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Resumo. É feito um estudo tridimensional  do acoplamento fluxo – deformação em meios 
geotécnicos saturados com fluido compressível. Supondo inicialmente um maciço semi - infinito, 
poroso , homogêneo e isotrópico, e com o uso do conceito de tensões efetivas de Terzaghi, e com a 
aplicação dos parâmetros de pressão neutra de Skempton, temos como condição inicial,  pressão 
neutra em todo meio poroso, expresso matematicamente. O campo de tensões causados por um 
carregamento dinâmico na superfície do maciço produz ondas e fluxo no interior do meio poroso 
acoplado à deformação devido à expulsão do fluido dos poros, à deformação das próprias 
partículas do fluido e das partículas sólidas constituintes do maciço, e principalmente, devido à 
diminuição dos vazios, como conseqüência de um rearranjo interno do solo ou da rocha em 
análise. O estudo é feito sem o uso explícito da equação da onda. Através das equações 
desenvolvidas é possível calcular o campo de deslocamentos em qualquer ponto do maciço e na 
superfície,  o campo de tensões, e o campo de velocidade do fluido no meio poroso, no domínio 
espacial e temporal. Como exemplo numérico é apresentado a comparação com o caso clássico do 
adensamento unidimensional para solos argilosos.  
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1.INTRODUÇÃO 
 
      O que apresentamos neste estudo é o desenvolvimento das equações para abordagem dinâmica 
de um problema de engenharia geotécnica, que é a do carregamento concentrado cíclico na 
superfície do maciço, induzindo um estado tridimensional de tensão e de deformação no interior do 
maciço. 
      Esta formulação tem como objetivo apresentar um conjunto de equações que permitam avaliar o 
efeito de um carregamento cíclico e variável em módulo, usando as equações da dinâmica na forma 



diferencial e indicial, a teoria da elasticidade, a lei de Darcy, a equação da continuidade de uma 
maneira que permita estudar o acoplamento tensão-deformação-fluxo no interior do maciço, tanto 
para solos, quanto para rochas, à três dimensões, mas levando-se em consideração as 
compressibilidades do fluido, das partículas sólidas e da estrutura porosa. 
     Um maciço geotécnico horizontal, semi- infinito, homogêneo e de comportamento linear elástico 
é analisado para o caso deste maciço estar completamente saturado por um fluido compressível. A 
determinação da deformação da estrutura porosa está associada a expulsão do fluido dos poros e ou 
fraturas,  e também à própria deformação das partículas sólidas e do próprio fluido. O fluxo no meio 
poroso é suposto laminar e, por conseguinte, dentro do regime de validade da lei de Darci para 
fluxo em meios porosos.  Através do conceito de geração de poro – pressão de Skempton (1953), 
estimamos a pressão neutra gerada em todo domínio do maciço devido ao carregamento, como 
condição inicial.  
      As equações desenvolvidas são muito semelhantes às apresentadas por Biot (1956), no seu 
clássico trabalho sobre teoria da propagação de ondas elásticas com baixa frequência, em meios 
porosos saturados, com a diferença que o mesmo considerava fluxo no meio poroso como de 
Poiseuille, e tratava as equações para a matriz porosa separada das equações para o fluido. Neste 
trabalho utilizamos as equações acopladas. 
 
2- DESENVOLVIMENTO MATEMÁTICO 

      Seja em um meio semi- infinito, poroso, homogêneo, isotrópico e totalmente saturado com um 
fluido compressível, submetido à um carregamento dinâmico concentrado de módulo F.COS [2π  t] 
(kN/s), onde F é uma carga estática. 
Escrevendo a equação da continuidade na forma diferencial para este meio: 
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Partindo da lei de Darci, apresentado por Terzaghi (1943),  da equação(1) e da definição de 
compressibilidade do fluido, do meio poroso e das partículas sólidas, depois de operações 
matemáticas, chegamos à: 
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Onde para as equações acima: 
n a porosidade; 
β  a compressibilidade do fluido que preenche os poros e/ou fissuras(kPa); 
µ a viscosidade absoluta deste fluido(kPas);  
k a permeabilidade absoluta do meio(m2);  
ρ a massa específica do fluido(kN/m3);  
P a pressão  do fluido nos poros ou vazios do meio(kPa); 
t  o tempo(s); 
x, y e z são as variáveis independentes(m). 
  
 
A Equação (2) pode ser modificada, se considerarmos o coeficiente de compressibilidade do fluido 
constante, β , constante e aplicar nessa equação, a seguinte relação: 
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Portanto, com o auxílio da equação  (3) obtém-se outra relação: 
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A Equação (4) pode ser escrita numa forma mais adequada, como segue: 
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ou de maneira aproximada: 
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 Onde : U são os deslocamentos. 
A Equação (6) não permite obter, explicitamente, as variáveis n e P, o que exige a utilização dessa 
equação numa forma modificada, tal que seja possível obter de forma iterativa um novo campo de 
pressão. Assim: 
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      Para o acoplamento da vazão mássica e a deformação no meio poroso, as componentes das 
tensões no meio devem satisfazer as equações diferenciais de equilíbrio do maciço poroso, pois, a 
vazão de massa através dos vazios causa um efeito de arrasto nas partículas sólidas (força de 
percolação), alterando a deformação. 
 
3. ANÁLISE DO EQUILÍBRIO DO MACIÇO POROSO 
 
      Considera-se um elemento infinitesimal tridimensional dentro de um meio poroso, homogêneo 
e isotrópico. Esse meio é constituído de partículas sólidas incompressíveis e saturado com um 
fluido compressível, sendo, ainda, submetido a um estado de tensão e ao efeito de pressão do fluido 
que se desloca no interior seus poros e fissuras. Segundo Biot (1941) existe um parâmetro Bα , que 
caracteriza a relação entre a pressão no fluido e as tensões, as quais o arcabouço sólido esteja 
submetido. Portanto, fazendo-se o equilíbrio de forças nas direções x, y e z, desprezando o efeito 
das forças de corpo (peso próprio constante, ou seja, considerando somente o efeito do 
carregamento na superfície), obtêm-se em termos de deformações: 
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Onde: Ui são os deslocamentos, notação indicial; ? e G são as constantes de Lamé;  eij são as 
deformações, notação indicial  e aB  constante de Biot. 
A Equação (8) representada as equações diferenciais de equilíbrio da dinâmica na forma tensorial 
para o meio poroso submetido à pressão e movimento de um fluido nos poros, a qual representa as 
três equações de equilíbrio para as três direções do sistema de referência em questão.  
A Equação (5) assume a seguinte forma adimensional: 
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onde:  o “ * “ significa variável adimensional e A1 e A2 são também parâmetros adimensionais; e: 

A1={F.k/Cv.?.µ}  e A2={k/Cv.?. µ} onde: F é a carga estática; Cv é o coeficiente de adensamento; ? 

é a porosidade e µ a viscosidade absoluta do fluido, zL e yL , x L são as dimensões do bloco 

poroso, nas direções x, y e z, respectivamente. 

A Equação (7) assume a seguinte forma  adimensional:  
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Onde: A3 = {1/F.ß}, e ß é a compresibilidade do fluido. 
Um código computacional escrito em Fortran foi desenvolvido usando diferenças finitas – método 
totalmente implícito – para resolver as equações (8), (9) e (10) , que resolvem o problema em 
estudo. As condições de contorno das equações diferenciais são os pontos onde as deformações são 
praticamente nulas, ou seja, impondo a condição de que as derivadas dos deslocamentos em relação 
a x, y e z são menores do que 10-4. 
 
4. ESTUDO COMPARATIVO DOS  RESULTADOS  DA SIMULAÇÃO NUMÉRICA DO 
EFEITO DINÂMICO COM DADOS DE ADENSAMENTO UNIDIMENSIONAL 
CONVENCIONAL (ESTÁTICO) 
 
      Foi executado um ensaio tradicional de adensamento em um material silto - argiloso, moldado 
em laboratório, e ensaiado de acordo com método MB3336, ABNT, 1990, com objetivo de se obter 
parâmetros realistas e de se poder comparar resultados do efeito dinâmico com o efeito estático 
(efeito elástico mais efeito de adensamento).  

Um  disco de solo foi retirado da amostra compactada e colocada para ensaio. O corpo de 
prova foi  confinado lateralmente. Uma carga F é aplicada instantaneamente no topo do solo(z=0), 
forçando a coluna de solo se adensar enquanto permite que a água seja drenada  para o topo e para 
base. A carga F é dobrada a cada 24 horas, medindo-se a deformação no topo, para vários tempos, 
de acordo com a norma brasileira, até 24 horas após a aplicação.   

Os resultados do ensaio foram comparados com os resultados do processo dinâmico obtidos 
com a simulação numérica, usando diferenças finitas, método totalmente implícito, usando um 
código computacional escrito em linguagem Fortran.   A carga F, conforme prescrita na norma 



MB3336, dividida pela área de contato com o corpo de prova determina a tensão média em cada 
estágio, também especificada na mesma norma,  essa tensão foi considerada cíclica, com 
frequência de 1 hertz, como teste para simulação numérica. Considerando as propriedades do 
material expressas na tabela (1), as condições iniciais e de fronteira do ensaio podem ser expressas 
por: 

 
Onde: w é o deslocamento na direção vertical z. 

 
 
 
Tabela 1 – Propriedades mecânicas elásticas e hidráulicas médias do solo obtidas de ensaio de 
adensamento para obtenção de propriedades e comparação  com efeito dinâmico calculado 
numericamente. 
 

Variável/símbolo Valor Unidades 
Indice de vazios inicial : e04/1 0,7 ----------- 
Porosidade : n 40 % 
Coeficiente  de Biot: α  B 0.9 ----------- 
Parâmetro de poropressão: C 1.04/1 ----------- 
CL  =  λ +2G(média) 5,3x1011 KPa 
Compressibilidade do fluido(água) 
: β  

0.2x10-6 (1/kPa) 

Compressibilidade das partículas 
sólidas : αs 

5x10-8 (1/kPa) 

Permeabildade absoluta :k  5x10-15 m2 

Viscosidade absoluta: µ 1,01 kPa.s 
Condutividade hidráulica: K 9x10-9 m/s 
Área do corpo de prova: A 0,005 m.2 

Altura do corpo prova: h 0,032 m. 
Coeficiente de adensamento do 
solo: c v 

2,65 m.2/ano 

Saturação real do solo inicial: S 97 % 
Onde definimos: T fator adimensionaL, T tempo real, Cv coeficiente de adensamento, h altura de 
drenagem, k permeabilidade absoluta,  µ viscosidade absoluta, .? e g parâmetros de Lamé. 
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Figura 1 – Gráfico: Deslocamentos Estáticos (recalques medidos) e Deslocamentos Dinâmicos( 
recalques calculados)  X Tempo (min) para um carregamento 10kPa. 
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Figura 2 – Gráfico: Deslocamentos Estáticos (recalques medidosx 10-3mm e Deslocamentos 
Dinâmicos( recalques calculadosx10-3mm)  X Tempo (min) para um carregamento 320kPa. 
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Figura 3 – Gráfico: Deslocamentos Estáticos (recalques medidosx 10-3mm e Deslocamentos 
Dinâmicos( recalques calculadosx10-3mm)  X Tempo (min) para um carregamento 1250kPa. 

 
 
5. ANÁLISE DOS RESULTADOS E CONCLUSÕES. 
       
      As equações desenvolvidas se aplicam bem para estimativas de deslocamentos superficiais 
dinâmicos dos solos, e também das tensões e fluxo de fluidos no interior de maciços, para casos 
dinâmicos e estáticos. É possível estender as aplicações para todos maciços geotécnicos de maneira 
geral, inclusive para casos anisotrópicos. O código computacional desenvolvido permite variar o 
carregamento de zero (0) até o valor desejado estático, e fazer a variação cíclica dinâmica de 1 até 
30 hertz, valor de referência para se evitar ressonância,  Biot (1956)., e a partir desse valor o fluxo 
de fluido deixaria de ser de Darcy, para se tornar, no caso da água, fluxo de Poiseuille, 
concordando com a teoria de Biot (1956). As simulações numéricas para 1 hertz permitiram 
concluir que as tensões e os deslocamentos são maiores nas condições dinâmicas do que estática, 
como era de se esperar, mas essas diferenças tendem a diminuir à  medida  em que o valor do 
carregamento estático aumenta. 
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Abstract. A three-dimensional study of the coupling flow deformation in porous media saturated 
with a compressible fluid it is presented. Supposing a solid porous medium, infinite, homogeneous 
and isotropic.  The concept of effective stress of Terzaghi is applied and using  the parameters of 
generation of neutral pressure of  Skempton , we have mathematically as initial condition, neutral 
pressure in every porous  of the system. The field of tensions  caused by a dynamic shipment  in the 
surface of the solid induces waves, flow in the porous media coupled to the deformation of the own 
fluid and of the solid particles and, mainly, due to decrease of the emptiness, as consequence of an 
internal rearrange of the  soil or rock in analysis. The applied mathematical procedure also allows 
the study of some anisotropic system through the determination of equivalent isotropic system, 
using the constants of Lamé . Also through the develop equations it is possible to calculate the field 
of displacement, in any point of the solid  and in the surface, the field of tensions and the velocity of 
the fluid in porous media, in the space and time domain. As numeric example is presented the 
comparison with the classic case of the consolidation unidimensional test  for soils. It is static effect 
in comparison with the dynamic process. 
 
Keywords: fluid, coupling,  deformations,  flow, porous- media. 
 
 

  


