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Resumo: A equacdo de Burgers ndo-linear pode ser usada como um modelo mateméatico auxiliar
para a andlise de diversos problemas hidrodinamicos de interesse tais como 0 estudo de turbuléncia,
ondas de choques e desenvolvimento hidrodinamico, entre outros tipos de escoamentos. O termo
ndo-linear na equacdo de Burgers da origem a uma onda de amplitude aprecidvel que se move em
alguma direcdo. Esta onda eventualmente se dissipa e a solucdo ndo-linear tende a mesma forma da
solucdo linearizada, porém, com uma amplitude menor. O termo ndo-linear aumenta abruptamente
o gradiente da velocidade, entretanto, por causa do efeito de amortecimento, nenhuma
descontinuidade ocorre. Para 0 presente trabalho, a Técnica da Transformada Integral Generalizada
TTIG sera aplicada para resolver formalmente a equacéo de Burgers nao-linear sobre dominios
bidimensionais. A TTIG é uma ferramenta poderosa para a resolucdo de equacdes diferenciais
parciais de segunda ordem e vem sendo aplicada em problemas que apresentam diversos niveis de
complexidade, tais como aqueles que apresentam equacdes com coeficientes nao-separavels,
problemas com condices de contorno que apresentam coeficientes varidveis, problemas com
dominios irregulares e problemas que apresentam ndo-linearidades de naturezas diversas.
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1. INTRODUCAO

A equacdo de Burgers ndo-linear bidimensional € uma equacdo diferencia parcia parabdlica, a
qual consiste de apenas uma variavel primitiva, a velocidade, e serve como uma equacdo modelo
para estudos das equactes de Navie-Stokes turbulento, ondas de choque, entre outros fendmenos. A
solucdo de tal equacdo sera desenvolvida aplicando a Técnica da Transformada Integral
Generdlizada (TTIG), que € um método hibrido analitico-numeérico, para transformar uma equacéo
diferencia parcial origina em um sistema de equacfes diferenciais ordinarios acoplado e infinito,
gue depois de truncado em uma determinada ordem, pode ser resolvido numericamente. Esta
técnica € uma ferramenta poderosa que permite a resolugdo dos mais variados e complexos
problemas difusivos e convectivo-difusivos. Problemas puramente difusivos, hidrodindmicos ou
térmicos, modelados por equactes diferenciais elipticas lineares, definidos em dominios irregulares,
ou sga, aqueles onde ndo se consegue encontrar um sistema de coordenadas ortogonais que
coincidam com a geometria do problema, foram resolvidos por Aparecido e Cotta (1987, 1990b),
Aparecido, Cotta e Ozisk (1989), Cotta, Leiroz e Aparecido (1992), e Aparecido, Viera e
Campos-Silva (2000, 2001), utilizando a TTIG. Para problemas convectivo-difusivos, envolvendo
convecgdo, hidrodinamicamente desenvolvida e termicamente em desenvolvimento, S50
matematicamente modelados por equacdes diferenciais parciais de segunda ordem, do tipo



parabdlico bidimensional ou tridimensiona. Estes tipos de problemas foram resolvidos por
Aparecido (1997), Aparecido & Cotta (1990a, 1990c,1992), Aparecido & Ozisik (1996, 1998), Dias
Jinior & Aparecido (1999), Lindquist & Aparecido (1999, 2002), e Maia, Aparecido & Milanez
(2000, 2001) utilizando a TTIG.

Neste trabalho, sera apresentada uma solucdo analitica formal da equacdo de Burgers sobre
dominio bidimensional, utilizando a TTIG. Posteriormente, em outros trabalhos, tal equacéo serd
Implementada numericamente.

2. FORMULACAO MATEMATICA

Considerase a equagcdo de Burgers para as fungdes velocidades u(x,y,t) e v(x,y,t),
respectivamente, na forma
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definido no dominio (x,y)T A2 submetido as condicdes inicia e de contorno, dadas
respectivamente, por

u(x,y,t)=0, t=0; v(x,y,t)=0, t=0; (2a,b)
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Define-se as seguintes variaveis adimensionais:
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Atuaizando-se as variaveis adimensionalizadas acima definidas, as equactes (1) e (2), tornam-
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UXX,Y,t)=0, t =0; V(X,Y,t)=0, t =0; (4a,b)

u@o,Y,t)=u,; UX.¥,1) =0; U(Xx,0,t) =0; UX,L,,t)=0; (4cdef)
X X =Ly

V(0,Y,t)=0: w S0, V(V.00)=0;  V(X,L,t)=0: (4ghij)
X =Ly

O problema apresentado acima que envolve a equacdo de Burgers é resolvido a seguir,
utilizando a Técnica da Transformada Integral generalizada (TTIG).

3. TECNICA DA TRANSFORMADA INTEGRAL GENERALIZADA (TTIG)

A Técnica da Transformada Integral Classica (TTIC) € uma ferramenta eficiente para resolver
problemas lineares encontrado, por exemplo, em aplicacdes de transferéncia de calor, apresentado
por Mikhailov e Ozisik (1984), e Ozisik (1993). As limitacGes da técnica se evidenciaram quando
ndo era possivel transformar uma equagdo diferencia parcial original em um sistema de equagdes
diferenciais ordinérias devido aos problemas envolverem dificuldades de diversas naturezas, tais
como: coeficientes varidavels, geometrias irregulares e sistemas de autovalores ndo separaveis. Por
outro lado, tais limitagdes foram eliminadas pela TTIG, a qual pode manipular tais problemas
usando um formalismo similar a TTIC. Desde, o trabalho pioneiro de Ozisik e Murray (1974)
associado a solucdes de problemas de difusdo que envolve problemas com condi¢cdes de contorno
com coeficientes varidveis, avancgos significativos foram obtidos e a TTIG passou a ser aplicada em
uma grande variedade de problemas na area da engenharia. Todo o desenvolvimento da TTIG pode
ser encontrado na monografia de Cotta (1993).

A aplicagdo da TTIG para os problemas mencionados acima pode ser sistematizada nas
seguintes etapas basicas. 1) definir um ou mais problemas auxiliares de autovalor que deveréo
conter o maximo de informacdes sobre o problema original; 2) desenvolver os pares transformada
inversa apropriados; 3) aplicar as transformadas-inversas nas equacbes diferenciais parciais
originais, resultando em um sistema de equagtes diferenciais ordinérias acoplados; 4) truncar e
resolver numericamente o sistema de equagdes diferenciais ordinarias acoplados, em uma ordem
suficientemente grande; 5) aplicar as formulas de inversdo para determinar os potenciais originais.

Os passos mencionados acima sao agora usados para solucao da equacéo de Burgers.

4. APLICAGAO DA TTIG PARA A TRANSFORMAGAO DO PROBLEMA NA DIREGAO Y

Seguindo o formalismo da TTIG (Cotta, 1993); considera-se 0s seguintes problemas auxiliares de
autovalores do tipo Sturm-Liouville (Aparecido,1997)e para as fungdes velocidades U(X,Y,t) e

V(X,Y,t) esuas respectivas condi¢des de contorno, Como segue:
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F.(0=0 e F,(L,)=0. (8)

Resolvendo os problemas de autovalores, obtém-se as seguintes autofuncdes normalizadas
Y.(Y) eF.(Y); asintegraisde normalizacdo A' e A’ eosautovalores | e W, respectivamente
EXPressas por:
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De acordo com os problemas de autovalores determinados anteriormente, obtém-se os pares
transformada-inversa em relagdo ao eixo y, Como segue:

U, (x,t) = dyi YUX,Y, H)dY (Transformada) ~ (11)
3 ~

UK, Y, =g U, (X, 0Y,(Y), (Inversa)  (12)

V. (X,t) = (‘5{ Y)V(X, Y, t)dY, (Transformade) ~ (13)

VX, Y, = V06 OF (Y). (Inversa)  (14)

Obtidos os pares transformada-inversa para a equacdo de Burgers, multiplica-se as equagoes
(18) e (1b) pelas respectivas autofuncdes Y. (Y) e F ., (Y),correspondentes as fungdes velocidades

U(X,Y,t) e V(X,Y,t), e na sequéncia multiplica-se as equacdes (5) e (7) por RiU(X,Y,t) e
e

?V(X,Y,t), respectivamente. Somando, rearranjando e integrando tais equagGes no intervalo
e

[O,L,], obtem-se os seguintes sistemas de equagdes diferencials ordinarias ndo-lineares acoplados e
infinito:
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s30 determinados analiticamente.

Aplica-se a Transformada Integral sobre as condicOes inicial e de contorno do problema
original, e em seguida faz-se a transformagéo na diregéo X.

6. TRANSFORMACAO DO PROBLEMA NA DIRECAO X

Para a homogeneizacéo da condicéo de entrada da Equacéo de Burgers € conveniente considerar
~ ~ ~ ~ \L
a seguinte mudanga de variavel U, (X,t) =U7 (X,t)+f ,noqua f =u, Qin (Y)dy .

De forma andloga aos problemas auxiliares de autovalores para o eixo y, é considerado, agora,
0s seguintes problemas auxiliares de autovalores, Egs. (17) e (19) e suas respectivas condicdes de

contornos no eixo X, Egs. (18) e (20) para as fungdes vel ocidades l~Ji+ (X,t) e \7i (X,t):

dzx(x) (€)Y ,(X)=0,  0<x<L,; (1)
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Obtendo, assim, as seguintes autofuncdes Y (X) e F . (X); integrais de normaizagdo A: e
A eosautovalores g, e g, respectivamente, como segue:

Y. (X)=ALsn(@x), A= |2 =2, m=123. (21)

X X



F.(X)=A'sn(g'X), A'= |2 g‘,%z?, m=123.. ¥. 22)

De acordo com os problemas auxiliares de autovalores (17) e (19), determinam-se os pares
transformada-inversa em relagdo ao eixo X, como Segue:

Lx

U, (t)= O Y, (X)0r (X, t)dX (Transformada) ~ (23)
Or (x.t =§ Ui ()Y, (X), (Inversa)  (24)
v (t (‘) F_(X)V,(X,t)dX (Transformada) ~ (25)
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Obtidos os pares transformada-inversa para as das fungdes velocidades L~Ji+ (X,t) e \7i (X,1),
multiplicarse as equagbes (15) e (16) pelas autofungdes Y. (Y) e F . (Y), e em seguida,
multiplica-se as equagdes (17) e (19) por RiDi*(X,t) e Rivi (X,t), respectivamente. Somando,

e e

rearranjando e integrando tais equagdes no intervalo [O,L,], obtém-se os seguintes sistemas de
equactes diferenciais ordinarias de primeira ordem ndo-lineares acoplados e infinitos para as
funcdes velocidades transformadas U (X,t) e V, (X,t) :
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no qual
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As condigdes iniciais originais das fungbes velocidades D:(X,T) e \7i (X,T), sdo
transformadas respectivamente, da forma como segue:
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7. TRUNCAMENTO DA EXPANSAO EM SERIESFINITAS

Para determinar a solugdo dos sistemas dados pelas equactes (27) e (28), estes seréo truncados
em uma ordem finita suficientemente grande, como segue:
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noqual N.,N,, N _,N_ sdo ordens de truncamento em cada somatério nas séries infinitas.



Uma vez truncado o sistema, este torna-se passivel de solucéo, o qua é transformado em um
sstema de equacdes ndo lineares. Desta forma, determinase as velocidades transformadas

Grm (t) evim(t) e utilizando a férmula de inversdo por duas vezes, obtém-se as funcles velocidades
U(X,Y,T) e V(X,Y,T), construindo-se a solucéo do problema original.

8. CONCLUSAO

Neste trabalho, foi aplicada a Técnica da Transformada Integral Generalizada como método de
solucdo analitica formal para a equacdo de Burgers. Para tanto, foram considerados problemas
auxiliares de autovalores para cada uma das equagOes nas coordenadas X ey, as quais permitiram
estabelecer os pares transformada-inversa. Em particular, para a componente da velocidade na
direcdo do escoamento foi introduzida uma mudanca de variavel adequada para a homogeneizacéo
da condicéo de entrada. Com este procedimento, obteve-se um sistema de equacoes diferenciais
ordinarias de primeira ordem ndo-linear acoplado e infinito para as componentes da velocidade
transformadas. Para se obter a solucéo numérica do sistema resultante, 0 mesmo deve ser truncado
em uma dada ordem finita de acordo com a precisdo que se desga da solucdo. Assim, as
componentes da velocidade podem ser obtidas fazendo uso da férmula de inversdo, as quais
permitirdo a determinacdo dos diversos parametros fisicos de interesse,
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Abstract Non-linear Burgers™ equation has no real flow meaning but it is a mathematical model of
hydrodynamics. This is important in the study of turbulence, shock waves among other kind of
flows. The non-linear term in the Burgers’ equation contributes to a wave of appreciable amplitude
traveling in some direction. This wave eventually dissipates, and the non-linear solution tends to the
same shape of the linearized solution, though with a smaler amplitude. The non-linear term
stegpens the velocity gradient; however, because of the damping effect, no discontinuity occurs. In
this work we use the GITT to present a forma anaysis on how to solve the non-linear Burgers’
equation over two-dimensional domains. The generalized integral transform technique (GITT) is a
powerful tool to solve second order partia differential equations, and has been used to solve

equations with special difficulties such as nonseparable equation coefficients, variable boundary
condition coefficients, irregular domains, non-linearities, and so on.

Keywords. Burgers Equation, Integral Transform, Non-linear.



