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Abstract. The incompressible laminar fluid flow of three dimensional problems, are analyzed 
through the solution of the Navier-Stokes equations. The finite elements method, associated to the 
variational formulation of Galerkin, was used to obtain the numerical solution of the governing 
equations of the fluid motion. A computer program was written to allow solutions in both 
rectangular and cylindrical coordinate systems. The Poisson equation for the pressure was added 
to the set of Navier-Stokes equations, which brought stability and convergence to the fluid program. 
The mentioned equations have a characteristic nonlinear form, and for this reason, a routine has to 
control the iterative procedure, necessary to obtain convergence. For the discretization of the 
geometric part of the problem, a volume finite element, with the shape of a parallelepiped, with 
twenty nodes was adopted. Three velocities components and pressure where considered for each 
node, and each volume element had a total of 80 degrees of freedom. To solve the finite element 
equations, the Gauss numerical procedure was used for the integrations. Several cases, reported by 
the classical literature, were modeled and compared to the analytical solutions. Couette and 
Poseuille flows had been first simulated (both in rectangular coordinates), given the similarity 
between these and the flow of a bearing in which the adopted radius was considered infinite. Later, 
a section of a hydrodynamic bearing was simulated, with different meshes and boundary conditions. 
Results reveal a very satisfactory precision and validated the procedures adopted for the solution.  
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1. INTRODUCTION  
 

Computer simulations have been performed, based on a three dimensional fluid theory, wich 
considers a finite element solution for the stationary incompressible Navier-Stokes equations and 
Poisson equation. The subject has a broad range of applications in dealing with steady-state fluid 
flow problems, and provides a more realistic discription of most complex models and boundary 
conditions. Particularly, for the authors goals, the three dimensional solution is of great interest in 
solving interactions of fluids with structures and in the modeling of hydrodynamic bearings. 

For the fluid domain finite elements discretization, 3D hexahedral 20-nodes elements were 
adopted. For the flow analysis, each node considers four degrees of freedom, three velocity 
components and pressure. Therefore, equal-order interpolation functions for velocity and pressure 
were adopted. 
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The objective of this work was to develop a finite element solver for the stationary 
incompressible Navier-Stokes equations in three dimensions, using Poisson equation to enhance 
stability of the original Galerkin formulation. 

The stabilized finite element techniques we have developed in recent years for computational of 
the flow problems in various applications, least-square Galerkin formulation, streamline-
upwind/Petrov-Galerkin(SUPG) and pressure-stabilizing/Petrov-Galerkin(PSPG), moving least 
square reproducing kernel(MLSRK) are examples of these methods. Although a mixed interpolation 
(the basis functions for pressure were one order lower than those for velocity) can be obtain better 
results, for higher-order elements this technique can be fail; besides, equal-order interpolation for 
velocity and pressure simplify the numerical code. Thus, we choose the Poisson equation for 
achieve stability owing to simplicity of the method, what preserve nature of the Galerkin 
formulation; besides the linearization of the Navier-Stokes equation not is necessary. 

Finally, we choose a 3-D element because the fluid flows are three-dimensional in your general 
form (Fortuna1) 

 
2.  NONLINEAR INCOMPRESSIBLE NAVIER-STOKES MODEL 
 
2.1 The continuous Problem 

 
Let Ω  be a bounded domain of . Let 3ℜ Ω∂  be its boundary. One may compute an approximate 

solution for the dimensionless problem: 
Find u  and  such that p
 
  u⋅∇u+∇p - ν∆u = f  in Ω                   (1a) 
  u = 0   in ⋅∇ Ω                                                                           (1b) 
 

where: u ( )zyx vvv ,,=  is the velocity, and  is the pressure and  ν and  are the kinematics 
viscosity and the external force, respectively. For the numerical considerations performed in this 
work, the external force  was considered zero. 
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2.2 The Discrete Problem 
 

The definition of the Galerkin formulation is given by: 
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where “equation a” can be considered as Eq. (1a) or Eq. (1b), and Ni is the basis function associated 
to node i. Velocity and pressure are approximated using the appropriate polynomial basis functions, 
according to the following equations: 
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where  is the number of the nodes of the element and 0N ζηξ ,,  normalized coordinates. Applying 
the definitions (2) and (3), the corresponding discrete problem for equations (1a), (1b) is: 
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y component 
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z component 
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continuity equation 
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 In deriving the above equations, the Green theorem has been used so reduce the second-
order terms in the momentum equations. In order to discretize the domainΩ , a 20-node hexahedral 
element has been adopted. The normalized coordinates for the element are ( )ζηξ ,, .The element, its 
local numbering and local coordinates are shown in Fig. 2. 
 
 
 



  

 

 
 

Figure 1. Hexahedral 20-noded element. 
 

 
 For this element, the appropriate basis functions (Serendipity family) are defined by (Hirsch, 
1998), 
 
For corner nodes: 
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For mid-side nodes: 
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where the variables jξξξ ⋅=0 , jηηη ⋅=0 , jζζζ ⋅=0                                                                
 
3. POISSON EQUATION FOR PRESSURE 
 

The stabilization of pressure terms in primitive variables CFD methods is a very old 
problem, especially  when generated via the Galerkin Finite Element Method. According to Gresho 
(Gresho et al., 1981), it was discovered that equal-order interpolation, wherein the same basis 
functions are used for representing velocity and pressure, causes difficulty in the pressure solution. 
The Poisson equation is useful for this problem because provide velocity values what satisfy the 
continuity equation; therefore, the Poisson equation is a connection between the momentum and the 
continuity equations(Fortuna, 2000). 

In this work, we present the Poisson equation for pressure to add stability and accuracy for 
the pressure terms. 

The Poisson equation, is defined as: 
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 Using the definitions of the Galerkin procedure, equation (2), and the finite element 
approximation, equations (3a) and (3b), the Poisson equations can be written: 
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 This version of the Poisson equation(incomplete Poisson equation) is obtained by assuming 

 in the original equation. Based on this, the system defined by  0=⋅∇ u
 

   

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

equationPoissoncomplet
dequationcontinuity

ccomponentz
bcomponeny
acomponentx

)4(
)4(
)4(
)4(

 
 is replaced by the equivalent system: 
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For this element, the appropriate basis functions employed were (Hirsch, 1988): 
 
For corner nodes: 
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For a typical mid-side node: 
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where the variables jξξξ ⋅=0 , jηηη ⋅=0 , jζζζ ⋅=0 .                                                              
    
4. IMPLEMANTATIONAL ASPECTS 
 

The numerical validation of procedure introduced early is performed using a 3D 
incompressible Navier-Stokes code for both rectangular and cylindrical coordinates. The code, 
based in  Taylor’s work (Taylor,1981), which uses the Frontal technique (Irons, 1970). solves the 
system as: 

 
                         (8) [ ] { } 0=⋅ XC
 

where: { } { }mzrzrzr
T pvvvpvvvpvvvX

mmm θθθ .......21 222111
=  and m = total 

number of the nodes. 
 The integrals (4a), (4b), (4c) and (7) are numerically evaluated  using four-points Gaussian 
quadrature. The boundary conditions are specified at nodal locations along the characteristic 
interfaces by imposing known velocities components and pressure values. 
  
5. NUMERICAL TESTS 
 

For the comparison purposes two numerical simulations were performed, and numerical 
results are presented together with classical analytical solutions. The plane Couette flow (plots of 
velocity, velocity vector and pressure for mesh with 12-element) and Poiseuille flow (plots of 
velocity, velocity vector and pressure for mesh with 9-element) are taken as references for 
preliminary confirmations of the numerical procedure. For both cases, charts with the greatest errors 
for each simulation are presented. 
 

5.1. Plane Couette Flow 
 
Problem description: The considered problem is that of a viscous fluid flow between two parallel 
rigid plates separated of a distance D. The bottom plate is at rest and the top plate is moving in its 
own plane with a constant velocity vx. 
Mesh: This problem has been modeled with four meshes, with 6, 8, 9 and 12 elements. The sketches 
of these meshes  are presented in Fig. 10. 
Boundary conditions: A no-slip velocity boundary condition is applied to the bottom plate and a 
constant velocity vx = 3m/s to the top plate. Since parallel flow is assumed, all y and z components 
of velocity are constrained to zero. The fluid proprieties are those of the water (Streeter, 1961), and 
the Reynolds number for all simulations was set as 1644,3. 
 

 
 Figure 2.  Re = 1644,3: Profile of horizontal velocity  for 12-element mesh (Couette flow). 



 

 

Figure 3. Re = 1644,3: Profile of  pressure  for 12-element mesh (Couette flow). 
 
 

 

 
 

Figure 4. Re = 1644,3: Velocity vector plot for  12-element mesh (Couette flow). 
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Figure 5. Greatest error, for velocity and pressure, for the simulations with   
6, 8, 9 and 12 elements. (Couette flow). 

 
 
 
 
 
 



  

5.2. Poiseuille Flow 
 
Problem description: The problem considered here is that of a viscous flow between two parallel 
rigid plates separated by a distance D. Both plates are at rest. 
Mesh: This problem is modeled for three meshes, with 4, 6 and 9 elements. The sketches of these 
meshes  are presented in Fig. 10. 
Boundary conditions: A no-slip velocity boundary condition is applied to both plates. Since parallel 
flow is assumed, all y and z components of velocity are constrained to zero. The values of the 
pressures are imposed at the inflow and outflow, having different values for each mesh. Theses 
values, for the inflow and outflow, respectively, are: 
  

4-element:  1500Pa  -  900Pa 
  6-element:    100Pa  -   90Pa 
  9-element:    200Pa  -   90Pa 
 
 The Reynolds number (calculated with values result) for each simulation, was: 
 

4-element:  120,0 
6-element:    10,0  

  9-element:    65,7 
 
 
 
 
 

 
Figure 6. Re = 65,7: Profile of horizontal velocity  for 9-element mesh (Poseuille flow). 

 
 

         

Figure 7. Re = 65,7: Profile of  pressure for 9-element mesh (Pouseuille flow). 



 

 
 
 

 
Figure 8. Re = 65,7: Velocity vector plot for  9-element mesh (Poseuille flow). 

Figure 9. Greatest error, for velocity and pressure, for the simulations  
with 4, 6 and 9 elements. (Pouseuille flow). 

 

 
 

Figure 10. Sketch of meshes used in the simulations. 
 



  

6. CONCLUSIONS 
 

A finite element formulation, with equal-order-interpolation functions for the computation of 
the incompressible stationary Navier-Stokes equations, has been proposed. Two classical cases 
discussed in this paper presented satisfactory results.  

For plane Couette flow modeled with four meshes, with 6, 8, 9 and 12 elements, in comparison 
to the exact solution, presents results which follow very closely those of the exact solution, with a 
maximum deviation of about 0.2% for the 96 elements mesh. Concerning pressure values, the same 
problem shows results with errors very close to zero. Numerical solution of Poiseuille flow, using 4, 
6 and 9 discretization, evidences the highest level of accuracy for deviations approaching zero for 
all tested meshes, either for velocities or pressure values. Based on the preceding analyses, the 
proposed formulation has documented excellent accuracy for the incompressible stationary flow 
problem. 

One may register that Poisson equation for pressure added stability for the numerical method, 
and accuracy to the solution. Solutions converged, for all cases, with a number of iterations between 
20 and 25. Previous numerical trials performed by the authors, considering Navier-Stokes equations 
coupled to the continuity equation, did not present satisfactory low levels of deviations, most 
particularly for pressures results.  

Finally, it may be emphasized that the computer code, being developed, is potentially important 
in solutions of fluid-structure three-dimensional problems, and those simulations concerning 
accurate depiction of fluid behavior of hydrodynamic bearings.   
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