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Resumo. O presente trabalho aplica as equações de Navier-Stokes com média de Reynolds aos
problemas dos escoamentos transônicos em um bocal convergente-divergente e em um aerofólio
NACA 0012. O modelo de Baldwin e Lomax é utilizado para descrever os efeitos da turbulência nas
propriedades do escoamento. Três algoritmos são usados: o esquema explícito de MacCormack; o
esquema de Pulliam e Chaussee; e o esquema de Jameson, Schmidt e Turkel. Os resultados obtidos
pelos esquemas apresentam boa comparação para os casos laminar e turbulento. No problema do
aerofólio, os coeficientes aerodinâmicos têm seus valores maximizados no caso turbulento. No
geral, os esquemas de MacCormack e Jameson, Schmidt e Turkel apresentam soluções melhores.
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1. INTRODUÇÃO

O desenvolvimento de projetos aeronáuticos e aeroespaciais requer horas de ensaio em túneis de
vento. Devido ao custo crescente da energia elétrica é preciso minimizar tais procedimentos. No
Brasil, existe ainda a agravante deste não possuir túneis de vento de grande porte, capazes de gerar
escoamento supersônico ou mesmo subsônico alto. Logo, técnicas de Dinâmica dos Fluidos
Computacional têm hoje grande destaque no cenário da indústria aeronáutica. Analogamente aos
ensaios em túneis de vento, os métodos numéricos determinam propriedades físicas em pontos
discretos do domínio. Assim, os coeficientes aerodinâmicos podem ser calculados.

Atualmente, a Dinâmica dos Fluidos Computacional se apóia em três áreas: geração de malha,
desenvolvimento de algoritmos e modelagem de turbulência. Neste trabalho, foram enfocadas duas
áreas: algoritmo de solução e modelagem da turbulência. Logo, as equações de Navier-Stokes com
média de Reynolds são aplicadas aos problemas dos escoamentos transônicos em um bocal
convergente-divergente e em um aerofólio NACA 0012. O modelo de Baldwin and Lomax (1978) é
usado para descrever os efeitos da turbulência nas propriedades do escoamento. São usados três
esquemas para os estudos: MacCormack (1969); Pulliam and Chaussee (1981); e Jameson, Schmidt
and Turkel (1981). As soluções obtidas evidenciam resultados bons.

2. DISCRETIZAÇÃO ESPACIAL E TEMPORAL

2.1. FORMULAÇÃO DIFERENCIAL – MÉTODO DE DIFERENÇAS FINITAS

As equações de Navier-Stokes com média de Reynolds em forma conservativa e diferencial são
0)FF()EE(Q veve =∂η−∂+∂ξ−∂+∂τ∂ , em que Q  é o vetor de variáveis conservadas para um

sistema ξ e η; eE , eF , vE  e vF  são vetores de fluxo; e τ, ξ e η são coordenadas generalizadas.
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sendo ρ a densidade; u e v as componentes Cartesianas do vetor velocidade; e a energia total; ei a
energia interna; p a pressão estática; τ’s as tensões viscosas; µM a viscosidade molecular; µT a
viscosidade turbulenta; γ a razão entre calores específicos; PrdM o número de Prandtl molecular; e
PrdT o número de Prandtl turbulento. Jacobiano, termos de métrica e componentes contravariantes
estão em Pulliam and Steger (1980). Para o bocal, as equações de Navier-Stokes são
adimensionalizadas em relação às propriedades de estagnação e para o aerofólio em relação às
propriedades de escoamento livre. Detalhes em Maciel and Azevedo (2001). O número de Reynolds
é definido por MREFluRe µρ= , sendo l um comprimento característico da geometria e uREF a
velocidade característica do escoamento. O sistema matricial de equações de Navier-Stokes é
fechado com a equação de estado [ ])vu(5,0e)1(p 22 +ρ−−γ= .

2.1.1. ESQUEMA NUMÉRICO DE PULLIAM AND CHAUSSEE (1981)

As equações de Navier-Stokes são discretizadas no espaço com operadores centrados. Em
seguida, são discretizadas no tempo com Euler implícito e, após linearização local por série de
Taylor, são resolvidas pelo esquema de Beam and Warming (1978). Tem-se, então,
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(Pulliam and Steger, 1980). 
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Dξ , 
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Dη , ξD  e ηD são operadores de dissipação para estabilidade. São
compostos por termos de diferença segunda (ondas de choque) e de diferença quarta
(desacoplamento de soluções). O modelo não linear de Pulliam (1986) foi empregado.

É verificado que: ξξ
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Dissipação de diferença quarta no lado esquerdo define o esquema de Pulliam and Chaussee (1981)
(solução em Maciel and Azevedo, 1998). 
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, 

ξD  e 
ηD  estão em Pulliam and Chaussee (1981).

2.2. FORMULAÇÃO INTEGRAL – MÉTODO DE VOLUMES FINITOS

A equação 0dSnFQdVt
SV
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 define as equações de Navier-Stokes em forma integral e
conservativa. Nesta equação, Q é escrito para um sistema Cartesiano, V é o volume  de uma  célula,



n
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 é o versor a cada face de fluxo, S é a área de fluxo e F
r

 representa a soma dos vetores de fluxo.

( ) ( )

( ) ( ) 



















−τ+τ
τ
τ

=





















+
+ρ

ρ
ρ

=





















−τ+τ
τ
τ

=





















+
ρ

+ρ
ρ

=−+−=





















ρ
ρ
ρ

=

yyyxy

yy

xy
v2e

xxyxx

xy

xx
v

2

eveve

qvu

0

Re
1Fe

vpe
pv

uv
v

F,

qvu

0

Re
1E,

upe
uv

pu
u

E,jFFiEEF,

e
v
u

Q
rrr

; (5)

( ) ( )[ ] ( ) ( )[ ]y22
yix

22
xi

i

T

T

M

M
y

i

T

T

M

M
x vu5,0eeevu5,0ee,

y
e

dPrdPr
q,

x
e

dPrdPr
q +−ρ=+−ρ=

∂
∂








 µ
+

µ
γ=

∂
∂








 µ
+

µ
γ= . (6)

Os gradientes de u e v na Eq. (2) e de ei na Eq. (6) são calculados em Long, Khan and Sharp (1991).
Usando volumes finitos e aplicando o teorema de Green às equações de Navier-Stokes, tem-se:
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Cada célula é definida pelos nós (i,j), (i+1,j), (i+1,j+1) e (i,j+1). A discretização espacial fornece:
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As áreas de fluxo e volumes das células têm expressões definidas em Maciel and Azevedo (2001).

2.2.1. ESQUEMA NUMÉRICO DE MACCORMACK (1969)

Discretizando a Eq. (8) no tempo: [ ]nj,2/1i2/1j,ij,2/1i2/1j,ij,ij,i
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MacCormack (1984) sugere o emprego de versores de área normalizados ,
xs  e ,

ys , definidos em
Maciel and Azevedo (2001). A equação acima pode ser reescrita para:
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Um passo preditor é determinado com termos de fluxo calculados com propriedades da célula
avançada em relação à interface de fluxo. Um passo corretor usa propriedades da célula recuada.
Passo preditor:
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2.2.2. ESQUEMA NUMÉRICO DE JAMESON, SCHMIDT AND TURKEL (1981)

A discretização espacial proposta pelos autores é centrada com segunda ordem. A introdução de
um operador de dissipação “D” é necessária. A Eq. (8) é reescrita como

[ ])Q(D)Q(CV1dtdQ j,ij,ij,ij,i −−= , com )Q(C j,i  sendo o vetor de fluxo discreto da Eq. (7). )Q(C j,i  está
definido em Maciel and Azevedo (2001). “D” é dado por ( ) ( ) ( )j,i
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que “k” representa a célula vizinha. ε´s e j,i
2Q∇ , bem como o emprego de d(2) e d(4) nas fronteiras,

estão em Maciel and Azevedo (2001). A integração temporal usa um método de Runge-Kutta,
segunda ordem, explícito e cinco estágios, definido em Jameson and Mavriplis (1986).

3. MODELO DE TURBULÊNCIA DE BALDWIN AND LOMAX (1978)

O problema da simulação turbulenta está no cálculo da tensão de Reynolds. Expressões
envolvendo flutuações de velocidade, oriundas do processo de média, representam seis novas
incógnitas. Porém, o número de equações permanece o mesmo e o sistema não é fechado. A função
da modelagem é desenvolver aproximações para estas correlações. Neste trabalho, o modelo de
Baldwin and Lomax (1978) foi usado. Para o cálculo da viscosidade turbulenta, a camada limite é
dividida em interna e externa. Na camada interna, ωρ=µ 2

misTi l  e ( )++−−κ= 0Ay
mis e1yl . Na camada externa,
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Assim, maxy  é o valor de y para o qual ωmisl  atinge o seu valor máximo e lmis é o comprimento de
mistura de Prandtl. Os valores das constantes são: 4,0=κ , 0168,0=α , 26A0 =+ , 6,1Ccp= , 3,0CKleb=  e 1Cwk = .

KlebF  é a função de intermitência de Klebanoff dada por ( )[ ] 16
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222
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4. CONDIÇÕES INICIAIS E DE CONTORNOS

4.1. CONDIÇÕES INICIAIS

( ) ( ){ }T
j,i )1(21001Q −γγ+γ= , no domínio exceto a saída; e ( ) ( ){ }T

j,i )1(61003/1Q −γγ+γ= , na saída,

definem a inicialização para o bocal. Para o aerofólio, ( ){ }T2
j,i M5.0)1(1sinMcosM1Q ∞∞∞ +−γγθθ=

é usado, sendo M∞ o número de Mach de escoamento livre e α o ângulo de ataque do escoamento.

4.2. CONDIÇÕES DE CONTORNOS

(a) Condição de parede: Impõe que as componentes de velocidade nos nós de fronteira sejam iguais
a zero (diferenças finitas) ou que nos volumes fantasmas uf = -ui,j e vf = -vi,j (volumes finitos).
Gradientes de pressão e de temperatura do fluido normais à parede são iguais a zero.
(b) Condição de entrada:
(b.1) Escoamento subsônico: Três propriedades são especificadas e uma extrapolada (Maciel and
Azevedo, 1998). Para o bocal, a componente de velocidade “u” sofre extrapolação de ordem zero e
densidade e pressão são determinadas por expressões isentrópicas. A componente de velocidade “v”
é determinada pela geometria e a energia total é calculada pela equação de estado. Para o aerofólio,
a pressão é extrapolada. Densidade e componentes de velocidade são fixadas pelos seus valores de
escoamento livre. A energia total vem da equação de estado.



(b.2) Escoamento supersônico: As variáveis conservadas adotam valores de escoamento livre.
(c) Condição de saída:
(c.1) Escoamento subsônico: Três propriedades são extrapoladas. A pressão adota seu valor inicial.
(c.2) Escoamento supersônico: Todas as variáveis são extrapoladas.
(d) Condição de continuidade: Para o aerofólio, impõe que o vetor de variáveis conservadas, na
região do bordo de fuga, seja igual tanto para o intradorso como para o extradorso.

5. RESULTADOS

Testes foram realizados em um microcomputador CELERON-1,1GHz e 256 Mbytes de
memória RAM. Resultados convergidos ocorreram para 4 ordens de redução no valor do resíduo
máximo. O valor usado para γ foi 1,4. Para ambos os problemas, o ângulo de entrada ou de ataque
foi adotado igual a 0,0°. Os números de Prandtl adotaram valores de 0,72 (M) e 0,9 (T).

5.1. PROBLEMA DO BOCAL

Malha algébrica 61x71, com estiramento exponencial de 10% em ambas as direções, foi usada.
4.200 volumes retangulares e 4.331 nós foram utilizados. O número de Reynolds foi estimado em
237.876,7, para altitude de 10.000m e l = 0,028m, baseado em dados de Fox and McDonald (1988).

5.1.1. MACCORMACK (1969)

A simulação laminar usou um CFL de 0,6 e o número total de iterações foi de 17.510. No caso
turbulento, um CFL de 0,3 foi usado e a convergência ocorreu em 19.398 iterações. Os custos
computacionais do esquema de MacCormack (1969) foram 0,000060s (L) e 0,000078s (T).

Figura 1 – Campo de pressão (Laminar).    Figura 2 – Pressão na parede (Laminar).

Figura 3 – Campo de pressão (Turbulento).    Figura 4 – Pressão na parede (Turbulento).



Como visto nas Figs. 1 e 3, o campo de pressão calculado pela solução turbulenta detecta o
choque na garganta, enquanto que a solução laminar não o faz. Nas Figs. 2 e 4, é percebível que a
solução laminar apresenta atenuação do choque, ao contrário da solução turbulenta.

5.1.2. PULLIAM AND CHAUSSEE (1981)

A simulação laminar usou um CFL igual a 52 e o número total de iterações foi de 279. No caso
turbulento, o número de CFL usado foi 5 e a convergência ocorreu em 855 iterações. Os custos do
esquema de Pulliam and Chaussee (1981) valem 0,000039s (L) e 0,000043s (T).

Figura 5 – Campo de pressão (Laminar).    Figura 6 – Pressão na parede (Laminar).

Figura 7 – Campo de pressão (Turbulento).    Figura 8 – Pressão na parede (Turbulento).

As Figs. 5 e 7, bem como as Figs. 6 e 8, não apresentam diferenças significativas.

 5.1.3. JAMESON, SCHMIDT AND TURKEL (1981)

Figura 9 – Campo de pressão (Laminar).    Figura 10 – Pressão na parede (Laminar).



A simulação laminar usou um CFL de 3,3 e o número total de iterações foi de 2.248. No caso
turbulento, valores iguais para o CFL e para a convergência foram obtidos. Os custos do esquema
de Jameson, Schmidt and Turkel (1981) valem 0,000088s (L) e 0,000030s (T).

Figura 11 – Campo de pressão (Turbulento).    Figura 12 – Pressão na parede (Turbulento).

As Figs. 9 e 11 não apresentam diferenças consideráveis. Contudo, é percebível pelas Figs. 10 e
12, que o choque da solução turbulenta é levemente mais intenso do que o da solução laminar.

5.2. PROBLEMA DO AEROFÓLIO

Malha algébrica 49x100, com 10% de estiramento em η. Usaram-se 4.752 volumes e 4.900 nós.
O contorno distante foi colocado a 10 cordas do bordo de ataque. O Mach de escoamento livre foi
0,8 e o número de Reynolds foi estimado em 815.577,2, para a altitude de 10.000m e l = 0,12m.

5.2.1. MACCORMACK (1969)

Figura 13 – Campo de pressão (Laminar).    Figura 14 – -Cp sobre o aerofólio (Laminar).

Figura 15 – Campo de pressão (Turbulento).    Figura 16 – -Cp sobre o aerofólio (Turbulento).



As Figs. 13 e 15 exibem o campo de pressão em torno do aerofólio, evidenciando um maior
espalhamento na solução laminar do que na solução turbulenta. O choque é determinado em 40% da
corda em ambos os casos. As Figs. 14 e 16 não apresentam diferenças consideráveis.

A simulação laminar usou um CFL de 0,2 e o número total de iterações foi de 17.218. No caso
turbulento, o número de CFL foi igual e a convergência ocorreu em 16.838 iterações. Os
coeficientes aerodinâmicos calculados pela solução laminar foram cS = -0,00072 e cA = -0,000019.
Para a solução turbulenta, os valores foram: cS = -0,0014 e cA = 0,00011. Assim, a solução
turbulenta maximiza estes coeficientes.

5.2.2. PULLIAM AND CHAUSSEE (1981)

A simulação laminar usou um CFL de 37 e o número total de iterações foi de 799. No caso
turbulento, o número de CFL foi 5 e a convergência ocorreu em 779 iterações. Como pode ser
observado pelas Figs. 17 e 19, o campo de pressão laminar é mais distribuído do que o turbulento.
Variações significativas de pressão atingem no caso laminar cerca de 90% da corda, enquanto para
o caso turbulento chega a 70%. A posição do choque é diferente, sendo de 50% para o caso laminar
e de 40% para o caso turbulento. As Figs. 18 e 20 não apresentam diferenças significativas.

Figura 17 – Campo de pressão (Laminar).    Figura 18 – -Cp sobre o aerofólio (Laminar).

Figura 19 – Campo de pressão (Turbulento).    Figura 20 – -Cp sobre o aerofólio (Turbulento).

5.2.3. JAMESON, SCHMIDT AND TURKEL (1981)

A simulação laminar usou um CFL de 0,8 e o número total de iterações foi de 2.432. No caso
turbulento, o número de CFL foi de 0,9 e a convergência ocorreu em 2.170 iterações. Os
coeficientes aerodinâmicos da solução laminar foram cS = -0,0000000043 e cA = -0,000000000038.
Na solução turbulenta, obteve-se: cS = -0,0011 e cA = 0,00014. Estes valores concordam com os
obtidos pelo esquema de MacCormack (1969), exibindo maximizações na solução turbulenta.



Figura 21 – Campo de pressão (Laminar).    Figura 22 – -Cp sobre o aerofólio (Laminar).

Figura 23 – Campo de pressão (Turbulento).    Figura 24 – -Cp sobre o aerofólio (Turbulento).

Nas Figuras 21 e 23, os campos de pressão são idênticos. O choque ocorre em 40% da corda. O
mesmo ocorre em relação às Figs. 22 e 24.

6. CONCLUSÕES

No bocal, MacCormack (1969) apresentou campo de pressão laminar que não detectou o choque
na garganta, ao contrário do caso turbulento. A distribuição de pressão na parede exibiu atenuação
do choque, enquanto o caso turbulento mostrou maior intensidade. Pulliam and Chaussee (1981)
não apresentou diferenças significativas. Para ambos os casos, o choque não foi detectado. Jameson,
Schmidt and Turkel (1981) exibiu choque mais intenso na distribuição de pressão na parede.

No aerofólio, MacCormack (1969) exibiu maior espalhamento do campo de pressão no caso
laminar. Choque é visto em 40% da corda. Pulliam and Chaussee (1981) exibiu campo de pressão
mais espalhado no caso laminar. Choque no caso laminar está a 50% e no caso turbulento a 40%.
Jameson, Schmidt and Turkel (1981) não exibiu diferenças significativas. Choque está a 40%.
Coeficientes aerodinâmicos maximizados no caso turbulento para MacCormack (1969) e Jameson,
Schmidt and Turkel (1981).

MacCormack (1969) e Jameson, Schmidt and Turkel (1981) tiveram melhores características na
detecção do choque no bocal. No aerofólio, também se apresentaram melhores. O modelo de
Baldwin and Lomax (1978) permitiu a detecção do choque no bocal para MacCormack (1969) e
reduziu sua atenuação em Jameson, Schmidt and Turkel (1981). No aerofólio, detectou maior
concentração de pressão junto à sua superfície para MacCormack (1969) e Pulliam and Chaussee
(1981). Corrigiu a posição do choque para Pulliam and Chaussee (1981) e maximizou os
coeficientes aerodinâmicos. Seu uso em estudos turbulentos deve ser explorado posteriormente.
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A Numerical Study of Turbulent Flows Using the Baldwin and Lomax Model
and Comparing Explicit and Implicit Algorithms
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Abstract. The present work solves the compressible flow over the NACA 0012 airfoil and also along
a convergent-divergent nozzle. The flow is modeled by the Reynolds-averaged Navier-Stokes
equations and the famous Baldwin and Lomax turbulence model is used to close the problem. The
governing equations are discretized using three different algorithms: the explicit MacCormack, the
procedure due to Pulliam and Chaussee and finally the Jameson, Schmidt and Turkel. The results
obtained by these approaches describe the explicit MacCormack and the Jameson, Schmidt and
Turkel as the best algorithms. For the airfoil problem, the aerodynamics coefficients are higher for
the turbulent case as compared with the laminar simulation.

Keywords: Navier-Stokes equations, Numerical structured methods, Laminar and turbulent flows,
Baldwin and Lomax algebraic model, Nozzle and airfoil problems.


