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Abstract: Unstructured mesh based discretization techniques can offer advantages relative to stan-
dard finite difference approaches which are still largely used in petroleum reservoir simulation due 
to their flexibility to model complex geological features and due to their capacity to incorporate 
mesh adaptation techniques. In this paper we consider an unstructured edge-based implicit finite 
volume formulation (FVM) which is used to solve the elliptic pressure equation and the non-linear 
hyperbolic equation that arise in biphasic flow problems when the IMPES (IMplicit Pressure Ex-
plicit Saturation) techniques is used together with a global pressure approach. The IMPES method 
is a segregated type method in which the flow equations are manipulated in order to produce an 
elliptic pressure equation solved implicitly and a hyperbolic type saturation equation which is then 
solved explicitly. The numerical formulation includes the introduction of an adaptive artificial dis-
sipative term in order to deal with the Bucklet-Leverett (saturation) equation. This finite volume 
formulation is very flexible and efficient, and it is equivalent to the edge-based finite element for-
mulation (FEM) when linear triangular elements are employed. Some bidimensional model exam-
ples are solved in order to show the potential of the formulation utilized. 
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1. INTRODUCTION 
 

Naturally occurring hydrocarbon systems found in petroleum reservoirs are mixtures of organic 
compounds, which exhibit multiphase behavior over wide ranges of pressures and temperatures. 
These hydrocarbon accumulations may occur in the gaseous, liquid and solid states or in various 
combinations of gas, liquid and solid phases. These differences in phase behavior, coupled with the 
physical properties of reservoir rock that determine the relative ease with which gas and liquid are 
transmitted or retained, result in many diverse types of hydrocarbon reservoirs with complex behav-
iors. Frequently, petroleum engineers have the task to study the behavior and characteristics of a 
petroleum reservoir and to determine the course of future development and production that would 
maximize profits. Nowadays, in order to complement and improve the accuracy of the more tradi-
tional prediction methods (e.g. experimental, analogs, etc.), numerical methods are being widely 
used as tools to predict the behavior of multiphase flow through reservoirs. Due to several factors 
(robustness, easiness of programming, etc), the finite difference method (FDM) is usually utilized in 



reservoir analysis. On the other hand much effort has been recently put in methods that allow a bet-
ter treatment of the complex geometries that characterize petroleum reservoirs. In this context, the 
adoption of methods able to deal with unstructured meshes is very attractive and highly recom-
mended. Within such class of methods the most frequently used are the finite element method 
(FEM), (Zienckievicz and Morgan, 1983), and the finite volume method (FVM), (Barth, 1992). The 
later is particularly attractive in reservoir problems due to, among other things, its local and global 
conservation properties.  

In this work the vertex centered finite volume formulation using median dual control volumes is 
implemented using an edge-based data structure that is adapted for solving two-dimensional bi-
phasic flow problems in an IMPES (IMplicit Pressure Explicit Saturation) procedure. In this tech-
nique a sequential time stepping procedure is used to decouple the equations, which consists of ba-
sically solving one equation at a time. First the pressure equation is solved and then the velocity 
field is computed. This velocity field can be used as input for the saturation equation and so on. In 
order to account for the convective terms appearing in the saturation equation, an artificial dissipa-
tion scheme, adapted for use on unstructured meshes, is also utilized. This finite volume formula-
tion is very flexible and efficient, and it is equivalent to the edge-based FEM when linear triangular 
elements are employed (Lyra, 1994 and Sorensen, 2001). The formulation is flexible to deal with 
any kind of unstructured meshes with elements of different types. For instance, in 2-D either trian-
gular, quadrilateral or mixed meshes can be directly used, and the same happens when dealing with 
3-D, where tetrahedral, hexahedral, pyramids, prisms and mixed meshes can be adopted. In terms of 
efficiency, both memory and CPU time requirements are reduced by using an edge-based imple-
mentation (Barth, 1992; Sorensen, 2001). Finally, an edge-based data structure allows for the im-
plementation of different types of finite difference discretization in the context of 2-D and 3-D un-
structured meshes (Lyra, 1994). 

At the present stage of the work, we are still solving the two equations separately to validate in-
dependently the formulation utilized for each equation. Though, it is our hope that very soon we 
will be solving the coupled problem. 
 
2. MATHEMATICAL MODEL 
 

In order to simplify our notation, but without loss of generality we present here the mathemati-
cal governing equations for immiscible biphasic flows of water and oil through rigid porous media. 
This model (which can be directly extend to miscible, three phase flow) is obtained combining the 
Darcy’s Law with the mass conservation equation for each phase. The model adopted here has been 
successfully used by many authors (Peaceman, 1977; Ewing, 1983), though it is not commonly used 
in commercial reservoir simulators. Even though the approach to be used in our work seems more 
complex, it is far more useful when one aims for numerical accuracy and efficiency (Peaceman, 
1977; Ewing, 1983; Da Silva, 2000). We are assuming that the phase velocities obey the Darcy’s 
law, which, ignoring gravitational effects can be written for phase i, as: 
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Where the phase mobility is defined in Eq. (2) as: 
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Here K%  denotes the absolute permeability tensor of the rock, ik  is the phase relative permeabil-

ity, iµ  is the phase viscosity and iρ  is the phase density. Henceforth we will also ignore the capil-
lary pressure and will assume that w oP P P= =  where (w) and (o) stand respectively for, the wetting 



(water) and the non-wetting (oil) phases. Additionally, conservation of mass for each equation can 
be written as in Eq. (3): 
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In Equation (3), φ  is porosity, i.e. fraction of the rock which can be occupied by fluids, iq  de-

notes sources or sinks and iS  is the saturation of phase i, which represents the percentage of the 
available pore volume occupied by this phase. Due to this last definition, we can write: 
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2.1. The Pressure Equation 
 

Now, carrying out the differentiation in Eq. (3) yields: 
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If we divide Eq. (5) by iρ  with i = o, w, and add the results we have: 
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Where, we have defined the following terms, the total flux, the phase compressibility and the to-

tal compressibility, Eqs. (7), (8), (9): 
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If , additionally, we define the total velocity as in Eq. (10) 
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We can write Eq. (6) as: 
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Using Darcy’s law, Eq. (1), in Eq. (11) yields: 
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where, o wλ λ λ= +% % % is the total mobility. 

Equation (12) is the pressure equation for the immiscible biphasic flow of oil and water in po-
rous media, ignoring gravitational and capillary effects. Finally, if we concentrate our attention on 
the incompressible flow (i.e. incompressible fluid and rock), we can write the pressure equation as: 
 

( )P Qλ∇ ⋅ ∇ = −%                       (13) 
 
2.2. The Saturation Equation 
 

With the same assumptions of the derivation of Eq. (13) we can add and subtract Eq. (2) for 
each phase, to find that: 
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, is the fractional flow function for phase i. 

 
Using Eq. (14) in Eq. (3) we have the saturation equation for each phase. If we write this equa-

tion for water phase we have: 
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Where, w wF f v=

v v  is the flux function which is dependent of the phase saturation. 
 
3. NUMERICAL FORMULATION 
 

The numerical formulation used to discretize the previous equations is an edge based, vertex 
centered variation of the well known Finite Volume Method (FVM), (Sorensen, 2001). In this kind 
of formulation, most of the coefficients necessary to our computation are associated with the edges 
of the mesh. The edge based finite volume formulation adopted is highly computationally efficient 
in terms of CPU time and memory use. Besides, this kind of approach allows the utilization of 1-D 
“Artificial Dissipation” formulations to be extended to 2-D and 3-D unstructured meshes without 
excessive mathematical considerations (Lyra, 1994). This last point can be extremely useful due to 
the strong hyperbolic characteristic of some multiphase flow problems.  

Nowadays there are many finite volume schemes that can be successfully used to solve balance 
equations. In this work we adopted a node centered median dual finite volume technique. In con-
trast to a cell centered formulation, in a node centered approach, the values of the unknowns are 
defined on the nodes and the control volumes (CV) are defined by the dual mesh in a way that each 
mesh point is associated with only one CV.  

In order to discretize the bidimensional domain, we have used triangular elements, though there 
is, in principle, no restriction to the shape of the elements that can be used in unstructured finite 
volume formulations. For a triangular mesh, the control volume cells were built connecting the cen-
troids to the middle point of the triangles that surround a specific node. The control volume created 
in this fashion (known as “median dual”) is quite general and the Voronoi diagrams are nothing but 
a special case of this scheme. The structure formed by the surfaces connecting the control volumes 
is denominated the dual mesh. In node centered schemes, the fluxes are integrated on the dual mesh 



usually through a loop over the edges (for 2-D or 3-D) and the computational cost is therefore, pro-
portional to the number of edges of the mesh.  
 
3.1. Integral Formulation and Discrete Equations 
 
3.1.1. The Implicit Pressure Equation 
 

In order to obtain our discrete equations first we can write Eq. (13) as: 
 

v Q−∇⋅ = −v                        (16) 
 
And the total velocity is written as: 
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Integrating equation (17) and multiplying by (-1) yields: 
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Using the Gauss-Green theorem, we have: 
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Finally, for a node I of the mesh, we can write the discrete form of equation (19), as: 
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In equation (20), 

IV  is the volume (area in 2-D) of the CV, the upper index Ω  represents 
approximations on the middle of every edge of the mesh which is connected to node I, Γ  refers 
only to boundary edges connected to that node, T represents the transpose of a vector or matrix, and 
the summation is performed over the edges connected to node I. For the 2-D case, Fig. (2) depicts 
the control volumes and the geometrical parameters necessary to compute coefficients 

LIJC
v
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defined in Eq. (21). 
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K 1A − , KA and LA  are the areas of the control volume faces associated to the normals K 1n − , Kn  

and Ln , respectively. 
 



        
 

Figure 2. Internal and boundary bidimensional control volumes and their geometrical parameters 
 

To obtain the final discrete system of equations, we must first determine the nodal velocities as 
functions of the discrete pressure field. Therefore we must integrate the velocity for a node I, Eq. 
(17), obtaining: 
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Using the Gauss-Green theorem yields: 
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Assuming constant values for the left integral terms, we can write: 
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Further we assume the following mid-edge approximations: 
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After some additional algebraic manipulation, we obtain: 
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In order to compute the velocities 

L

P
IJvv  on the middle of the edges we could follow the obvious 

choice of repeating the same strategy used in Eqs. (25) and (26) to approximate the mid-edge ve-
locities, 

LIJvv , of Eq. (20). Nevertheless the recursive use of the arithmetic mean to compute the in-
terface velocity implies that the discretization of the diffusion terms in Eq. (18) involves informa-
tion from two layers of points surrounding the point I under consideration. Furthermore, if uniform 



structured quadrilateral (or hexahedral) meshes are adopted, the values computed at a given node 
are uncoupled from the values of those nodes directly connected to it. This fact may leads to 
“checker-boarding” or “odd-even” oscillations (Lyra, 1994; Sorensen, 2001). Even when computing 
the diffusive term in non-uniform unstructured meshes, the adoption of an extended stencil and a 
weak coupling with the directly connected nodes may lead to some loss of robustness and reduction 
of convergence rate of the resulting scheme. To overcome such weaknesses, the velocities must be 
computed in an alternative way. Following the procedure suggested in the literature (Sorensen, 
2001) a better approach would be to use a local frame of reference in which one axis is along the 
edge direction (P) and another axis (N) is in the plane orthogonal to direction (P) as stated in Eq. 
(28).  
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We then replace the component parallel to the edge with a local second order finite difference 

approximation 
L

(P*)
IJvv as shown in Eq. (30): 
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LIJ∆  and 
LIJL

v
are, respectively, the size and the unitary vector of the edge IJL. For the definition 

of the midpoint values of the mobility terms, it is worthy mentioning that we use the harmonic aver-
age for the effective permeability (i.e. the product of the absolute and relative permeabilities) on the 
middle of the edge, due to its capacity to correctly represent the flux between two adjacent control 
volumes with extremely different values of permeabilities. On the other hand, the viscosity is ex-
cluded from the averaging process because it is constant under the assumption of incompressible 
flow. We then compute the normal component of the velocity as: 
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Where: 
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And: 
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Again, Ω  stands for all edges of the domain and Γ  refers only to boundary edges. 
Inserting Eq. (32) in Eq. (31) yields: 
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The nodal values Ivv and 

LJvv are computed using the approximation given by Eq. (27). The final 
discrete equation for a node I can be written as: 

 

( ) ( )
( )

( ) ( )
( )

L L L

L L L L L L

I IL

TT

TI J I J J I

IJ IJ IJ IJ IJ I IJ I I
L LIJ

v v v v P P
L L L C v D Q V

2 2Ω Γ

λ
∆

   + + −   − ⋅ − + =
    

∑ ∑
v v v v vv v v vv%         (36) 

 
 

3.1.2. The Explicit Saturation Equation 
 

It is well known that central difference type methods such as the Galerkin method produce un-
stable numerical schemes when used to discretize the convective terms that characterize hyperbolic 
equations (e.g. saturation equation). In order to overcome this difficulty we are testing different 
schemes to correctly treat convective terms. In this work we used a method that was originally pro-
posed by Jameson et al (1981) with the modifications introduced by Peraire et al (1993). This 
method is based on the introduction of an adaptive artificial dissipative term that combines second 
order with fourth order diffusive terms (Lyra, 1994). The basic idea of the method is to introduce 
the second order terms in regions of high gradients and to use the fourth order terms only in regions 
of smooth gradients in order to stabilize the scheme.  

A semi-discrete numerical scheme for the solution of the non-linear hyperbolic saturation equa-
tion, Eq. (15), can be written as: 
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The term ( )
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 is then replaced by the expression defined in Eq. (38) as: 
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Where A.D. stands for “Artificial Dissipation” terms which are computed as:  
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The gradient of the saturation on the middle of the edge is computed through an arithmetic aver-
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With: 
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In the above equations ( )2µ and ( )4µ are user specified coefficients. The factor Iϒ  is a sensor de-

signed to detect discontinuities. The θ  parameter represents a weighting coefficient, 0 1θ≤ ≤ , and 
ε  is used only to avoid the appearance of zero in the denominator. For the diffusive parameter 

LIJα we used the modulus of the total velocity, though other choices could be used (Lyra, 1994). 

LIS is the value of the saturation obtained through a gradient reconstruction along the edge IJL on a 

point distant 
LIJ∆  from node I. For further details see (Lyra, 1994 and Peraire et al, 1993). Equation 

(37) can be further discretized in time to produce a system of algebraic equations. In the present 
work these equations were solved through a simple two-level time step explicit scheme (Euler for-
ward).  
 
4. EXAMPLES 

 
In the first example we present a very simplified two dimensional (areal) example which resem-

bles the well known “quarter of five spot problem” with a point source representing an injector well 
and a point sink representing a producer well (Ewing, 1983). The boundary conditions for this prob-
lem are null fluxes through the four lateral faces. For a non-dimensional form of the pressure equa-
tion, the fluid mobility is unitary, the source term is q1= 100.0 and the sink term is q2 = -100.0. Figs. 
(3) and (4) show respectively, the contours of pressure and the triangular mesh utilized to solve the 
pressure equation model problem of section 4 and its correspondent dual mesh. 

 

       
 
Figure 3. Contours of pressure for the problem of the “quarter of a five-spot”, and unstructured tri-

angular mesh with its correspondent dual mesh. 
 

In the second example we present the classical Buckley-Leverett problem. This model problem 
can be basically defined as the 1-D incompressible flux of oil and water through porous media, 
where the gravity and the capillary effects are neglected. The basic Buckley-Leveret equation is the 
saturation equation (Eq. (15)). For the curves shown in Fig. (4), we have used rw roS S 0.1= = , where 

riS  are the residual phase saturations for i = water and oil respectively. The boundary condition util-
ized was that w ro 0S 1 S x x= − = . We also used a quadratic relative permeability saturation rela-
tionship (Pinto, 1991 ). The time step utilized was Dt = 0.0005 with 101 nodal points on the x direc-
tion. The courant number used was, rtC v t x 0.05∆ ∆= =v . As can be seen in Fig. (4), the numerical 
results, which are plotted against the analytical solution for instants t = 0.2 and t = 0.5, have shown 



very good agreement with the analytical solutions and are comparable to the best results obtained in 
Pinto (1991).  
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Figure 4. Saturation profile for the Buckley-Leverett problem for instants t = 0.2 (left) and t = 0.5. 

 
5. CONCLUSIONS 
 

In this paper we have described in details an edge-based finite volume discretization technique 
to solve the pressure and the saturation equations which arise in biphasic flow problems in the 
IMPES method context. Particularly, we have shown a complete description of the numerical for-
mulation utilized to discretize both equations for a simplified model considering the incompressible 
flow of two immiscible fluids ignoring the gravitational and capillary effects.  

The next step in our research involves the coupling between the pressure and the saturation 
equations in order to solve the full IMPES problem. Some care must be taken in this step since the 
incorrect treatment of the velocity equation, Eq. (17) may lead to poor approximations for the satu-
ration field. Some alternatives to this problem may be devised and we are currently investigating 
such issues. 
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