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Resumo. O presente trabalho apresenta resultados referentes a um escoamento laminar 
completamente desenvolvido através de uma matriz porosa, sendo esta modelada como um arranjo 
periódico composto de hastes quadradas. O objetivo deste trabalho é validar a metodologia através 
da comparação com os valores encontrados na literatura e investigar a influência da porosidade, 
do número de Reynolds e da morfologia no comportamento da queda de pressão macroscópica. As 
equações que regem o escoamento são discretizadas através do método de volumes finitos e o 
sistema de equações algébrico é resolvido pelo método SIP. Para o acoplamento pressão-
velocidade, o método SIMPLE é aplicado. 
 
Palavras-chave: matriz porosa, solução numérica, escoamento laminar, hastes sólidas, 
propriedades macroscópica. 
 
1. INTRODUÇÃO 
 

 Em função da grande aplicação tecnológica envolvendo o escoamento de fluidos em meios 
porosos, é de extrema importância o estudo do comportamento macroscópico das propriedades ao 
longo da estrutura porosa.  

Kuwahara et. al. (1994) e Nakayama et. al. (1995) testaram vários modelos numéricos de meios 
porosos formados por hastes cilíndricas, quadradas e esféricas, e encontraram que o modelo bi-
dimensional e o tri-dimensional levam a expressões semelhantes para a permeabilidade.  

Kuwahara et. al. (1998), utilizando um modelo de turbulência de baixo Reynolds (modelagem 
microscópica), resolveram o escoamento interno a um meio poroso infinito formado por hastes 
quadradas com um arranjo espacialmente periódico. Eles constataram a presença de turbulência 
para ReH>104 e que, nessas condições, o modelo estendido Darcy-Forchheimer apresenta bons 
resultados. 

Pedras e de Lemos (2001a-b) desenvolveram um modelo macroscópico de turbulência onde uma 
constante foi introduzida na equação da energia cinética de turbulência. O valor desta constante foi 
obtido através de experimentação numérica aplicada a um meio poroso formado por hastes 
cilíndricas com um arranjo espacialmente periódico. Esta constante foi ajustada para hastes elípticas 
longitudinais e transversais em Pedras e de Lemos (2001c) e Pedras e de Lemos (2003). 

Prinos et. al. (2003) analisaram numérica e experimentalmente as características do escoamento 
turbulento em um canal aberto com uma camada porosa, donde concluíram que a estrutura da 
camada porosa (“staggered” e “non-staggered”) tem pouca influência na característica do 
escoamento próximo à interface entre os meios limpo e poroso. 



 Este trabalho além de validar a metodologia numérica empregada através da comparação com 
os dados de Kuwahara et. al. (1998), investiga a influência da porosidade, do número de Reynods e 
da morfologia da matriz porosa no comportamento da queda de pressão macroscópica.  
 
2. MODELO MATEMÁTICO 
 
2.1 GEOMETRIA E CONDIÇÕES DE CONTORNO 

 
O escoamento em consideração é esquematicamente mostrado na Figura 1a, sendo o meio 

poroso formado por hastes quadradas com arranjo espacialmente periódico. Este tipo de meio 
poroso satisfaz à condição de homogeneidade e, dependendo do ângulo de incidência do 
escoamento, sua permeabilidade pode ser representada por uma constante (“isotropia”). A estrutura 
deste meio poroso infinito será representada por uma única célula com condições de contorno 
simétricas e periódicas (Figura 1b). 
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Figura 1: a) Geometria, b) Malha Computacional 

 
 Para que o escoamento fosse macroscopicamente desenvolvido e unidimensional na direção 
longitudinal, x, foram aplicadas, na célula periódica (Figura 1b), as seguintes condições de contorno 
para as equações (3) e (4): 



 
 Nas paredes das hastes, 
 

0=u  (1) 
 
 em y=0 e y=H linhas de simetria: 
 

0 ,
2020

===
==== HxxHxx

vvuu  (2) 

 
2.2 EQUAÇÕES GOVERNANTES 
 

A equação da continuidade microscópica para um fluido incompressível é dada por: 
 

0. =∇ u  (3) 
 

A equação da quantidade de movimento (Navier-Stokes) para um fluido com ρ e µ constantes, 
pode ser escrita como: 
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3. MÉTODO NUMÉRICO 
 
 O método numérico utilizado para a resolução das equações que integram o modelo do 
escoamento é baseado num código computacional em volumes finitos em coordenadas 
generalizadas, embora a malha utilizada seja cartesiana. A Figura 2 mostra um volume de controle 
genérico juntamente com as coordenadas generalizadas η-ξ. A discretização de uma equação de 
conservação bidimensional e em regime permanente para uma quantidade ϕ  qualquer, pode ser 
expressa como: 
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Figura 2: Notação e Volume de Controle. 
 



eI , wI , nI  e sI  representam, respectivamente, os fluxos de ϕ  faces leste, oeste, norte e sul do 
volume de controle e ϕS  o seu termo fonte. Uma divulgação da metodologia numérica desenvolvida 
está apresentada em Pedras e de Lemos (2001b). Neste trabalho, todos os resultados numéricos 
foram convergidos até que os valores dos resíduos para as variáveis dependentes do problema 
atingissem um valor menor que 10-7, onde o resíduo é definido como a diferença entre o lado 
esquerdo e o direito da equação algébrica correspondente. 
 
4. RESULTADOS E DISCUSSÃO 
 

Os cálculos foram efetuados variando o número de Reynolds, 
ν

HD
H

u
=Re , onde ν é a 

viscosidade cinemática, H é o comprimento característico, Du  é a velocidade de Darcy ou 

superficial e o valor da porosidade, 
2

2

1
H
D

−=φ , onde H é a altura do canal e D é o tamanho do lado 

da haste quadrada. 
Usando a relação de Dupuit-Forchheimer, i

D uφ=u  chega-se a velocidade de Darcy, onde 
iu  é a média intrínseca. A média intrínseca é a média volumétrica de uma propriedade qualquer, 

ϕ, associada ao fluido, ponderada pelo volume de fluido ∆Vf, contido num volume elementar 
representativo, ∆V: 
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Na Figura 3 o termo Ad

i dxpd )( 〉〈  representa o gradiente adimensional da média intrínseca da 
pressão,  

 
 

Figura 3: Queda de pressão como função do ReH para a célula da Figura 1b. 
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sendo que o gradiente da média intrínseca da pressão foi calculado através do campo de pressão 

microscópico, 
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Resultados para a queda de pressão em um largo intervalo de ReH são apresentados na Figura 3 , 

sendo esses comparados com os resultados de Kuwahara et. al. (1998) e Pedras e de Lemos 
(2001b). Os resultados obtidos para escoamento laminar e para ambos os modelos de turbulência 
usados (low and high Re) apresentaram uma boa concordância com os dados numéricos de 
Kuwahara et. al. (1998) mostrados. Como esperado, os resultados apresentados por Pedras e de 
Lemos (2001b) apresentaram valores de pressão ligeiramente menores que os aqui apresentados. 
Isto parece ser devido à morfologia da estrutura porosa, que foi simulada utilizando um arranjo 
infinito de hastes cilíndricas. 

A Figura 4 apresenta resultados para o efeito de ReH e φ para o gradiente de pressão 
adimensional. Para a mesma vazão a figura indica que a queda de pressão aumenta com a redução 
da porosidade, isto é, uma redução de φ implica no aumento de iu  para manter a mesma 

velocidade de Darcy, Du . Além disso, comparando com os dados de Pedras e de Lemos (2001b) 
para haste cilíndrica, verifica-se que, para baixos valores de Reynolds, o comportamento da queda 
de pressão é similar. Para altos valores de Reynolds, porém, o efeito da morfologia começa a 
aparecer através do distanciamento das curvas. Conforme esperado, o gradiente de pressão 
necessário para superar a resistência do escoamento é aumentado. 

As Figuras 5 e 6 mostram, respectivamente, o campo de velocidade e pressão para ReH=123,88 
e φ variando de 0,36 a 0,84. O tamanho dos vetores é uniforme para aumentar a visualização. O 
escoamento acelera nas fronteiras superior e inferior da haste quadrada e descola atrás. O aumento 
da pressão nas paredes frontal, superior e inferior e recuperação após o obstáculo. Para baixa 
porosidade e mesma vazão, o tamanho da região de esteira é reduzido drasticamente. É importante 
salientar que, devido ao aumento da velocidade de entrada, a queda de pressão aumenta ao invés de 
diminuir. 

 

 
Figura 4: Gradiente da pressão adimensional como função da porosidade, φ e ReH. 



 
 
 
 

 
a) 

 
b) 

 
c) 

Figura 5: Campo de velocidade para ReH=123,88: a) φ=0,36, b) φ=0,64 e c) φ=0,84. 
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Figura 6: Campo de pressão para ReH=123,88: a) φ=0,36, b) φ=0,64 e c) φ=0,84 
 

A Tabela 1 apresenta as médias intrínseca e volumétrica da velocidade, o gradiente de pressão e 
média intrínseca calculada segundo a Equação (8), o número de Reynolds e permeabilidade da 
estrutura porosa.  
 O valor da permeabilidade, Knum, mostrado na Tabela 1, foi obtido pelo cálculo do gradiente de 
pressão macroscópico através da célula periódica usando creeping flow, ReH<1, através da relação 
linear entre a vazão volumétrica e o gradiente de pressão hidráulico proposta por Darcy, (1856), e 



também utilizando a correlação para hastes quadradas proposta por Kuwahara et. al. (1998) que é 
dada por: 
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onde K é a permeabilidade, D é altura do obstáculo e, φ é a porosidade. 
 Verifica-se que a permeabilidade, Knum, calculada, exceto para φ=0,84, é maior que a 
permeabilidade, KHC, apresentada por Pedras e de Lemos (2001b) para haste cilíndrica, com 
porosidade φ=0,80. Este comportamento se deve ao fato da permeabilidade ser função da 
morfologia da estrutura porosa e é coerente com a correlações para hastes quadrada e cilíndrica 
proposta em Kuwahara et. al. (1998). 
 

Tabela. 1: Parâmetros para análise microscópica. 

 
Porosidade ReH 〈u〉i [m/s] uD [m/s] -∇〈p〉i [N/m3] Permeabilidade [m2] 

0,38 1,53×10-4 5,52×10-5 1,71×10-4 
Knum=5,78×10-6    
Keq. (9)=6,08×10-6 

10,00 2,27×10-3 1,46×10-3 4,61×10-3 
φ=0,36 

123,882,14×10-2 1,80×10-2 1,14×10-1 
φ=0,40 – cilindro 
KHC=5,22×10-6 

0,38 8,63×10-5 5,52×10-5 2,13×10-5 
Knum=4,64×10-5    
Keq. (9)=6,07×10-5 

10,00 2,28×10-3 1,46×10-3 5,49×10-4 
φ=0,64 

123,882,81×10-2 1,80×10-2 2,14×10-2 
φ=0,60 - cilindro 
KHC=4,45×10-5 

0,38 6,57×10-5 5,52×10-5 6,93×10-6 
Knum=1,43×10-4    
Keq (9)=3,09×10-4 

10,00 1,74×10-3 1,46×10-3 1,42×10-4 
φ=0,84 

123,882,14×10-2 1,80×10-2 5,21×10-3 
φ=0,80 – cilindro 
KHC=1,97×10-4 

 
5. CONCLUSÃO 
 
 Neste trabalho foi mostrado a influência da porosidade φ e do número ReH na queda de pressão 
macroscópica. Foi também realizada a comparação deste trabalho com os resultados numéricos de 
Pedras e de Lemos (2001b) para hastes cilíndricas com porosidade, φ=0,80, evidenciando o efeito 
da morfologia na queda de pressão. Além disso, os resultados aqui apresentados foram comparados 
com os dados apresentados em Kuwahara et. al. (1998), apresentando uma boa concordância e 
indicando, em última análise, a exatidão da metodologia numérica aplicada. 
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LAMINAR FLOW IN A CHANNEL WITH A POROUS MATRIX MODELED 
AS AN ARRAY OF SQUARE RODS 
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Abstract. Present work show results that refer to fully developed laminar flow through a porous 
media modeled as a spatially periodic array of square rods. The main objective of this work is to 
validate the present results with those available in the literature and investigate the influence of the 
porosity, Reynolds number and morphology on the behavior of the macroscopic pressure drop. The 
equations that govern the flow are discretized by control volume method and the obtained systems 
of algebraic equation are solved by the method SIP. For the pressure-velocity coupling SIMPLE 
method is applied. 
 
Palavras-chave: porous matrix, numerical solution, laminar flow, solids rods, macroscopic 
properties. 

 


