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Resumo: - O transporte pneumático de sólidos constitui uma aplicação recorrente em processos 
industriais petroquímicos, de mineração, de alimentos e agrícolas. O espectro de materiais que 
podem ser transportados é bastante amplo, incluindo pós, partículas e grãos, além de elementos 
mecânicos e componentes eletrônicos. Entretanto, devido a limitações de ordem prática, a maioria 
das aplicações existentes envolve o transporte de 1 a 400 toneladas por hora, ao longo de 
distâncias de até 1000 m. Entre estas limitações, a demanda de potência provavelmente é a mais 
severa. Um objetivo inicial para otimização destes sistemas é a identificação de regimes de 
escoamento gás-sólido que ocorrem durante o transporte do material particulado, produzindo 
então, informações suficientes para a elaboração de técnicas de controle, capazes de economizar 
energia e possibilitar uma operação segura. Este trabalho apresenta a utilização de redes neurais 
auto-organizativas na identificação de regimes em um circuito experimental com 45 mm de 
diâmetro interno utilizado para transportar sementes de Setaria Italica. A instrumentação utilizada 
é composta de sensores de pressão instalados ao longo da linha de transporte. Resultados 
preliminares mostram uma porcentagem de acerto da rede de 100%.   
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1. INTRODUÇÃO 
 
O transporte pneumático de sólidos constitui uma aplicação recorrente em processos industriais 

petroquímicos, de mineração, de alimentos e agrícolas.  O espectro de materiais que podem ser 
transportados é bastante amplo, incluindo pós, partículas e grãos, além de elementos mecânicos e 
componentes eletrônicos. Entretanto, devido a limitações de ordem prática, a maioria das aplicações 
existente envolve o transporte de 1 a 400 toneladas por hora, ao longo de distâncias de até 1000 m. 
Entre estas limitações, a demanda de potência provavelmente é a mais severa. Um objetivo inicial 
para otimização destes sistemas é a identificação de regimes de escoamento gás-sólido que ocorrem 
durante o transporte do material particulado, produzindo então, informações suficientes para a 
elaboração de técnicas de controle, capazes de economizar energia e possibilitar uma operação 
segura. Isto pode ser realizado, por exemplo, com a implementação de um controlador PID com 
ganhos programados, de maneira que para cada regime um conjunto de parâmetros adequados seja 
então selecionado (Barbosa e Seleghim, 2003). Este trabalho apresenta a utilização de uma rede 
neural artificial auto-organizativa na identificação destes regimes.  

 
2. REDES NEURAIS AUTO-ORGANIZATIVAS (MAPAS AUTO-ORGANIZATIVOS) 

 
Os mapas auto-organizativos são uma classe especial de redes neurais artificiais baseadas na 

aprendizagem competitiva. Neste tipo de aprendizagem, os neurônios de saída da rede competem 
entre si para serem ativados ou não, sendo que apenas um neurônio (ou apenas um por grupo) é 
ativado a cada vez que uma entrada é apresentada. Um neurônio de saída que vence a competição é 
chamado de neurônio vencedor (winning neuron  ou winning-takes-all). Uma forma de induzir este 
tipo de competição entre os neurônios de saída é o uso de respostas negativas (lateral inhibitory 
connections), idéia originalmente proposta por Rosenblat (1958). 

Em um mapa auto-organizativo, os neurônios são dispostos em uma grade, usualmente 
unidimensional ou bidimensional. Mapas com dimensões superiores também são possíveis, mas não 
são comuns. No decorrer do processo de aprendizagem competitiva, os neurônios se tornam 
sintonizados de acordo com os vários padrões de entrada (ou classes de padrões de entrada).  

Um mapa auto-organizativo é ainda caracterizado pela formação de um mapa topográfico dos 
padrões de entrada no qual as localizações espaciais (as coordenadas) dos neurônios na grade são 
indicativos de características estatísticas intrínsecas contidas nos padrões de entrada (Kohonen, 
2001).  

O desenvolvimento de mapas auto-organizativos como um modelo neural é motivado por uma 
característica do cérebro humano: o cérebro é organizado em vários setores de forma que entradas 
sensoriais diferentes são representadas por mapas computacionais topologicamente organizados. 
Em particular, entradas sensoriais como, por exemplo, o tato, visão e audição são mapeadas em 
diferentes áreas do córtex cerebral de maneira topologicamente organizada (Haykin, 1999).  

O principal objetivo de um mapa auto-organizativo ou rede neural auto-organizativa é 
transformar um padrão de sinal de entrada de dimensão arbitrária em uma mapa discreto uni ou 
bidimensional e realizar esta transformação adaptativamente em uma forma organizada 
topologicamente (Cai et al.,1994) 



 

 
 

Figura 1: Grade bidimensional de neurônios 
 
A figura 1 mostra um diagrama esquemático de uma grade de neurônios bidimensional 

freqüentemente utilizada como mapa discreto.  
Cada neurônio na grade é completamente conectado aos nós de alimentação da camada de 

entrada. Esta rede representa uma estrutura feedforward com uma camada computacional simples 
constituída por neurônios dispostos em linhas e colunas. Uma grade unidimensional é um caso 
especial da situação descrita anteriormente constituída apenas por uma linha ou coluna de 
neurônios. 

A posição física dos neurônios é definida de acordo com uma função de topologia que gera, por 
exemplo, uma grade (ou malha) retangular, hexagonal ou randômica. O procedimento para 
identificar o neurônio vencedor é semelhante ao utilizado em camadas competitivas. No entanto, ao 
invés de atualizar apenas o neurônio vencedor iv, todos os neurônios dentro de uma certa vizinhança 
Niv (d) são atualizados com a utilização da chamada regra de Kohonen. Especificamente, todo 
neurônio i∈ Niv (d) é ajustado por, 

 
i i iw(q) w(q -1) (p(q) - w(q -1))= + α                                                                                               (1) 
 

ou 
 

i iw(q) (1 ) w(q 1) p(q)= − α − + α                                                                                                       (2) 
 
A vizinhança Niv (d) contém todos os índices dos neurônios que estão dentro do raio d, ou seja, 
 

i ijN (d) {j,d d}= ≤                                                                                                                           (3) 
 
Dessa forma, toda vez que um vetor p é apresentado à rede o neurônio com o vetor de pesos 

mais próximo dele vencerá a competição. Os vetores de pesos do neurônio vencedor e de seus 
vizinhos sintonizam-se na direção do vetor de entrada p. Repetindo este processo várias vezes, 
neurônios vizinhos aprendem quais vetores são similares uns aos outros.  

É também possível definir a função distância de diferentes maneiras, por exemplo, escolhendo 
um agrupamento retangular ou hexagonal dos neurônios e vizinhanças, no entanto a performance da 
rede não é sensível à forma exata das vizinhanças (Hagan, 1996).    

Outra possibilidade é a especificação de diferentes topologias para a localização original dos 
neurônios, as mais comuns são a retangular, hexagonal e randômica. 



 

A arquitetura de um mapa auto-organizativo pode também ser representada como: 
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Figura 2: Mapa auto-organizativo 
 

Esta arquitetura é semelhante a uma rede neural competitiva, porém não existe a utilização de 
bias. Na figura anterior, a distância N geralmente é dada por N W P= − − , sendo P o vetor de 
entrada e W o vetor peso, e C representa a função de transferência competitiva que como descrito 
anteriormente retorna o vetor de saída A com o valor 1 para o neurônio vencedor e 0 para os 
demais. 

  
3. REGIMES DE ESCOAMENTO GÁS-SÓLIDO 

 
A necessidade da identificação de regimes de escoamento tem origem no comportamento 

fortemente histerético deste tipo de aplicação. Isto pode ser melhor compreendido através da análise 
de um experimento simples que pode ser realizado em uma linha horizontal. Neste experimento, a 
velocidade da fase transportadora é variada lentamente de zero até um determinado valor máximo, 
acima do qual o regime disperso é plenamente desenvolvido e permanente. Os diferentes estágios 
deste experimento são indicados no gráfico da Figura 3, no qual Up denota a velocidade das 
partículas e Ug  a velocidade da fase gasosa transportadora. No estágio indicado por (a), Ug não é 
suficientemente alta de forma que Up = 0 até que um determinado valor crítico Ug = U1 seja 
alcançado, quando as forças turbulentas se igualam às forças de atrito e ao peso próprio das 
partículas. Após esse ponto, no estágio indicado por (b), Ug > U1, as partículas são capturadas pelo 
escoamento gasoso central e o regime disperso se estabelece assintoticamente, ou seja, Up? Ug.  

 

 
Figura 3: Representação esquemática da evolução dos regimes de escoamento quando variando 

a velocidade da fase transportadora. 

Up

UgU2
(a) U1

(b)

(c)

U3



 

Diminuindo Ug a partir de um dado valor máximo, estágio indicado por (c), e dependendo da 
granulometria do particulado, diferentes regimes de escoamento podem se estabelecer, dentre os 
quais os mais comuns são os regimes estratificado, intermitente e a dunas, até que outro valor 
crítico Ug = U2 seja alcançado. Nesse ponto, as forças de sustentação se igualam ao peso próprio 
das partículas, algumas delas sedimentam formando um leito fixo na parte inferior do tubo, e outras 
começam a quicar e a rolar a uma velocidade Up = U3. Operar a linha de transporte pneumático na 
zona de transição significa fixar U2 < Ug < U1 e administrar esse comportamento histerético em 
Up, assim como na perda de carga e outros parâmetros macroscópicos relevantes. Devido a essa 
problemática descrita anteriormente, as redes neurais artificiais foram utilizadas neste trabalho para 
identificar os diferentes regimes de escoamento gás-sólido em um circuito pneumático experimental 
com 45 mm de diâmetro interno utilizado para transportar sementes de Setaria Italica. 

 
4. INSTALAÇÕES EXPERIMENTAIS 

 
Os testes de validação foram realizados no circuito experimental do Núcleo de Engenharia 

Térmica e Fluidos da Escola de Engenharia de São Carlos da Universidade de São Paulo. A linha de 
transporte desenhada esquematicamente na figura 4 possui uma seção de testes transparente de 45 
mm de diâmetro interno, com 12 m de comprimento na horizontal e 9 m na vertical.  

A alimentação de ar é assegurada por um compressor Worthington de 60cv (1) capaz de 
imprimir velocidades de até cerca de 40 m/s na tubulação de transporte. O controle da vazão de ar é 
feito com auxílio de uma servo-válvula (2), dotada de comando elétrico (4-20 mA) e atuador 
pneumático. A vazão de ar é determinada por uma placa de orifício (3), instrumentada com 
transmissores para a medida da temperatura e das pressões diferencial e absoluta. A introdução do 
particulado na seção de testes é feita através de um venturi (4) alimentado por uma válvula 
helicoidal (5) ligada a um silo de armazenagem (10). A vazão de sólido é determinada pela rotação 
do motor de acionamento da válvula helicoidal, controlada por um pequeno inversor de freqüência 
(6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 4: Representação esquemática do circuito de transporte pneumático experimental do 
NETeF – EESC – USP. 
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Na saída da seção de testes, um ciclone (7) é responsável pela separação do particulado e do ar, 

retornando o particulado para um reservatório de coleta (8) (operação em batch) ou para o silo de 
armazenagem através de uma válvula rotativa (9) (operação contínua). Além dos transmissores de 
pressão, construídos a partir de sensores Motorola do tipo MPX e de conversores tensão/corrente 
Burr-Brown XTR106, o circuito é provido de um sistema de aquisição National Instruments 
constituído por um chassi PXI – 1000B, módulo de aquisição Multifunction I/O 6025E e módulo 
processador PXI 8170, que garante a comunicação com o computador central de controle. 

 
5. TESTES EXPERIMENTAIS E RESULTADOS 

 
A rede neural auto-organizativa com aprendizado competitivo, utilizada neste trabalho, foi 

implementada no software MATLAB® com o auxílio do Neural Network toolbox. As posições 
físicas dos neurônios foram definidas por uma malha hexagonal através da função de topologia 
hextop, e as distâncias foram calculadas com a função euclidiana linkdist. O vetor de entrada era 
composto por 3900 elementos, e a grade possuía 6 neurônios de saída, para testar a habilidade do 
modelo em reduzir e classificar os 4 regimes avaliados.     

O sólido utilizado era constituído de sementes de Setaria italica (painço), com diâmetro médio 
DP = 2.5 mm e densidade aproximada de 800 kg/m3. Os sinais de pressão foram isolados 
eletronicamente e amostrados a uma taxa de 30 Hz. A vazão mássica do sólido variou de 0,0824 
Kg/s a 0,1437 Kg/s e a vazão de ar variou de 0.015 kg/s a 0.021 kg/s de forma a produzir os 4 
regimes de escoamentos chamados neste trabalho de homogêneo, dunas com cristas, dunas grandes 
e escoamento sobre a camada depositada, com base em observações na parte horizontal do circuito.  

No escoamento homogêneo a velocidade do ar é bastante alta e as partículas encontram-se 
dispersas na tubulação. Reduzindo a velocidade do ar tem início a formação de dunas com cristas 
(fig 05). Diminuindo ainda mais a velocidade do ar as partículas começam a se depositar no fundo 
da tubulação e a formar dunas grandes nas quais claramente se observa algumas partículas sendo 
agregadas por essa estrutura e outras (do lado oposto) sendo arrastadas pela corrente de ar. 
Finalmente, com uma última redução do ar o regime de escoamento sobre uma camada depositada é 
atingido (fig. 05).  

Trechos dos sinais contendo 300 pontos foram fornecidos à rede para treinamento que resultou 
em uma classificação com 100% de acerto. Na seqüência, outros trechos dos sinais foram 
apresentados à rede que classificou com sucesso como mostra a tabela seguinte. 

 

 
Dunas com cristas 

 
Homogêneo 

 
Escoamento sobre a camada depositada 

 
Dunas grandes 

Figura 5: Fotos dos regimes de escoamento 
 
Como pode também ser visto na tabela 1, a rede reduziu de seis para quatro o número de 

neurônios, confirmando a existência de quatro regimes distintos. 
 
 
 



 

Tabela 1: Resultados da rede neural 
 

Regimes de escoamento Exemplos  Neurônio 
Homogêneo 1,2,3,4,5,6,7,8,9 e 10 6 
Dunas com cristas 11,12,13,14,15,16,17,18,19 e 20 1 
Dunas grandes 21,22,23,24,25,26,27,28,29 e 30 4 
Escoamento sobre a camada depositada 31,32,33,34,35,36,37,38,39 e 40 5 

 
6. CONCLUSÕES E PERSPECTIVAS 

 
A identificação de regimes de escoamento gás-sólido que ocorrem em transportadores 

pneumáticos foi realizada neste trabalho. A técnica proposta consiste na utilização de uma rede 
neural auto-organizativa treinada com informações sobre os valores de pressão em vários pontos da 
tubulação. A principal vantagem deste tipo de modelo é o aprendizado não supervisionado, ou seja, 
não existe a necessidade de conhecimento a priori (pares entrada/saída). Este aspecto é de 
fundamental importância, já que os regimes em situações práticas podem variar dependendo da 
granulometria do particulado, diâmetro e geometria da tubulação etc, e portanto informações sobre 
quantos e quais são os regimes não são conhecidas. 

Testes preliminares realizados com sementes de Setária Itálica (painço) em um circuito 
pneumático experimental de 45mm de diâmetro interno mostram uma porcentagem de acerto da 
rede de 100%, confirmando a identificação visual dos regimes. Trabalhos futuros devem incluir 
testes experimentais sistemáticos com diferentes tipos de particulado e escala estendida de vazões 
de forma a avaliar a aplicabilidade desta técnica em processos industriais. 
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Abstract. The pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical 
industries, mainly because of its flexibility, security in the transport of high valued products, ease of 
automation/control and low maintenance costs. The range of material that can be pneumatically 
transported is extensive: powders and rocks of up to 50 mm in size to finished manufactured parts 
such as electronic components for instance. However, due to practical limitations the majority of 
existing systems have capacities ranging from 1 to 400 tones per hour over distances less than 
1000 m and average particulate size less than 100 mm. Among these limitations probably the most 
important one refers to a high power consumption per transported unit mass. An initial objective is 
the identification of gas-solid flow regimes in order to optimize these systems, providing 
information for control strategies design. These strategies must result in a lower power 
consumption and a secure system operation. This work presents the flow regime identification 
through a self-organizing neural network in a 45 mm i.d. pneumatic conveying system used to 
transport Setaria Italica seeds. The instrumentation is constituted of several pressure sensors 
installed along the transport line. Preliminary results show a 100% correct identification for the 
experimental conditions of this work.               
 
Keywords. Neural networks, flow regimes and pneumatic conveying. 


