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Abstract. Injection moulding is one of the most important industrial processes for the manu-
facturing of thin plastic products. The flow of a fluid characterized by high viscosity in a narrow
gap is a problem typically found in injection molding processes. In this case, the flow can be
described by a formulation known as Hele-Shaw approach or 21/2D approach, referring to limi-
tations of the mould geometry to narrow, weakly curved channels. In this work a technique for
the simulation of the filling stage of the injection molding process, using this 21/2D approach,
with a finite volume method and unstructured meshes, is presented. The modified-Cross model
with Arrhenius temperature dependence is employed to describe the viscosity of the melt. The
temperature field is 3D and it is solved using a semi-Lagrangian scheme based on the finite
volume method.

Keywords: injection molding process, finite volume method, free surface, unstructured meshes,
semi-Lagrangian formulation.

1. INTRODUCTION

Nowadays, many products are made by thermoplastics injection, in a process called injection
molding. In the injection molding process, molten material is forced into a mold where it cools
and hardens. The flow of a fluid characterized by high viscosity in a narrow gap is a problem
typically found in the processes of injection molding. In this case, the flow can be described by
few suitable simplifications in the three dimensional conservation equations, in a formulation
known as Hele-Shaw approach (Bretas and D’Avila, 2000; Kennedy, 1995). Such simplifications
can be obtained using a number of assumptions regarding the injected polymer and the geometry
of the mold, together with the integration and the coupling of the momentum and continuity
equations, so this formulation is also called 21/2D approach.

In this work a technique for the simulation of the injection molding process of polymer is
presented. This technique considers important aspects to guarantee the quality of the part, such



as the heat transference by the walls and the insertion points of the mold, and the influence
of the temperature and the shear rate in the polymer fluidity. The implemented numerical
method uses the topological data structure SHE – Singular Handle Edge (Nonato et al., 2002),
capable to handle boundary conditions and singularities, aspects commonly found in numerical
simulation of fluid flow.

The governing equations are resolved using an unstructured mesh, generated by Delaunay
triangulation (Shewchuk, 1999) and the discretization method is based on the finite volume
formulation (Baliga and Patankar, 1981; Maliska, 1995; Ransau, 2002).

2. THE GOVERNING EQUATIONS

The three-dimensional conservation equations, governing the fluid motion, can be written
as follow:

Continuity Equation:

∂ρ

∂t
+ (∇ · ρ~v) = 0 (1)

Momentum Equation:

∂

∂t
(ρ~v) = ρ~g + [∇ · σ]− [∇ · ρ~v~v] (2)

Energy equation:

ρcp

(
∂T

∂t
+ ~v · ∇T

)
= βT

(
∂p

∂t
+ ~v · ∇p

)
+ p∇ · ~v + (σ : {∇~v}) +∇ · (k∇T ) (3)

These equations are quite general and hold for all common fluids. For simulating the fluid
flow in an injection molding process, during the filling phase, some simplifications can be done
on equations (1), (2) and (3), regarding the following assumptions:

1. During the filling phase, the fluid is considered to be incompressible

This assumption means that the density is constant, and allows a simplification on the
continuity equation.

2. The thermal conductivity of the material is assumed to be constant

Despite the fact that the thermal conductivity, k, of polymers depends on temperature,
this assumption is enforced because of the difficulty in obtaining material data. Therefore,
a simplification on the energy equation can be done.

3. Simplification by dimensional analysis

The idea is to obtain estimates of the order of magnitude of each term in the govern-
ing equations – terms of sufficiently low order have little influence and, therefore, are
neglected. This analysis is made using characteristic values of the variables listed below:

• Cavity thickness, H = 10−3 m

• Cavity length, L = H/δ m where δ = H/L << 1

• Velocity of the fluid, ~v = 10−1 m/s

• Cavity pressure, p0 = 107 N/m2



• Viscosity of the fluid, η = 104 Ns/m2

• Expansivity, β = 10−3 1/K

• Thermal conductivity of fluid, k = 10−1 W/mK

• Density of fluid, ρ = 103 kg/m3

• Specific heat of fluid, cp = 103 J/KgK

• Temperature difference between mold and fluid, T0 = 102 K

Using assumptions about material behavior and dimensional analysis to estimate the mag-
nitude of the terms in each equation, the equations (1) to (3) are reduced to the following:

Continuity Equation:

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 (4)

Momentum Equations:

∂p

∂x
=

∂

∂z

(
η
∂vx

∂z

)
,

∂p

∂y
=

∂

∂z

(
η
∂vy

∂z

)
,

∂p

∂z
= 0 (5)

Energy Equation:

ρcp

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y

)
= ηγ̇2 + k

∂2T

∂z2
(6)

Further simplification is available by integrating the momentum and continuity equations.

4. Simplification by mathematical analysis

In order to obtain an expression for the pressure, which is a function of x and y only, it
is convenient to integrate the momentum and continuity equations across the thickness.
The resulting equation is a single equation for the pressure, called Hele-Shaw equation:

∂

∂x

(
S2

∂p

∂x

)
+

∂

∂y

(
S2

∂p

∂y

)
= 0 (7)

where S2 is called fluidity and it is defined by:

S2 =
1

2


∫ h+

h−

z′2

η
dz′ −

(∫ h+

h−
z′

η
dz′

)2

∫ h+

h−
dz′

η

 (8)

The equation (7) can be further simplified by assuming that the flow field is symmetric
and the equation (8) can be written as:

S2 =

∫ h

0

z′2

η
dz′ (9)

In this case, the calculations need only to be performed for one half of the cavity thick-
ness, enabling both considerable gain in computational speed and reduction of storage
requirements.



2.1. Resulting Equations

After those assumptions, the governing equations for the average quantities of the fluid
flow, during the filling of a mold, can be written as:

∂

∂x

(
S2

∂p

∂x

)
+

∂

∂y

(
S2

∂p

∂y

)
= 0 (10)

ρcp

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y

)
= ηγ̇2 + k

∂2T

∂z2
(11)

The modified-Cross model with Arrhenius temperature dependence is employed to describe
the viscosity of polymer melt (Chang and Yang, 2001):

η(T, γ̇) =
η0(T )

1 +

(
η0

γ̇

τ ∗

)1−n (12)

with

η0(T ) = B exp

(
Tb

T

)
(13)

where n is the power law index, η0 is the zero shear viscosity, τ ∗ is the parameter that describes
the transition region between zero shear rate and the power law region of the viscosity curve.

For polystyrene, the material constants are τ ∗ = 1.791 104 Pa, B = 2.591 10−7 Pas, n =
0.2838, and Tb = 11680 K. The density, the specific heat and the thermal conductivity are
ρ = 940 Kg/m3, cp = 2100 J/KgK and k = 0.18 sW/mK, respectively (Chen et al., 1998).

In this work the fluid flow is considered symmetric, so the equations for the velocity com-
ponents are given by:

vx = −∂p

∂x

(∫ z

0

z′

η
dz′ −

∫ h

0

z′

η
dz′

)
(14)

vy = −∂p

∂y

(∫ z

0

z′

η
dz′ −

∫ h

0

z′

η
dz′

)
(15)

The equations (10) and (11) will be solved with the finite volume method using an un-
structured mesh, generated by a two-dimensional quality mesh generator based on Delaunay
triangulation called EasyMesh (Niceno, 2001).

3. THE NUMERICAL METHOD

Cartesian and structured meshes, in general, present little flexibility of refinement, produc-
ing, in many applications, an extreme resolution in some regions of the domain, while in other
more critical regions the resolution is insufficient to find satisfactory results. This problem
is more critical for transient problems. The application of unstructured meshes can, in these
cases, result in great reduction of the computational cost, since the used meshes are adequate to
the precision requirements of the problem: they allow to apply boundary conditions in complex
geometries without an additional effort and offer great flexibility in the definition of the spacing
in each region of the domain. This flexibility can be explored in order to obtain methods which



are more computationally efficient.
The search for adequate methods, which simultaneously deal with complex geometries and

are conservative, has motivated the development of methodologies that have two characteristics:
the use of the integral conservation equations of the properties in elementary volumes and the
use of unstructured meshes to obtain elementary volumes. Methods based on this strategy,
as the ones developed by Baliga and Patankar (Baliga and Patankar, 1981), have been called
Control Volume Based Finite Element Method (CVFEM).

One of these methods based on triangular meshes consists in building the control volume by
connecting the geometric center of the triangles to the medians of their sides (Maliska, 1995).
The methodology developed in this work is based on this method.

Equations (10) and (11) are solved as follows:

1. For a given time t0 and a given free surface position, a finite volume approximation of
equation (10) is solved, thus obtaining the pressure distribution p at t0;

2. Using equations (14) and (15) the velocities components vx and vy are obtained;

3. The temperature distribution at t0 is obtained by a semi-Lagrangian approximation of
equation (11);

4. The free surface position at t0 + dt is found.

The steps above are repeated until the mold is completely filled.

3.1. Finite Volume Discretization of the Pressure Equation

The equation (10), using the flux notation, can be written in its conservative form, also
called divergence form, as follow:

∇ · ~J = 0 (16)

where the flux ~J is given by ~J = S2∇p.
The discretization of equation (10) is obtained by the integration of the differential equation

in the conservative form (16) in the elementary volume as the ones shown in figure 1(a).
Therefore,∫

V

∇ · ~J dV = 0 (17)

Applying the Gauss Divergence Theorem to the equation (17), the contribution of the
integral over the elementar volume V is given by:∫

V

∇ · ~J dV =

∫
S

~J · ~n dS (18)

where S is the closed boundary of V and ~n is a unit outward normal to S.
Considering a control volume like the one illustrated by figure 1(b) and integrating equation

(16) over the control volume of vertex 1, restricted to element 123, the equation (18) can be
written as:∫

S 123

~J · ~n dS 123 =

∫ c

a

~J · ~n dS 123

=

∫ 0

a

~J · ~n dS 123 +

∫ c

0

~J · ~n dS 123

(19)



a) b)

Figure 1: Control volumes for the median method

The integration given by equation (19) requires the values of the derivatives of p through
the lines a0 and 0c, however, the values of p are known only over the mesh vertices. Hence, it
is necessary to interpolate p. A suitable linear interpolation of p is given by p = Ax + By + C
where the constants A, B and C, for the element 123, can be found. Organizing conveniently
this terms, the equation (19) can finally be written as follow:∫ 0

a

~J · ~ndS +

∫ c

0

~J · ~ndS = C11p1 + C12p2 + C13p3 (20)

where coeficients are given by:

C11 =
S2

D
[(ya − yc)(y2 − y3) + (xa − xc)(x2 − x3)] (21)

C12 =
S2

D
[(ya − yc)(y3 − y1) + (xa − xc)(x3 − x1)] (22)

C13 =
S2

D
[(ya − yc)(y1 − y2) + (xa − xc)(x1 − x2)] (23)

and

D = (x1y2 + x2y3 + x3y1 − y1x2 − y2x3 − y3x1) (24)

The contribution to the control volumes of vertices 2 and 3 can be analogously computed.
Considering

pe = [p1 p2 p3]
t (25)

the element vector of the pressures at element 123, the contribution to element control volumes
123,

ue = [u1 u2 u3]
t (26)

can be computed by

ue = C pe (27)

where C is a 3× 3 matrix constituted by the coeficients Cij, with 1 ≤ i, j ≤ 3.
After adding the contributions of the others elements, an algebraic system of equations for



the control volume centered on each vertex is obtained. This linear system is solved using the
Conjugate Gradient Method, and its solution gives values for p at the triangle vertices, that is,
at the center of the control volumes in which the conservation balances of the pressure p have
been made.

3.2. Moving the Free Surface

For identification and advancement of the free surface of fluid, one technique called Volume
of Fluid (VOF) (Ransau, 2002) is used. This strategy consists, basically, in applying the mass
conservation, in the integral form, to the control volume which involves a vertex and in the
discretization of the equation using the finite volume method.

In this way, an equation for the filling factor, fill, of the control volume is obtained. This
filling factor varies in the interval [0, 1], that is, if fill of a vertex is equal to 1, means that the
control volume associated with the vertex is completely full of fluid and if fill of the vertex is
equal to 0, then the control volume associated with the vertex is completely empty. Intermediate
values of fill indicate that the control volume is partially full, or, in other words, they indicate
the position of the free surface.

After computation of the fill factor in time variation (∂fill
∂t

), for all mesh vertices, it is possible
to calculate the time step, dt, that is necessary to accurately fill one control volume associated
with a vertex whose 0 ≤ fill ≤ 1, considering only contributions from control volumes that are
filled. At each time step, the time interval is chosen such that only one control volume is filled.
This strategy results in a scheme without numerical diffusion.

3.3. Solving the Equation for the Temperature

The contributions for the temperature are found by a semi-Lagrangian method. The basic
idea is to follow a particle during its trajectory over the mesh. This technique consists in writing
the energy equation (11) in terms of the material derivative, as follow:

DT

Dt
= f where f =

1

ρcp

(
ηγ̇ + k

∂2T

∂z2

)
(28)

which can be evaluated as

T (p, t + dt)− T (p, t)

dt
= f (29)

where p is an arbitrary particle.
Choosing a particle that occupies the position of a vertex at time t + dt and writing this

expression in terms of coordinates ~x = (x, y), we have:

T (~x, t + dt) = T (~x− d~x, t) + dt f (30)

where d~x = ~v · dt. Expanding T (~x− d~x, t) using a truncated Taylor serie, we obtain:

T (~x, t + dt) = T (~x, t)− dt~v · ∇T +
dt

ρcp

(
ηγ̇ + k

∂2T

∂z2

)
(31)

where the convective term, ~v · ∇T , is computed at the element that contains the particle p
at time t and ~v is the velocity at the vertex. The condutive term, k ∂2T

∂z2 , is computed using a
difference finite scheme in the z-direction.



4. RESULTS

The solution of the pressure distribution has been validated considering analytical solutions
against constant fluidity. The energy equation solution has been validated against the analytical
solution of the transport of a sharp temperature discontinuity by a constant velocity field
and other one-dimensional analytical solution for the temperature field. In this section we
present two representative results of solving equations (10) and (31) for general situations. In
these simulations, we use prescribed velocity and prescribe temperature boundary conditions
at the mold inlet. The input data for this simulation are: inlet temperature T = 513 K, wall
temperature Tw = 313 K, prescribed velocity v0 = 101 m/s2 and reference pressure at inlet
mold p0 = 105 N/m2. The material properties are the same at the described on Section 2.1.

a) b)

Figure 2: Molds used in the simulations: 2(a) - retangular mold and 2(b) - complex l-shaped
mold with two circular insertions

The first the simulation was conducted using a rectangular mold, whose dimensions are
shown in Figure 2(a). The unstructured triangular mesh built on the rectangular mold has
313 elements. This relatively coarse grid was chosen for this test because it produces better
visualization of results. The figures 3, 4 and 5 show the pressure, the velocity vector and
the temperature fields at the center plane of the cavity, respectively. They show four stages
of the mold filling, ordered as follow: right after the flow had started, at t = 0.51s; at two
intermediate times, t = 1.82 s and t = 3.16 s; and near the end of the injection, when t = 4.68 s.
The predicted injection time is 4.97 s, and the exact time, based on mass conservation is 5 s,
resulting in a 0.6% error. For the temperature field, only the completely filled elements are
shown with the aim of illustrating the advance of the free surface.
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Figure 3: Four stages of pressure solution for a rectangular mold. The values are scaled by p0
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Figure 4: Velocity vectors obtained after the calculations for the pressure distribution

A l-shaped mold with two circular insertions, whose dimensions are shown in Figure 2(b)
was used in the second simulation. The unstructured triangular mesh built on the mold has
563 elements.

The figures 6, 7 and 8 show the pressure, the velocity vector and the temperature fields at the
center plane of the cavity, respectively. They show four stages of the filling of the mold: right
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Figure 5: Four stages of the temperature distribution at the cavity center plane, ie, z = 0
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Figure 6: For stages of the pressure solution for a mold with two circular insertions. The values
are scaled by p0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.1  0.2  0.3  0.4  0.5

y

x

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.1  0.2  0.3  0.4  0.5

y

x

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.1  0.2  0.3  0.4  0.5

y

x

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.1  0.2  0.3  0.4  0.5

y

x

Figure 7: Velocity vectors obtained after the calculations for the pressure distribution
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Figure 8: Four stages of the temperature distribution at the cavity center plane, ie, z = 0

after the flow had started, at t = 15.38 s; at two intermediate times, t = 37.21 s and t = 46.41 s;
and near the end of the injection, when t = 56.53 s. The predicted injection time is 57.48 s,
and the exact time, based on mass conservation is 52.5 s, resulting in an 8.41% error which
is quite large. However, using a finer mesh with 5546 elements, the predicted injection time
is given by 52.61 s, resulting in a 0.20% error. For the temperature field, only the completely
filled elements are shown with the aim of illustrating the advance of the free surface.

In this second simulation, it is possible to observe the capability of the present model to
deal with splitting and remerging of the free-surface/melt front during the filling process. The
prediction and localization of this effect are essential to guarantee the final quality of the part
since the remergin regions are one of the most fragile areas of the molded part.

5. CONCLUSION

This work presented a finite volume method over an unstructured mesh for solving the governing
equations of fluid flow during the filling phase of injection molding. This methodology allows to
simulate complex geometries without excessive computational efforts, producing temperature



and shear stress distributions and real injection times. Thus, the proposed method may be
considered an useful tool for the design, analysis and troubleshooting of injection molding
process. This fast and simple prediction tool provides a 3-dimensional temperature distribution,
including heat transfer and viscous dissipation effects, which is sufficiently accurate for most
applications.
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