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Abstract.  In  this  paper,  we describe  a  space-time  finite  element  numerical  formulation  for  the
solution of the compressible Euler equations written in their conservation form. Two supersonic
flow applications are analysed and the numerical outputs are compared to analytical solutions and to
results found in the literature, and good agreement is found. The algorithm is based on a space-time
approach and on a simplified SUPG stabilizing matrix. The methodology used has formed a basis
for future works in three dimensions and other sets of variables.
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 1. INTRODUCTION

It is well know that the Euler equations possess some peculiar aspects, not easily dealt with, in
the context of Finite Element Methods. First, a Petrov-Galerkin method must be used in order to
stabilise the numeric negative diffusion that appears with pure Galerkin weighting. Also, at very
high speed flows, the presence of shocks is inevitable, rendering the solution strong discontinuities
and,  therefore,  requiring  additional  localised  numeric  dissipation.  Last,  the  resulting  system of
linearised equations which must be solved through several interactions gets ill conditioned as the
flow speed lowers down. These three aspects just mentioned have motivated a lot of research work
through the last decades. In this paper, we choose to use the SUPG1 method for solving the set of
compressible  Euler  equations written  in its  conservative form,  with  a simplified  version of the
stabilising matrix. A computer code written in FORTRAN 90 has been developed and some results
are shown.

 2. SPACE-TIME FORMULATION 

Consider the Euler equations:

∂U
∂ t


∂F k

∂ xk
=0 ; k=1nd (1)

1 SUPG : Strealine-Upwind Petrov- Galerkin



In  equation  (1),  U  represents  the  set  of  conservation  variables,  F k=F k U   is  the  kth

convective flux vector and “nd” is the number of spatial  dimensions. A solution  U=U t , x   is
sought in the space-time domain Q=×[0,T ] . Expressions for U  and F k  can be found in the
literature (see, for example, Hirsch,1988)

Let Q  be an approximate partition of the Q , such that Q  is, actually, a union of N−1  space-
time  slabs,  as  shown  in  Fig.(1).  With  this  choice  of  partitioning,  the  spacial  domain  n  is
approximately discretized into n  and the time domain [0,T ]  is equally divided into N−1  open
intervals: I n=] tn. , tn1[ . Notice that a triangular discretization is used to exemplify. It follows that
we can define the nth space-time slab as (Shakib, 1988):

Qn= n×I n (2)

With Qn  given by Eq. (2), the discretized dominion, Q , is given by:

Q=∪n=0

N−1
Qn∪{t0, t1t N } (3)

Figure (1) also shows a prismatic element Qn
e= n

e× I n . Let us denote the border of the spatial
domain n  by n  and the corresponding element’s border by n

e ; the space-time borders at level
n will likewise be labeled  Pn  and  Pn

e . One should also notice that the spatial domain partitions
need not have the same pattern at each time step n. This feature makes space-time methods specially
well suited for meshes which deform with time (Aliabadi and  Tezduyar, 1995).

2.1 A constant-in-time approach

Let U∈S n
h  and W ∈V n

h  where S n
h  is the set of trial functions and V n

h  is the space of weighting
functions given by:

Figure 1. A space-time slab.



S n
h={ U∣ U∈[C 0  Qn]

m
, U∣ Qn

e∈[ pk  n
e ]m ,q  U =g t  ,∀ U∈n×I n} (4)

V n
h={W ∣W ∈[C 0 Qn]

m
,W ∣ Qn

e∈[ pk  n
e ]m ,q W =0,∀ U∈n× I n} (5)

In equations (4) and (5),  m is the number of degrees of freedom per node (four, in the two-di-
mensional case) and pk= pk  x , t   is a polinomial of order k . In the constant-in-time approach, we
restrict ourselves to pk= pk  x  . The variational formulation of equation (1) can then be stated as:
within each Qn  ( n=0,N−1 ), find U∈S n

h  such that for all  W ∈V n
h  the following equation is

satisfied:

∫ Qn
[−W , t⋅U−W , k⋅F k  U ]dQ∫ n

{[W tn1
− ]⋅[ U tn1

− ]−[W tn
+]⋅[ U tn

+]}d +

∑
e
∫ Qn

e AkW , k ⋅ AkU , k dQ∑
e
∫ Qn

e W , k⋅U , k dQ=−∫ Pn
W⋅[F k  U nk ]dP

(6)

with Ak=
∂F k

∂U
. Values for Ak  can be found in Hirsh, 1990.

In equation (6), the first integral and the integral on the boundary are the Galerkin contributions,
the second integral comes from the integration by parts of the time-flux term (W⋅U , t ) plus the so
called jump condition; the sums are the SUPG and discontinuity capturing terms, respectively. The
role of the jump condition plus considerations on stability can be found in the literature (see, for
instance: Bauer, 1995)

In a constant-in-time approach, equation (6) reduces to:

− t∫ n
W , k⋅F k  U d ∫ n

W⋅[ U tn1
− − U tn

+]d +

 t∑
e
∫ n

e AkW , k ⋅ AkU , k d  t∑
e
∫ n

e W , k⋅U , k d =

− t∫ n
W⋅[F k  U nk ]d 

(7)

where  t=tn1−tn .

 3. FINITE ELEMENT DISCRETIZATION

The solution U  in equation (7) can be piecewisely approximated at the time levels n and n+1 as:

U n= ∑
j=1

Nnodes

 j u j
n , U n1= ∑

j=1

Nnodes

 j u j
n1 (8)

where =x   represents the usual linear shape function. Nnodes stand for the number of nodes
in the spatial discretized domain.



The weighting functions, likewise, are written as:

W n= ∑
j=1

Nnodes

 j w j
n (9)

Substitution of equations (8) and (9) into (7) ultimately gives:

− t∫ n
i , k F k  U nd ∫ n

i j  u j
n1−u j

nd 

 t∑
e
∫ n

e 
T i , k Ak Ak j , k

u j
nd  t∑

e
∫ n

e i , k j , k u j
n d =

− t∫ n
i [F k  U

nnk ]d 

i , j=1Nnodes ; k=1nd

(10)

Of course, the matrices built through Eq. (10) are to be assembled element by element, following
the usual finite element procedure. One can then reformulate Eq.(10) in an element-wise manner.
Using a matricial notation we get:

M e  ue
n1−ue

n t −V e
fV e

fpgV e
fdc− t F eb

ab=0 (11)

Note  that  we  dropped  the  superindex  n for  the  sake  of  clarity.  We  should  keep  in  mind,
therefore, that V e

f ,V e
fpg ,V e

fdc  and F eb
ab  are calculated at time level n. Matrix M e  is the consistent

mass matrix and the terms  V e
f ,  V e

fpg  and  V e
fdc  correspond, respectively, to the convective flux

vector, the SUPG correction to the convection flux vector and the discontinuity capturing operator
vector. The last term F eb

ab  is related to the convective flux through the boundaries.

Equation  (11)  gets  somewhat  simplified  under  the  assumption  that  the  element  fluxes  and
matrices  are  constant  and  functions  of  the  arithmetic  average  of  ue  over  the  element’s
connectivities  (Catabriga,  2000).  This  line  of  thought  is  adopted  herein.  If  follows  that  in  the
corresponding integrals:

Ak
e ,F k

e , ,e= f  1
nc∑i=1

nc

ue
i  (12)

where nc is the number of connectivities of the element.

With the assumption made in Eq. (12) and considering linear shape functions we obtain:

M e  ue
n1−ue

n=[∫e
i j d ] ue

n1−ue
n ; i , j=1nc (13)

V e
f=−[ ti , k∫e

d ]F k
e ; k=12 ; i=1nc (14)



V e
fpg=[ t T i , k Ak Ak j , k ∫e

d ] ue
n ; k=1nd ; i , j=1nc (15)

V e
fdc=[ t i , k j , k∫e

d ] ue
n ; k=1nd ; i , j=1nc (16)

F eb
ab=−[ t∫e

i d  ]F k
e nk  ; k=1nd ; i=1nc (17)

Equations (13) to (17) can be easily evaluated analytically. There’s still the SUPG matrix   and
the discontinuity capturing parameter   which are the subject of the following section.

 4. STABILIZATION PARAMETERS

The stabilization matrix can be derived from the SUPG method applied to a scalar advection-dif-
fusion  equation.  Hughes  et.al.  (b)  (1986),  following  the  work  of  Hughes  and  Brooks  (1982),
proposed an expression for the scalar   considering a non-transient pure advection problem :

=[ ∂i

∂ xk ak
2]−

1
2

; i , k=1nd (18)

where i  are natural coordinates, supposing there is a mapping  xi  i  .

The extension to advective systems is not straightforward and can be found in Hughes and Mal-
let (1986). In this case, the stabilizing matrix is given by a similar expression:

=∂U
∂V [ ∂i

∂ xk Ak
2]−

1
2

(19)

where V  is a set of symmetrizing variables (see Hughes et al. (a), 1986).

Equation (19) can only be evaluated numerically, though, for rectangular elements, one can de-
duce analytical expressions. Even so, they are much clumsy and complicated. Several simpler al-
ternatives have been proposed which produce equally good results. However, the drawback seems
to be an over addition of numerical diffusion to the original system of equations. In this paper, we
choose to use a very simple stabilization matrix introduced by Aliabadi and Tezduyar (1995) and
also found in Catabriga (2000), where   is given by:

= I (20)

where, for the space-time implicit formulation described before, the parameter   is given by:

=max [0,t a−] (21)

and:

a=
h

2 c∣u⋅∣ ; =


c∣u⋅∣2
; t=

2a

3 12Cr 
; =2

3
Cr (22)



The Courant number (Cr) is given by:

Cr=
c∣u⋅∣ t

h
(23)

where c is the sound speed and h is a characteristic dimension of the element. For the case of two-
dimensional problems ,we take h=Ae , where Ae  is the element's area.

Before writing expressions for   and   in equations (22), some definitions are convenient. Let
Y  be a nd . m×1  vector and M  a m×m  matrix, let us define the following norms:

∥Y∥M={Y⋅[M ⋯ 0
⋮ ⋱ ⋮
0 ⋯ M ]Y }

1
2

; ∥Y∥={Y⋅Y }
1
2 (24)

We also define the gradient of the vector Y  with respect to the cartesian coordinates xk :

∇Y=[
∂Y
∂ x1

⋮
∂Y
∂ xnd

] (25)

and with respect to the natural coordinates k : 

∇Y=J−1∇Y (26)

where J−1  is given by: 

J−1=[
∂1

∂ x1
⋯

∂1

∂ xnd

⋮ ⋱ ⋮
∂nd

∂ x1
⋯

∂nd

∂ xnd

] (27)

We chose to use the discontinuity capturing parameter found in Aliabadi and Tezduyar, 1986.
Then,   in equation (22) is given by:

=
∥Ak

∂U
∂ xk∥Ã 0

−1

2

∥∇U∥Ã 0
−1

2
; k=1nd (28)

The parameter   is given by:



=
∇∥U∥2

∥∇∥U∥2∥ (29)

It is worth noticing that the gradient in equation (29) is given by:

∇∥U∥2=[ ∂∥U∥2

∂ x1

⋮
∂∥U∥2

∂ xnd

]
nd×1

(30)

4.1 Numerical implementation

For the  solution  of  the  non-linear  system of  equations  given by equation (11),  a  predictor-
multicorrector algorithm has been used. Details of such implementation can be found in Shakib
(1986). To solve the resultant system of linear algebraic equations we have used a block-diagonal
preconditioned GMRES with reverse communication. The dimension of the Krylov Space was 50
and we assumed a stopping tolerance for the GMRES interactions of 10-4. The code for the GMRES
algorithm was obtained from the CERFACS2 home page. 

 5. NUMERICAL RESULTS

5.1 Oblique shock wave 

A supersonic air flow comes into the unit sided square domain at Mach number M (see Fig. (2)),
and is reflected at the bottom wall. At the steady state, a shock is formed at an angle of 29.3º with
the horizontal. Density, speed and mach number are prescribed at boundaries 3 and 4. 

A solid-wall condition ( u⋅n=0 ) is imposed at boundary 1 and, at boundary 2, the flow is left
free. The problem marches from a free stream initial condition3 to a steady state and the boundary
conditions at 3 and 4 are:

2 “European Centre for Research and Advanced Training in Scientific Computation” (http://www.cerfacs.fr)
3 That is, the boundary conditions at walls 3 and 4 are extended to all spatial domain. 

Figure 2 Boundary conditions and spatial domain discretization for the oblique
shock problem. 



=1.0 ; u x=cos 10 º  ; u y=−sin 10 º  ; M =2.0 (31)

A structured mesh with 400 elements was used to discretize the spacial domain (Fig. (2)). Figure
(3) shows the density and pressure profiles at steady state, using a Courant number of 1.0 for the
marching  in  time  (see  equation  (23)).  All  graphs  show  a  plane  cut,  parallel  to  the  vertical
boundaries, at x = 0.9. We see that the shock was captured at its correct location though a diffusive
behaviour is observed, when comparing the numerical with the analytical solution. Nevertheless, it
agrees quite well with other published results (see Catabriga, 2000).

5.2 Flow around a cylinder

The second example consists on the study of a supersonic flow around a cylinder. We used an
unstructured mesh consisting of 2642 elements, somewhat refined in front of the cylinder and in the
rarefaction zone. Fig. (4), shows the mesh alongside with the boundary conditions. We assumed a
free flow at all the boundaries but the leftmost one, where values are prescribed. Also, a solid-wall
condition is imposed on the cylinder's surface.

A marching in time procedure is again used with the free stream initial conditions. The Courant
number adopted was 1.0 and the solutions were plotted after 350 steps. Figure (5) shows the isolines
of Mach number, temperature and density at the steady-state. The capturing of the shock is quite
evident and there is a good qualitative agreement with results published in the literature for similar
problems (see Lyra, 1994).

Figure 4. Mesh for the cylinder
problem.

Figure 3. The density and pressure distribution for the oblique shock problem:  numerical and
analytical solutions.



 6. CONCLUSIONS

A  numerical  solution  for  the  compressible  two-dimensional  Euler  equations  has  been
implemented  and the  results  have  been validated  by comparison with  analytical  and  numerical
results published in the literature. The implementation is the basis for a three dimensional Navier-
Stokes solver which is under conclusion. Three dimensional results for different sets o variables will
be the goal of a near future work.
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