 10°

S T wm=1,43" 10"

0,38 6,57 1095,52 10°/6,93 10 R
0 10,00 (1,74 101,46 1031,42" 10* f =0,80 — cilindro
123,882,14 10%1,80° 10255,21° 10°3 Kne=1,97 10*

5. CONCLUSAO

Neste trabalho foi mostrado a influéncia da porosidade f e do nimero Rey na queda de pressao
macroscopica. Foi também realizada a comparacéo deste trabalho com os resultados numeéricos de
Pedras e de Lemos (2001b) para hastes cilindricas com porosidade, f =0,80, evidenciando o efeito
da morfologia na queda de pressdo. Além disso, os resultados aqui apresentados foram comparados
com os dados apresentados em Kuwahara et. al. (1998), apresentando uma boa concordancia e
indicando, em Ultima andlise, a exatidao da metodol ogia numérica aplicada.
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Abstract. Present work show results that refer to fully developed laminar flow through a porous
media modeled as a spatially periodic array of square rods. The main objective of this work is to
validate the present results with those available in the literature and investigate the influence of the
porosity, Reynolds number and morphology on the behavior of the macroscopic pressure drop. The
eguations that govern the flow are discretized by control volume method and the obtained systems
of algebraic equation are solved by the method SP. For the pressure-velocity coupling SMPLE
method is applied.

Palavras-chave: porous matrix, numerical solution, laminar flow, solids rods, macroscopic
properties.



