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Abstract. In this paper, we describe a space-time finite element numerical formulation for the
solution of the compressible Euler equations written in their conservation form. Two supersonic
flow applications are analysed and the numerical outputs are compared to analytical solutions and to
results found in the literature, and good agreement is found. The algorithm is based on a space-time
approach and on a simplified SUPG stabilizing matrix. The methodology used has formed a basis
for future works in three dimensions and other sets of variables.
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1.INTRODUCTION

It is well know that the Euler equations possess some peculiar aspects, not easily dealt with, in
the context of Finite Element Methods. First, a Petrov-Galerkin method must be used in order to
stabilise the numeric negative diffusion that appears with pure Galerkin weighting. Also, at very
high speed flows, the presence of shocks is inevitable, rendering the solution strong discontinuities
and, therefore, requiring additional localised numeric dissipation. Last, the resulting system of
linearised equations which must be solved through several interactions gets ill conditioned as the
flow speed lowers down. These three aspects just mentioned have motivated a lot of research work
through the last decades. In this paper, we choose to use the SUPG' method for solving the set of
compressible Euler equations written in its conservative form, with a simplified version of the
stabilising matrix. A computer code written in FORTRAN 90 has been developed and some results
are shown.

2. SPACE-TIME FORMULATION

Consider the Euler equations:
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1 SUPG : Strealine-Upwind Petrov- Galerkin



In equation (1), U represents the set of conservation variables, F,=F,(U) is the k"
convective flux vector and “nd” is the number of spatial dimensions. A solution U=U (¢, x) is

sought in the space-time domain Q=QX|0,T|. Expressions for U and F, can be found in the
literature (see, for example, Hirsch,1988)

Let Q be an approximate partition of the Q, such that Q is, actually, a union of N —1 space-
time slabs, as shown in Fig.(1). With this choice of partitioning, the spacial domain €2, is
approximately discretized into Q” and the time domain [0, 7] is equally divided into N—1 open

intervals: 1,=]¢,.,t,.,| . Notice that a triangular discretization is used to exemplify. It follows that
we can define the n" space-time slab as (Shakib, 1988):

Qn=QﬂX1ﬂ (2)

With Qn given by Eq. (2), the discretized dominion, Q , 1s given by:

Q:(L;Jo Qn)u{to,tl"'tN} (3)

Figure 1. A space-time slab.

Figure (1) also shows a prismatic element QZ:QZXI , - Let us denote the border of the spatial

domain (}n by I , and the corresponding element’s border by I ; the space-time borders at level

n will likewise be labeled 13,, and ISZ . One should also notice that the spatial domain partitions

need not have the same pattern at each time step n. This feature makes space-time methods specially
well suited for meshes which deform with time (Aliabadi and Tezduyar, 1995).

2.1 A constant-in-time approach

Let U ESZ and We Vf, where Sﬁ is the set of trial functions and Vf, is the space of weighting
functions given by:
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In equations (4) and (5), m is the number of degrees of freedom per node (four, in the two-di-
mensional case) and p,= pk(x, t) isa polinomial of order k . In the constant-in-time approach, we
restrict ourselves to p,= pk(x) . The variational formulation of equation (1) can then be stated as:
within each Qn (n=0,...N—1), find U€S" such that for all WeV" the following equation is
satisfied:

Vo l=W . O=w o F(@)]do+ [, ([W (e[| U6 |- w () O16)]1d 2+
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OF,
with 4, = 0 . Values for A, can be found in Hirsh, 1990.

In equation (6), the first integral and the integral on the boundary are the Galerkin contributions,
the second integral comes from the integration by parts of the time-flux term (W -U ,) plus the so

called jump condition; the sums are the SUPG and discontinuity capturing terms, respectively. The
role of the jump condition plus considerations on stability can be found in the literature (see, for
instance: Bauer, 1995)

In a constant-in-time approach, equation (6) reduces to:

—atf, W,,,Fk(if dO+[, W U(t,.,)-Ulr)|d 2+

Asz AW )T(A4,U, )d.Q+Ath W, U,dQ= )

where At=t,,,—t,.

3.FINITE ELEMENT DISCRETIZATION

The solution U in equation (7) can be piecewisely approximated at the time levels n and n+1 as:

Nnodes Nnodes

Z (l)j ", n+1 Z ¢ An+1 (8)

where ¢p=¢(x) represents the usual linear shape function. Nnodes stand for the number of nodes
in the spatial discretized domain.



The weighting functions, likewise, are written as:

Nnodes

W'=Y ¢w 9)
j=1
Substitution of equations (8) and (9) into (7) ultimately gives:
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i,j=1...Nnodes; k=1...nd

Of course, the matrices built through Eq. (10) are to be assembled element by element, following
the usual finite element procedure. One can then reformulate Eq.(10) in an element-wise manner.
Using a matricial notation we get:

M (@ =il [+ At (~VI+ VP v ) - At F=0 (11)

Note that we dropped the superindex n for the sake of clarity. We should keep in mind,
therefore, that ¥/, V7 V' and F? are calculated at time level n. Matrix M, is the consistent

mass matrix and the terms V7, V7 and V'’ correspond, respectively, to the convective flux
vector, the SUPG correction to the convection flux vector and the discontinuity capturing operator

vector. The last term F is related to the convective flux through the boundaries.
Equation (11) gets somewhat simplified under the assumption that the element fluxes and
matrices are constant and functions of the arithmetic average of #, over the element’s

connectivities (Catabriga, 2000). This line of thought is adopted herein. If follows that in the
corresponding integrals:

Ak",Fk",T,(s":f(iZ u) (12)
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where nc is the number of connectivities of the element.

With the assumption made in Eq. (12) and considering linear shape functions we obtain:
(il =il)=|[, bob,d @[l =il) i, j=1.nc (13)

vi=—|ate, [, dQ|Fi: k=1.2: i=1..nc (14)
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Equations (13) to (17) can be easily evaluated analytically. There’s still the SUPG matrix T and
the discontinuity capturing parameter 6 which are the subject of the following section.

4. STABILIZATION PARAMETERS

The stabilization matrix can be derived from the SUPG method applied to a scalar advection-dif-
fusion equation. Hughes et.al. (b) (1986), following the work of Hughes and Brooks (1982),
proposed an expression for the scalar T considering a non-transient pure advection problem :

9€; | 2 .
T= an a, 5 i,k=1...nd (18)

where €; are natural coordinates, supposing there is a mapping (xi)—>(€i) .

The extension to advective systems is not straightforward and can be found in Hughes and Mal
let (1986). In this case, the stabilizing matrix is given by a similar expression:

1
oU O€, 2
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k

where V is a set of symmetrizing variables (see Hughes et al. (a), 1986).

Equation (19) can only be evaluated numerically, though, for rectangular elements, one can de-
duce analytical expressions. Even so, they are much clumsy and complicated. Several simpler al-
ternatives have been proposed which produce equally good results. However, the drawback seems
to be an over addition of numerical diffusion to the original system of equations. In this paper, we
choose to use a very simple stabilization matrix introduced by Aliabadi and Tezduyar (1995) and
also found in Catabriga (2000), where T is given by:

=11 (20)

where, for the space-time implicit formulation described before, the parameter T is given by:

'r:max[O,'rt+C('ra—T5)] 2n
and:
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The Courant number (Cr) is given by:

(c+|u-Bl|At

C:
d h

(23)

where c is the sound speed and / is a characteristic dimension of the element. For the case of two-
dimensional problems ,we take h=+v 4, , where 4, is the element's area.

Before writing expressions for f and ¢ in equations (22), some definitions are convenient. Let
Y bea (nd.mX1) vectorand M a mXm matrix, let us define the following norms:

1

M - 0 2

¥l =(¥{| : ~ :|¥]; \Y||={Y.y}% 24)

We also define the gradient of the vector ¥ with respect to the cartesian coordinates x; :

aY

0x,
vr=| 25)
oY

0x,,

and with respect to the natural coordinates €, :
V.y=s'Vy (26)

where J' is given by:

o€, o€,
ox, 0x,,
Jh= 27)
0€,, 0€,,
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We chose to use the discontinuity capturing parameter found in Aliabadi and Tezduyar, 1986.
Then, 6 in equation (22) is given by:

2
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The parameter B is given by:
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It is worth noticing that the gradient in equation (29) is given by:
ollulr
) ox,
viul= (30)
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4.1 Numerical implementation

For the solution of the non-linear system of equations given by equation (11), a predictor-
multicorrector algorithm has been used. Details of such implementation can be found in Shakib
(1986). To solve the resultant system of linear algebraic equations we have used a block-diagonal
preconditioned GMRES with reverse communication. The dimension of the Krylov Space was 50
and we assumed a stopping tolerance for the GMRES interactions of 10*. The code for the GMRES
algorithm was obtained from the CERFACS* home page.

5.NUMERICAL RESULTS
5.1 Oblique shock wave
A supersonic air flow comes into the unit sided square domain at Mach number M (see Fig. (2)),

and is reflected at the bottom wall. At the steady state, a shock is formed at an angle of 29.3° with
the horizontal. Density, speed and mach number are prescribed at boundaries 3 and 4.

3\ ;J,ux,uy,ﬂff
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Figure 2 Boundary conditions and spatial domain discretization for the oblique
shock problem.

A solid-wall condition (u#-n=0) is imposed at boundary 1 and, at boundary 2, the flow is left
free. The problem marches from a fiee stream initial condition® to a steady state and the boundary
conditions at 3 and 4 are:

2 “European Centre for Research and Advanced Training in Scientific Computation” (http://www.cerfacs.fr)
3 That is, the boundary conditions at walls 3 and 4 are extended to all spatial domain.



p=1.0; u,=cos(10°); u,=—sin(10°); M=2.0 €2))

A structured mesh with 400 elements was used to discretize the spacial domain (Fig. (2)). Figure
(3) shows the density and pressure profiles at steady state, using a Courant number of 1.0 for the
marching in time (see equation (23)). All graphs show a plane cut, parallel to the vertical
boundaries, at x = 0.9. We see that the shock was captured at its correct location though a diffusive
behaviour is observed, when comparing the numerical with the analytical solution. Nevertheless, it
agrees quite well with other published results (see Catabriga, 2000).
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Figure 3. The density and pressure distribution for the oblique shock problem: numerical and
analytical solutions.

5.2 Flow around a cylinder

The second example consists on the study of a supersonic flow around a cylinder. We used an
unstructured mesh consisting of 2642 elements, somewhat refined in front of the cylinder and in the
rarefaction zone. Fig. (4), shows the mesh alongside with the boundary conditions. We assumed a
free flow at all the boundaries but the leftmost one, where values are prescribed. Also, a solid-wall
condition is imposed on the cylinder's surface.

Figure 4. Mesh for the cylinder
problem.

A marching in time procedure is again used with the free stream initial conditions. The Courant
number adopted was 1.0 and the solutions were plotted after 350 steps. Figure (5) shows the isolines
of Mach number, temperature and density at the steady-state. The capturing of the shock is quite
evident and there is a good qualitative agreement with results published in the literature for similar
problems (see Lyra, 1994).



Figure 5. Mach number, temperature and density
(Mach 2.0 flow around a cylinder)

6. CONCLUSIONS

A numerical solution for the compressible two-dimensional Euler equations has been
implemented and the results have been validated by comparison with analytical and numerical
results published in the literature. The implementation is the basis for a three dimensional Navier-
Stokes solver which is under conclusion. Three dimensional results for different sets o variables will
be the goal of a near future work.
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