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Resumo. O presente trabalho aplica as equagoes de Navier-Stokes com média de Reynolds aos
problemas dos escoamentos transonicos em um bocal convergente-divergente e em um aerofolio
NACA 0012. O modelo de Baldwin e Lomax é utilizado para descrever os efeitos da turbuléncia nas
propriedades do escoamento. Trés algoritmos sdo usados: o esquema explicito de MacCormack; o
esquema de Pulliam e Chaussee; e o esquema de Jameson, Schmidt e Turkel. Os resultados obtidos
pelos esquemas apresentam boa comparagdo para os casos laminar e turbulento. No problema do
aerofolio, os coeficientes aerodinamicos tém seus valores maximizados no caso turbulento. No
geral, os esquemas de MacCormack e Jameson, Schmidt e Turkel apresentam solugoes melhores.
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1. INTRODUCAO

O desenvolvimento de projetos aeronduticos e aeroespaciais requer horas de ensaio em tuneis de
vento. Devido ao custo crescente da energia elétrica é preciso minimizar tais procedimentos. No
Brasil, existe ainda a agravante deste ndo possuir tuneis de vento de grande porte, capazes de gerar
escoamento supersonico ou mesmo subsonico alto. Logo, técnicas de Dinamica dos Fluidos
Computacional tém hoje grande destaque no cenério da industria aerondutica. Analogamente aos
ensaios em tuneis de vento, os métodos numéricos determinam propriedades fisicas em pontos
discretos do dominio. Assim, os coeficientes aerodindmicos podem ser calculados.

Atualmente, a Dinamica dos Fluidos Computacional se apdia em trés areas: gera¢ao de malha,
desenvolvimento de algoritmos e modelagem de turbuléncia. Neste trabalho, foram enfocadas duas
areas: algoritmo de solugdo e modelagem da turbuléncia. Logo, as equagdes de Navier-Stokes com
média de Reynolds sdo aplicadas aos problemas dos escoamentos transonicos em um bocal
convergente-divergente e em um aerofolio NACA 0012. O modelo de Baldwin and Lomax (1978) ¢
usado para descrever os efeitos da turbuléncia nas propriedades do escoamento. S3ao usados trés
esquemas para os estudos: MacCormack (1969); Pulliam and Chaussee (1981); e Jameson, Schmidt
and Turkel (1981). As solugdes obtidas evidenciam resultados bons.

2. DISCRETIZACAO ESPACIAL E TEMPORAL
2.1. FORMULACAO DIFERENCIAL - METODO DE DIFERENCAS FINITAS

As equagdes de Navier-Stokes com média de Reynolds em forma conservativa e diferencial sao
0Q/ot+0d(E, —E,) /0 +0(F, —F,)/on =0, em que Q ¢ o vetor de varidveis conservadas para um

sistema&emn; E,, F, E e F, sdo vetores de fluxo; e 1, £ e 1| sdo coordenadas generalizadas.



p pJ pvV 0 0

PNy [o b1 (RS 1L O Y B A 2 o W (N [ LN < (NS I %) St
=] =J E=] =] — =r— 1
Q pv’Eé U, [ vV, . B Re|Tf 4T, ek foﬂﬂyﬁ,’()

e (e+pU—p5 (e+p)V-pny BEBE An+An

sendo que:

2(MM+MT)2 i( +p )@+g] T, =(n )[ e T, —2uM+uT)ay 3( +m)@+g} )
_ VI (o R P B | - NE
B, =T u+T v+ Prl, +Prd,J . B, =T u+T,V y{ Prl J@y’ u =ug +un, e u =ug +un; (3)
oo =i v 6 S e g Jetarle e

sendo p a densidade; u e v as componentes Cartesianas do vetor velocidade; ¢ a energia total; ¢; a
energia interna; p a pressdo estdtica; tT’s as tensdes viscosas; My a viscosidade molecular; pr a
viscosidade turbulenta; y a razdo entre calores especificos; Prdy o nimero de Prandtl molecular; e
Prdr o nimero de Prandtl turbulento. Jacobiano, termos de métrica e componentes contravariantes
estdto em Pulliam and Steger (1980). Para o bocal, as equacdes de Navier-Stokes sao
adimensionalizadas em rela¢do as propriedades de estagnagdo e para o aerofolio em relagdo as
propriedades de escoamento livre. Detalhes em Maciel and Azevedo (2001). O nimero de Reynolds
¢ definido por Re = puggl/u,, , sendo 1 um comprimento caracteristico da geometria € uggr a
velocidade caracteristica do escoamento. O sistema matricial de equagdes de Navier-Stokes ¢

fechado com a equacdo de estado p = (y— 1)[6 —0,5p(u” + Vz)].

2.1.1. ESQUEMA NUMERICO DE PULLIAM AND CHAUSSEE (1981)

As equagdes de Navier-Stokes sdo discretizadas no espago com operadores centrados. Em
seguida, sdo discretizadas no tempo com Euler implicito e, ap6s linearizacao local por série de
Taylor, sdo resolvidas pelo esquema de Beam and Warrning (1978). Tem-se, entdo,

JLAQ =R +R,, com  L=I+A8A-D., L =I+4388,-D, R = SE  +A SE +D,
R, =—Af S E' +AL 6F ;+D, ¢ AQ"=Q" -Q". ATJ ¢ B surgem no processo de linearizagdao

Lj nrei,j LJ™m L)

(Pulliam and Steger, 1980). D, D,., D. e D, sdo operadores de dissipagdo para estabilidade. Sdo

compostos por termos de diferenga segunda (ondas de choque) e de diferenca quarta
(desacoplamento de solucdes). O modelo nao linear de Pulliam (1986) foi empregado.

E verificado que: TIAT =) € "[;%]:1 =), (T, T"' e A descritas em Pulliam and Chaussee, 1981).
(r.1' + a5, T, T ) (T, T," + A3, T, A, T, AQ" = (R, +R,)!, representa o esquema de Beam
and Warming (1978) sem termos de dissipag¢do no lado esquerdo. O operador final € escrito como

(Té)zj(l+At8i7b§):j(ﬁ1)i’j(l+At6n7nn)i"’j(Tn’1)}fjA§" =R, +R,)!, (N descrita em Maciel and Azevedo, 1998).

Dissipacao de diferenga quarta no lado esquerdo define o esquema de Pulliam and Chaussee (1981)
(solu¢ao em Maciel and Azevedo, 1998). D., D, , D, © D, estdo em Pulliam and Chaussee (1981).

2.2. FORMULACAO INTEGRAL —- METODO DE VOLUMES FINITOS

A equagdo o/ot jv QdV + LF ¢ iidS = 0 define as equagdes de Navier-Stokes em forma integral e

conservativa. Nesta equacdo, Q € escrito para um sistema Cartesiano, V ¢ o volume de uma célula,



n ¢é o versor a cada face de fluxo, S ¢ a area de fluxo ¢ F representa a soma dos vetores de fluxo.
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Os gradientes de u e v na Eq. (2) e de ¢ na Eq. (6) sdo calculados em Long, Khan and Sharp (1991).
Usando volumes finitos e aplicando o teorema de Green as equagdes de Navier-Stokes, tem-se:

oQ,, /ot =1V, [(F i), ds, . (7)
Cada célula ¢ definida pelos nos (i), (it1,j), (i+1,j+1) e (i,j+1). A discretizagdo espacial fornece:

dQ,;/dt = =1/V,;|IF [( * S) g2t (F° S)m/zj (F * g)ivj+1/2 + (F * g)i—l/z,j]' (8)
As areas de fluxo e volumes das células t€ém expressdes definidas em Maciel and Azevedo (2001).

2.2.1. ESQUEMA NUMERICO DE MACCORMACK (1969)

Discretizando a Eq. (8) no tempo: Q?jrl =Q; _Ati,j/vi,j [(P'Si,j—l/z +(P-S)i15 +(P-S); juyjo +(P-8) ]n~
MacCormack (1984) sugere o emprego de versores de area normalizados s, e s;, definidos em

Maciel and Azevedo (2001). A equacdo acima pode ser reescrita para:

S $i+1/2,j; ©)
$ Si—l/z,j' (10)

Um passo preditor ¢ determinado com termos de fluxo calculados com propriedades da célula
avancada em relagdo a interface de fluxo. Um passo corretor usa propriedades da célula recuada.
Passo preditor:

ij-1/2° (P- S)i+1/2,j - ((Ee —E)s, +(E _FV)S;’)i+1/2,j
L © S =B ~E)s +E-E)s,)

(P S)i,j—l/z = ‘((Ee —E s, +(E _Fv)sjy)i,j_l/z
(P : S)i,j+l/2 =((Ee - EV)S;( + (Fe - Fv)s’y)i’jﬂ/z

AQir:j :_At/ l (E —E )11 XIJ—1/2+(F _E’)i,js;i,j—l/z)glj—l/z ((E —E )1+1J X1+l/2J+(E~‘ _Fv)iﬂ,js;iﬂ/z,jhi+1/2,j +
((E -E )1J+1 Sxi,j+/2 +(F _FV)i,j+ls;i,j+1/2)Si,j+1/2 _((E -E )IJ Sxic1/2, +<F _FV)i,jS;i—l/z,jJSi—1/2,jJ; (11)
Q' =Q;+AQ]; (12)

Passo corretor:

ij-1/2 +((Ee _EV>pi,jSXi+1/ 2 +(Fe _E’)Pi,js}’iH/Z,j)

3
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Q' =05(Qr, + Q" + "AQ) (14)
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2.2.2. ESQUEMA NUMERICO DE JAMESON, SCHMIDT AND TURKEL (1981)

A discretizacdo espacial proposta pelos autores € centrada com segunda ordem. A introdugdo de
um operador de dissipagdo “D” ¢é necessdaria. A Eq. (8) ¢ reescrita como
dQ/dt=-1/V,; [O(Qi,j)—D(Qi’ J.)J, com C(Q,;) sendo o vetor de fluxo discreto da Eq. (7). C(Q, ;) estd

definido em Maciel and Azevedo (2001). “D” é dado por DQ,)=d?(Q,)-d*(Q ), com

L) L)
d? (Qi, j) = :zloﬂssg,zj?k(\/i,j/ Ati, it Vk/ Aty XQk _Qi,j) e d¥ (Qu) = :Z:;O,szj?k( ij / Ati, it \A / Aty szQk - VzQi,j)’ cm
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que “k” representa a célula vizinha. €’s e VzQij, bem como o emprego de d nas fronteiras,

estdo em Maciel and Azevedo (2001). A integracdo temporal usa um método de Runge-Kutta,
segunda ordem, explicito e cinco estagios, definido em Jameson and Mavriplis (1986).

3. MODELO DE TURBULENCIA DE BALDWIN AND LOMAX (1978)

O problema da simulacdo turbulenta estd no calculo da tensdo de Reynolds. Expressoes
envolvendo flutuagdes de velocidade, oriundas do processo de média, representam seis novas
incognitas. Porém, o numero de equagdes permanece o mesmo ¢ o sistema ndo ¢ fechado. A funcao
da modelagem ¢ desenvolver aproximagdes para estas correlagdes. Neste trabalho, o modelo de
Baldwin and Lomax (1978) foi usado. Para o célculo da viscosidade turbulenta, a camada limite ¢

dividida em interna e externa. Na camada interna, p;;=pl, o] e ]miszm{l—e‘f/ Al ) Na camada externa,

)|

“’T e =p (ﬂcijcsteirEKleliy; ymax/cKlel)’ com Festeira = MIN[Ymameax; kaYmachzﬁf / Fmax] ¢ Fmax = 1/ K[Mé)ﬁmis

Assim, y,,, € 0 valor de y para o qual | [« atinge o seu valor maximo e luis € 0 comprimento de
mistura de Prandtl. Os valores das constantes sdo: k=04, a=0016¢ Aj=26, C =16, =03 ¢ C,,=1.

F.., € a fungdo de intermiténcia de Klebanoff dada por Fmeb()’)=[1+5-5(C;<131)’/Ymax)6ra sendo o a

magnitude do vetor vorticidade e U, o valor maximo da velocidade no caso da camada limite. Para

camadas de cisalhamento livre, U, = (\/U2 +VE+ W )nax - (1/ U +V + W )y:ymax .

4. CONDICOES INICIAIS E DE CONTORNOS
4.1. CONDICOES INICIAIS

Q,={l 0 0 (y+1)/(2yy-D)}", no dominio exceto a saida; e Q;={l/3 0 0 (y+1)/(6yy-D)}", na saida,
definem a inicializa¢do para o bocal. Para o aerofolio, Q; ={l M_cos9 M siD 1/(y(y—l))+0.5Mfo}T

¢ usado, sendo M,, o nimero de Mach de escoamento livre e o 0 ngulo de ataque do escoamento.
4.2. CONDICOES DE CONTORNOS

(a) Condicdo de parede: Impde que as componentes de velocidade nos nos de fronteira sejam iguais
a zero (diferengas finitas) ou que nos volumes fantasmas ur = -u;jj € v¢ = -vi; (volumes finitos).
Gradientes de pressao e de temperatura do fluido normais a parede sdo iguais a zero.

(b) Condicao de entrada:

(b.1) Escoamento subsonico: Trés propriedades sdo especificadas e uma extrapolada (Maciel and
Azevedo, 1998). Para o bocal, a componente de velocidade “u” sofre extrapolagdo de ordem zero e
densidade e pressdao sdo determinadas por expressdes isentropicas. A componente de velocidade “v”
¢ determinada pela geometria e a energia total é calculada pela equagdo de estado. Para o aerofolio,
a pressdo ¢ extrapolada. Densidade e componentes de velocidade sdo fixadas pelos seus valores de
escoamento livre. A energia total vem da equagdo de estado.



(b.2) Escoamento supersonico: As variaveis conservadas adotam valores de escoamento livre.

(c) Condigao de saida:

(c.1) Escoamento subsonico: Trés propriedades sdo extrapoladas. A pressdo adota seu valor inicial.
(c.2) Escoamento supersonico: Todas as variaveis sdo extrapoladas.

(d) Condigdo de continuidade: Para o aerof6lio, impde que o vetor de varidveis conservadas, na
regido do bordo de fuga, seja igual tanto para o intradorso como para o extradorso.

5. RESULTADOS

Testes foram realizados em um microcomputador CELERON-1,1GHz e 256 Mbytes de
memoria RAM. Resultados convergidos ocorreram para 4 ordens de redugdo no valor do residuo
maximo. O valor usado para y foi 1,4. Para ambos os problemas, o angulo de entrada ou de ataque
foi adotado igual a 0,0°. Os numeros de Prandtl adotaram valores de 0,72 (M) e 0,9 (T).

5.1. PROBLEMA DO BOCAL

Malha algébrica 61x71, com estiramento exponencial de 10% em ambas as dire¢des, foi usada.
4.200 volumes retangulares e 4.331 nds foram utilizados. O numero de Reynolds foi estimado em
237.876,7, para altitude de 10.000m e 1 = 0,028m, baseado em dados de Fox and McDonald (1988).
5.1.1. MACCORMACK (1969)

A simulagdo laminar usou um CFL de 0,6 e o niumero total de iteragdes foi de 17.510. No caso

turbulento, um CFL de 0,3 foi usado e a convergéncia ocorreu em 19.398 iteragdes. Os custos
computacionais do esquema de MacCormack (1969) foram 0,000060s (L) e 0,000078s (T).
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Figura 1 — Campo de pressao (Laminar).  Figura 2 — Pressao na parede (Laminar).
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Figura 3 — Campo de pressao (Turbulento). Figura 4 — Pressdo na parede (Turbulento).




Como visto nas Figs. 1 e 3, o campo de pressdao calculado pela solucdo turbulenta detecta o
choque na garganta, enquanto que a solugdo laminar ndo o faz. Nas Figs. 2 e 4, é percebivel que a
solugdo laminar apresenta atenuacao do choque, ao contrario da solugdo turbulenta.

5.1.2. PULLIAM AND CHAUSSEE (1981)

A simulagdo laminar usou um CFL igual a 52 e o numero total de itera¢des foi de 279. No caso
turbulento, o nimero de CFL usado foi 5 e a convergéncia ocorreu em 855 iteragdes. Os custos do
esquema de Pulliam and Chaussee (1981) valem 0,000039s (L) e 0,000043s (T).
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Figura 5 — Campo de pressdao (Laminar).  Figura 6 — Pressdo na parede (Laminar).
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Figura 7 — Campo de pressao (Turbulento). Figura 8 — Pressao na parede (Turbulento).
As Figs. 5 e 7, bem como as Figs. 6 e 8, ndo apresentam diferengas significativas.

5.1.3. JAMESON, SCHMIDT AND TURKEL (1981)
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Figura 9 — Campo de pressao (Laminar).  Figura 10 — Pressdo na parede (Laminar).



A simulagdo laminar usou um CFL de 3,3 e o numero total de iteracdes foi de 2.248. No caso

turbulento, valores iguais para o CFL e para a convergéncia foram obtidos. Os custos do esquema
de Jameson, Schmidt and Turkel (1981) valem 0,000088s (L) e 0,000030s (T).
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Figura 11 — Campo de pressao (Turbulento).
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Figura 12 — Pressdo na parede (Turbulento).

As Figs. 9 e 11 ndo apresentam diferencas consideraveis. Contudo, é percebivel pelas Figs. 10 e
12, que o choque da solugdo turbulenta ¢ levemente mais intenso do que o da solug¢do laminar.

5.2. PROBLEMA DO AEROFOLIO

Malha algébrica 49x100, com 10% de estiramento em n. Usaram-se 4.752 volumes e 4.900 nos.
O contorno distante foi colocado a 10 cordas do bordo de ataque. O Mach de escoamento livre foi
0,8 e o numero de Reynolds foi estimado em 815.577,2, para a altitude de 10.000m e 1= 0,12m.

5.2.1. MACCORMACK (1969)
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Figura 13 — Campo de pressao (Laminar).
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Figura 15 — Campo de pressdo (Turbulento).
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Figura 14 — -Cp sobre o aerofolio (Laminar).
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Figura 16 — -Cp sobre o aerofolio (Turbulento).



As Figs. 13 e 15 exibem o campo de pressao em torno do aerofdlio, evidenciando um maior
espalhamento na solugao laminar do que na solugdo turbulenta. O choque ¢ determinado em 40% da
corda em ambos os casos. As Figs. 14 e 16 ndo apresentam diferencas consideraveis.

A simulagdo laminar usou um CFL de 0,2 e o niumero total de iteragdes foi de 17.218. No caso
turbulento, o nimero de CFL foi igual e a convergéncia ocorreu em 16.838 iteragdes. Os
coeficientes aerodinamicos calculados pela solugdo laminar foram cg = -0,00072 e co = -0,000019.
Para a solu¢do turbulenta, os valores foram: cs = -0,0014 e ca = 0,00011. Assim, a solugdo
turbulenta maximiza estes coeficientes.

5.2.2. PULLIAM AND CHAUSSEE (1981)

A simulagdo laminar usou um CFL de 37 e o ntimero total de iteracdes foi de 799. No caso
turbulento, o nimero de CFL foi 5 e a convergéncia ocorreu em 779 iteragdes. Como pode ser
observado pelas Figs. 17 e 19, o campo de pressdo laminar ¢ mais distribuido do que o turbulento.
Variacdes significativas de pressdo atingem no caso laminar cerca de 90% da corda, enquanto para
o caso turbulento chega a 70%. A posi¢ao do choque ¢ diferente, sendo de 50% para o caso laminar
e de 40% para o caso turbulento. As Figs. 18 ¢ 20 ndo apresentam diferengas significativas.

08E
06
l].-l;
0.2
oof
a-u.zé
' 0d
06
sl
sl
sk

02 00 02 04 06 0f 10 12 ) O O R R R T A A AR L
X
Xrc
Figura 17 — Campo de pressao (Laminar). Figura 18 —-Cp sobre o aerof6lio (Laminar).
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Figura 19 — Campo de pressdo (Turbulento).  Figura 20 — -Cp sobre o aerof6lio (Turbulento).
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5.2.3. JAMESON, SCHMIDT AND TURKEL (1981)

A simulagao laminar usou um CFL de 0,8 ¢ o niumero total de iteragdes foi de 2.432. No caso
turbulento, o numero de CFL foi de 0,9 e a convergéncia ocorreu em 2.170 iteragdes. Os
coeficientes aerodinamicos da solu¢ao laminar foram cg = -0,0000000043 e c5 = -0,000000000038.
Na solucdo turbulenta, obteve-se: ¢cs = -0,0011 e cao = 0,00014. Estes valores concordam com os
obtidos pelo esquema de MacCormack (1969), exibindo maximizagdes na solugao turbulenta.



06 F E
: v f
04f 04
i 01f
0nre E
; vof
0.0 F Szt
C 04 f
'”; 06
.0_45 QIR
[ 054
; 0 50 10F
el 11k
03 o0 02 04 06 0% 10 12 06 01 03 03 04 05 08 07 08 03 10
x X/C

Figura 21 — Campo de pressdo (Laminar). Figura 22 — -Cp sobre o aerofdlio (Laminar).
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Figura 23 — Campo de pressdo (Turbulento).  Figura 24 — -Cp sobre o aerofo6lio (Turbulento).

Nas Figuras 21 e 23, os campos de pressdo sdo idénticos. O choque ocorre em 40% da corda. O
mesmo ocorre em relagdo as Figs. 22 e 24.

6. CONCLUSOES

No bocal, MacCormack (1969) apresentou campo de pressao laminar que nao detectou o choque
na garganta, ao contrario do caso turbulento. A distribuicdo de pressdo na parede exibiu atenuacao
do choque, enquanto o caso turbulento mostrou maior intensidade. Pulliam and Chaussee (1981)
ndo apresentou diferengas significativas. Para ambos os casos, o choque nao foi detectado. Jameson,
Schmidt and Turkel (1981) exibiu choque mais intenso na distribui¢ao de pressao na parede.

No aerof6lio, MacCormack (1969) exibiu maior espalhamento do campo de pressdao no caso
laminar. Choque ¢ visto em 40% da corda. Pulliam and Chaussee (1981) exibiu campo de pressao
mais espalhado no caso laminar. Choque no caso laminar estd a 50% e no caso turbulento a 40%.
Jameson, Schmidt and Turkel (1981) ndo exibiu diferencas significativas. Choque estd a 40%.
Coeficientes aerodindmicos maximizados no caso turbulento para MacCormack (1969) e Jameson,
Schmidt and Turkel (1981).

MacCormack (1969) e Jameson, Schmidt and Turkel (1981) tiveram melhores caracteristicas na
detecgdo do choque no bocal. No aerof6lio, também se apresentaram melhores. O modelo de
Baldwin and Lomax (1978) permitiu a detec¢cdo do choque no bocal para MacCormack (1969) e
reduziu sua atenuacdo em Jameson, Schmidt and Turkel (1981). No aerof6lio, detectou maior
concentragdo de pressdao junto a sua superficie para MacCormack (1969) e Pulliam and Chaussee
(1981). Corrigiu a posicdo do choque para Pulliam and Chaussee (1981) e maximizou os
coeficientes aerodinamicos. Seu uso em estudos turbulentos deve ser explorado posteriormente.
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Abstract. The present work solves the compressible flow over the NACA 0012 airfoil and also along
a convergent-divergent nozzle. The flow is modeled by the Reynolds-averaged Navier-Stokes
equations and the famous Baldwin and Lomax turbulence model is used to close the problem. The
governing equations are discretized using three different algorithms: the explicit MacCormack, the
procedure due to Pulliam and Chaussee and finally the Jameson, Schmidt and Turkel. The results
obtained by these approaches describe the explicit MacCormack and the Jameson, Schmidt and
Turkel as the best algorithms. For the airfoil problem, the aerodynamics coefficients are higher for
the turbulent case as compared with the laminar simulation.

Keywords: Navier-Stokes equations, Numerical structured methods, Laminar and turbulent flows,
Baldwin and Lomax algebraic model, Nozzle and airfoil problems.



