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Resumo: A equação de Burgers não-linear pode ser usada como um modelo matemático auxiliar
para a análise de diversos problemas hidrodinâmicos de interesse tais como o estudo de turbulência,
ondas de choques e desenvolvimento hidrodinâmico, entre outros tipos de escoamentos. O termo
não-linear na equação de Burgers dá origem a uma onda de amplitude apreciável que se move em
alguma direção. Esta onda eventualmente se dissipa e a solução não-linear tende à mesma forma da
solução linearizada, porém, com uma amplitude menor. O termo não-linear aumenta abruptamente
o gradiente da velocidade, entretanto, por causa do efeito de amortecimento, nenhuma
descontinuidade ocorre. Para o presente trabalho, a Técnica da Transformada Integral Generalizada
TTIG será aplicada para resolver formalmente a equação de Burgers não-linear sobre domínios
bidimensionais. A TTIG é uma ferramenta poderosa para a resolução de equações diferenciais
parciais de segunda ordem e vem sendo aplicada em problemas que apresentam diversos níveis de
complexidade, tais como aqueles que apresentam equações com coeficientes não-separáveis,
problemas com condições de contorno que apresentam coeficientes variáveis, problemas com
domínios irregulares e problemas que apresentam não-linearidades de naturezas diversas.
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1. INTRODUÇÃO

A equação de Burgers não-linear bidimensional é uma equação diferencial parcial parabólica, a
qual consiste de apenas uma variável primitiva, a velocidade, e serve como uma equação modelo
para estudos das equações de Navie-Stokes turbulento, ondas de choque, entre outros fenômenos. A
solução de tal equação será desenvolvida aplicando a Técnica da Transformada Integral
Generalizada (TTIG), que é um método híbrido analítico-numérico, para transformar uma equação
diferencial parcial original em um sistema de equações diferenciais ordinários acoplado e infinito,
que depois de truncado em uma determinada ordem, pode ser resolvido numericamente. Esta
técnica é uma ferramenta poderosa que permite a resolução dos mais variados e complexos
problemas difusivos e convectivo-difusivos. Problemas puramente difusivos, hidrodinâmicos ou
térmicos, modelados por equações diferenciais elípticas lineares, definidos em domínios irregulares,
ou seja, aqueles onde não se consegue encontrar um sistema de coordenadas ortogonais que
coincidam com a geometria do problema, foram resolvidos por Aparecido e Cotta (1987, 1990b),
Aparecido,  Cotta e Ozisik (1989),  Cotta, Leiroz e Aparecido (1992), e Aparecido, Viera e
Campos-Silva (2000, 2001), utilizando a TTIG. Para problemas convectivo-difusivos, envolvendo
convecção, hidrodinamicamente desenvolvida e termicamente em desenvolvimento, são
matematicamente modelados por equações diferenciais parciais de segunda ordem, do tipo



parabólico bidimensional ou tridimensional. Estes tipos de problemas foram resolvidos por
Aparecido (1997), Aparecido & Cotta (1990a, 1990c,1992), Aparecido & Ozisik (1996, 1998), Dias
Júnior & Aparecido (1999), Lindquist & Aparecido (1999, 2002), e Maia, Aparecido & Milanez
(2000, 2001) utilizando a TTIG.

Neste trabalho, será apresentada uma solução analítica formal da equação de Burgers sobre
domínio bidimensional, utilizando a TTIG. Posteriormente, em outros trabalhos, tal equação será
implementada numericamente.

2. FORMULAÇÃO MATEMÁTICA

Considera-se a equação de Burgers para as funções velocidades )t,y,x(u  e )t,y,x(v ,
respectivamente, na forma:
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definido no domínio   )y,x( ∈ ℜ2, submetido as condições inicial e de contorno, dadas
respectivamente, por
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Define-se as seguintes variáveis adimensionais:
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Atualizando-se as variáveis adimensionalizadas acima definidas, as equações (1) e (2), tornam-
se:
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0),Y,X(U =τ ,  0=τ ;                  0),Y,X(V =τ ,  0=τ ;                                                     (4a,b)
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O problema apresentado acima que envolve a equação de Burgers é resolvido a seguir,
utilizando a Técnica da Transformada Integral generalizada (TTIG).

3. TÉCNICA DA TRANSFORMADA INTEGRAL GENERALIZADA (TTIG)

A Técnica da Transformada Integral Clássica (TTIC) é uma ferramenta eficiente para resolver
problemas lineares encontrado, por exemplo, em aplicações de transferência de calor, apresentado
por Mikhailov e Ozisik (1984), e Ozisik (1993). As limitações da técnica se evidenciaram quando
não era possível transformar uma equação diferencial parcial original em um sistema de equações
diferenciais ordinárias devido aos problemas envolverem dificuldades de diversas naturezas, tais
como: coeficientes variáveis, geometrias irregulares e sistemas de autovalores não separáveis. Por
outro lado, tais limitações foram eliminadas pela TTIG, a qual pode manipular tais problemas
usando um formalismo similar a TTIC. Desde, o trabalho pioneiro de Ozisik e Murray (1974)
associado a soluções de problemas de difusão que envolve problemas com condições de contorno
com coeficientes variáveis, avanços significativos foram obtidos e a TTIG passou a ser aplicada em
uma grande variedade de problemas na área da engenharia. Todo o desenvolvimento da TTIG pode
ser encontrado na monografia de Cotta (1993).

A aplicação da TTIG para os problemas mencionados acima pode ser sistematizada nas
seguintes etapas básicas: 1) definir um ou mais problemas auxiliares de autovalor que deverão
conter o máximo de informações sobre o problema original; 2) desenvolver os pares transformada-
inversa apropriados; 3) aplicar as transformadas-inversas nas equações diferenciais parciais
originais, resultando em um sistema de equações diferenciais ordinárias acoplados; 4) truncar e
resolver numericamente o sistema de equações diferenciais ordinárias acoplados, em uma ordem
suficientemente grande; 5) aplicar as fórmulas de inversão para determinar os potenciais originais.

Os passos mencionados acima são agora usados para solução da equação de Burgers.

4. APLICAÇÃO DA TTIG PARA A TRANSFORMAÇÃO DO PROBLEMA NA DIREÇÃO Y

Seguindo o formalismo da TTIG (Cotta, 1993); considera-se os seguintes  problemas auxiliares de
autovalores do tipo Sturm-Liouville (Aparecido,1997)e para as funções velocidades ),Y,X(U τ  e

)Y,V(X, τ  e suas respectivas condições de contorno, como segue:

0)Y()µ(
dY

)Y(d
i

2u
i2

i
2

=Ψ+
Ψ

,          yLy0 << ;                                                                             (5)

0)0( =Ψ     e    0)L( y =Ψ ,                                                                                                          (6)

0(Y)F)µ(
dY

(Y)Fd
i

2v
i2

i
2

=+ ,                                                                                                         (7)



0)0(i =Φ    e    0)L( yi =Φ .                                                                                                         (8)

Resolvendo os problemas de autovalores, obtém-se as  seguintes autofunções normalizadas
)Y(iΨ  e )Y(iΦ ; as integrais de normalização u
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)Yµ(senA)Y( u
i

u
ii =Ψ  ,        

y

u
i L

2
A = ,          

y

u
i L

i
µ

π
= ,   ∞= ,,3,2,1i K ;                                (9)

)Yµ(senA)Y( v
i

v
ii =Φ  ,        

y

v
i L

2
A =  ,        

y

v
i L

i
µ

π
= ,   ∞= ,,3,2,1i K .                              (10)

De acordo com os problemas de autovalores determinados anteriormente, obtém-se os pares
transformada-inversa em relação ao eixo y, como segue:
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Obtidos os pares transformada-inversa para a equação de Burgers, multiplica-se as equações
(1a) e (1b) pelas respectivas autofunções  )Y(iΨ  e )Y(iΦ ,correspondentes às funções velocidades
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infinito:

∑∑∑∑
∞

=

∞

=

∞

=

∞

=

=ττ+
∂

τ∂
τ+

τ∂
τ∂

1j 1k

kjijk

1j 1k

k
jijk

i ),X(U~),X(V~B
X

),X(U~
),X(U~A

),X(U~

                                                                      







τ−

∂
τ∂

= )(X,U~)µ(
X

)(X,U~

Re
1

i
2u

i2
i

2

                         (15)

e



∑∑∑∑
∞

=

∞

=

∞

=

∞

=

=ττ+
∂

τ∂
τ+

τ∂
τ∂

1j 1k

kjijk

1j 1k

k
jijk

i ),X(V~),X(V~D
X

),X(V~
),X(U~C

),X(V~

                                                                      







τ−

∂
τ∂

= ),X(V~)µ(
x

),X(V~

Re
1

i
2v

i2
i

2

                         (16)

no qual

dY)Y()Y()Y(A
yL

0 kjiijk ∫ ΨΨΨ= ,                                            dY
Y

)Y(
)Y()Y(B

yL 

0 

k
jiijk ∫ ∂

Ψ∂
ΦΨ= ,

∫=
yL

0 kjiijk (Y)dY(Y)F(Y)?FC                   e                          ∫ ∂
∂

=
yL

0

k
jiijk dY

Y
(Y)F

(Y)(Y)FFD .

são determinados analiticamente.

Aplica-se a Transformada Integral sobre as condições inicial e de contorno do problema
original, e em seguida faz-se a transformação na direção X.

6. TRANSFORMAÇÃO DO PROBLEMA NA DIREÇÃO X

Para a homogeneização da condição de entrada da Equação de Burgers é conveniente considerar
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De forma análoga aos problemas auxiliares de autovalores para o eixo y, é considerado, agora,
os seguintes problemas auxiliares de autovalores, Eqs. (17) e (19) e suas respectivas condições de
contornos no eixo X, Eqs. (18) e (20) para as funções velocidades ),X(U

~
i

τ+  e ),X(V~i τ :

0)X()(
dX

)X(d
m

2u
m2

m
2

=Ψγ+
Ψ

,          xLx0 << ;                                                                         (17)

0)0(m =Ψ   e   0)L( xm =Ψ ,                                                                                                        (18)

0)X()(
dX

)X(d
m

2v
m2

m
2

=Φγ+
Φ

,                                                                                                    (19)

0)0(m =Φ    e   0)L( xm =Φ .                                                                                                      (20)

Obtendo, assim, as seguintes autofunções )X(mΨ  e )X(mΦ ; integrais de normalização u
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De acordo com os problemas auxiliares de autovalores (17) e (19), determinam-se os pares
transformada-inversa em relação ao eixo X, como segue:
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equações diferenciais ordinárias de primeira ordem não-lineares acoplados e infinitos para as
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As condições iniciais originais das funções velocidades )T,X(V
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transformadas respectivamente, da forma como segue:
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7. TRUNCAMENTO DA EXPANSÃO EM SÉRIES FINITAS

Para determinar a solução dos sistemas dados pelas equações (27) e (28), estes serão truncados
em uma ordem finita suficientemente grande, como segue:
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no qual pnkj N ,N ,N ,N  são ordens de truncamento em cada somatório nas séries infinitas.



Uma vez truncado o sistema, este torna-se passível de solução, o qual é transformado em um
sistema de equações não lineares. Desta forma, determina-se as velocidades transformadas

)(V
~

 e  )(U
~

imim
ττ+ e utilizando a fórmula de inversão por duas vezes, obtém-se as funções velocidades

T)Y,V(X,  e  )T,Y,X(U , construindo-se a solução do problema original.

8. CONCLUSÃO

Neste trabalho, foi aplicada a Técnica da Transformada Integral Generalizada como método de
solução analítica formal para a equação de Burgers. Para tanto, foram considerados problemas
auxiliares de autovalores para cada uma das equações nas coordenadas x e y, as quais permitiram
estabelecer os pares transformada-inversa. Em particular, para a componente da velocidade na
direção do escoamento foi introduzida uma mudança de variável adequada para a homogeneização
da condição de entrada. Com este procedimento, obteve-se um sistema de equações diferenciais
ordinárias de primeira ordem não-linear acoplado e infinito para as componentes da velocidade
transformadas. Para se obter a solução numérica do sistema resultante, o mesmo deve ser truncado
em uma dada ordem finita de acordo com a precisão que se deseja da solução. Assim, as
componentes da velocidade podem ser obtidas fazendo uso da fórmula de inversão, as quais
permitirão a determinação dos diversos parâmetros físicos de interesse.
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Abstract Non-linear Burgers´ equation has no real flow meaning but it is a mathematical model of
hydrodynamics. This is important in the study of turbulence, shock waves among other kind of
flows. The non-linear term in the Burgers´ equation contributes to a wave of appreciable amplitude
traveling in some direction. This wave eventually dissipates, and the non-linear solution tends to the
same shape of the linearized solution, though with a smaller amplitude. The non-linear term
steepens the velocity gradient; however, because of the damping effect, no discontinuity occurs. In
this work we use the GITT to present a formal analysis on how to solve the non-linear Burgers´
equation over two-dimensional domains. The generalized integral transform technique (GITT) is a
powerful tool to solve second order partial differential equations, and has been used to solve
equations with special difficulties such as non-separable equation coefficients, variable boundary
condition coefficients, irregular domains, non-linearities, and so on.

Keywords: Burgers’ Equation, Integral Transform, Non-linear.


