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Resumo. Neste trabalho, formulações implícitas (FI) são adaptadas à metodologia GENS-
MAC, para a solução numérica de escoamentos bidimensionais, transientes, newtonianos e
incompressíveis. Usando a formulação velocidade-pressão e variações do método de projeção,
o ambiente de simulação FreeFlow2D é utilizado para resolver numericamente as equações de
conservação, no contexto de diferenças �nitas. Os termos difusivos nas equações de Navier-
Stokes são tratados implicitamente por meio das formulações Implícita Regressiva (IR), Crank-
Nicolson (CN) e Adams-Bashforth/Crank-Nicolson (AB/CN). Os termos convectivos são trata-
dos explicitamente por um esquema upwind de alta ordem limitado. Para escoamentos em canais
e jatos com superfícies livres a baixos números de Reynolds, as formulações são robustas e pos-
sibilitam um aumento considerável no tamanho do passo temporal. Resultados numéricos que
comparam muito bem com soluções analíticas são apresentados.
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1.INTRODUÇÃO

Nas últimas décadas muitos esforços têm sido dirigidos na obtenção de soluções numéricas
de escoamentos de �uidos viscosos incompressíveis. Uma di�culdade bastante comum aparece
se esses escoamentos apresentam superfícies livres, pois a presença desses contornos envolve
problemas como: a própria con�guração da superfície livre deve ser determinada a cada passo
no tempo e o movimento da superfície livre é geralmente in�uenciado por fenômenos interfaciais.
Apesar desses inconvenientes existem vários métodos disponíveis na literatura especializada
para se resolver essa classe de problemas. A maioria desses métodos foram in�uenciados pelo
método MAC (Harlow and Welch, 1965). Métodos como de (Tomé and McKee, 1994) e outros
são exemplos de técnicas numéricas baseadas no método MAC. A metodologia GESNMAC,
descrita por (Tomé and McKee, 1994) utiliza a técnica de variáveis primitivas utilizando a
formulação velocidade-pressão e foi baseado no método de projeção de Chorin (Chorin, 1967).

Atualmente, uma di�culdade na metodologia GENSMAC é sua formulação explícita, pois
geralmente, a aplicação de métodos explícitos requer um número elevado de ciclos computa-
cionais e, como resultado, pode consumir grande quantidade de memória, tempo de processa-
mento elevado e bastante espaço de armazenamento. Esses problemas ocorrem, freqüentemente,
em simulações onde o valor do número de Reynolds é baixo (Re << 1) ou quando o re�namento
da malha é necessário para se obter uma solução numérica mais precisa, pois o passo temporal
δt se torna muito pequeno. O valor de δt se torna muito restrito devido à condição de estabili-



dade imposta pelos métodos explícitos, que envolvem o número de Reynolds e o espaçamento
da malha. Uma alternativa para resolver esse inconveniente é aplicar formulações implícitas
para resolver as equações de Navier-Stokes. Uma motivação para o uso de métodos implícitos
para as equações de Navier-Stokes é explorar a propriedade favorável de estabilidade. O uso
dos métodos implícitos para as equações diferenciais parciais iniciou-se em 1947, quando Crank
e Nicolson (Crank and Nicolson, 1947) empregaram para a equação da difusão um método in-
condicionalmente estável. Logo após, em 1955 Peaceman e Rachford (Peaceman and Rachford,
1955) e (Douglas and Rachford, 1960) introduziram o primeiro método ADI (Alternating Di-
rection Implicit). A formulação implícita em muitos problemas é a preferida, pela possibilidade
de avançar no tempo com δt maiores do que dos métodos explícitos. Entretanto, usar a formu-
lação implícita não signi�ca dizer que se pode usar qualquer tamanho do passo temporal, pois
quando resolve-se mais de uma equação, o problema do acoplamento pode limitar severamente
o δt. Outra limitação que pode surgir é nos problemas com superfícies livres, pois nesse tipo
de contorno requer uma atenção especial em seu tratamento. Portanto, estudos do re�namento
de δt, para se determinar uma solução independente de δt num dado nível de tempo, devem
sempre ser conduzidos.

2.MODELO MATEMÁTICO

Em forma adimensional e conservativa, as equações que modelam problemas de escoamentos
de �uidos newtonianos incompressíveis são
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∇ ¦ u = 0, (2)
em que t é o tempo, u = [u(x, y, t), v(x, y, t)] é o vetor campo de velocidades, p = p(x, y, t) é a
pressão dividida pela massa especí�ca e g = (gx, gy) é o campo gravitacional. Os parâmetros
adimensionais Re = LU/ν e Fr = U/

√
gL correspondem aos números de Reynolds e de Froude,

respectivamente, em que L e U são, respectivamente, as escalas características de comprimento
e de velocidade, e ν é o coe�ciente de viscosidade do �uido.

3.MÉTODO NUMÉRICO

Os métodos numéricos propostos neste trabalho para resolver as equações de conservação
Eq.(1) e Eq.(2) são, basicamente, alterações do método GENSMAC. O método GENSMAC
utiliza uma variante do método de projeção de Chorin (Chorin, 1967) para sua formulação
matemática. Inicialmente, considera-se uma pressão tentativa p̃, imposta como sendo zero
na região de �uido, e calculada para as superfícies livres através das condições de contorno
apropriadas. Logo, a partir da equação Eq.(1) de�ne-se um campo de velocidade intermediário
como
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Geralmente, o campo de velocidade ũ não é solenoidal, pois p̃ 6= p. Para t = t0, considera-se
u(x, t0) = ũ(x, t0) satisfazendo as mesmas condições de contorno.



Neste trabalho, as principais alterações na metodologia GENSMAC foram as FI aplicadas
em duas variações dos métodos de projeção. O primeiro método de projeção utilizado pelas FI
na metodologia GENSMAC é o método de projeção baseado em (Chorin, 1967) e conhecido
como métodos de projeção sem-pressão, e aqui denotado como P1. Este método elimina o
gradiente de pressão tentativo da equação Eq.(3). Outra modi�cação nesta equação é a apli-
cação de métodos implícitos para os termos viscosos, tornando a equação Eq.(3) de natureza
implícita na integração temporal. Os métodos implícitos utilizados para o método P1 foram
os tradicionais Implícito Regressivo (IR) (ou Euler implícito) e Crank-Nicolson (CN ). Com o
objetivo de tentar melhorar a precisão temporal, um método Adams de passo múltiplo também
foi utilizado. Este método utiliza o método CN para os termos viscosos e o método Adams-
Bashforth, que é uma técnica explícita, para os termos convectivos da equação Eq.(3). Desta
forma, este método é conhecido como Adams-Bashforth/Crank-Nicolson (AB/CN ). Portanto a
equação Eq.(3), na forma discreta no tempo, aplicando o método P1 e utilizando as formulações
implícitas, é reescrita da seguinte forma

• P1 - Método IR
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• P1 - Método CN
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• P1 - Método AB/CN
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Utilizando a teoria dos métodos de projeção, tem-se que um campo de velocidade �nal
é decomposto por um campo de velocidade intermediário ũ e um gradiente de um potencial
escalar ∇ψ. No método P1, a função escalar ψ é calculada em todo domínio.

Baseado em um método de projeção com acréscimo da pressão, as FI foram aplicadas para
uma segunda variação dos métodos de projeção. A conservação do gradiente de pressão tentativa
na equação Eq.(3) é a diferença fundamental do método P1. No presente trabalho, o método
que conserva o gradiente de pressão será denotado como P2. Da mesma forma que no método de
P1, os termos viscosos foram implicitados, reescrevendo a equação Eq.(3) para P2, da seguinte
forma

• P2 - Método IR
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• P2 - Método CN
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• P2 - Método AB/CN
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O desenvolvimento do método P2 utilizando FI, é análogo ao método P1, com a diferença
que agora, p̃ 6= 0 e será calculada.

No método GENSMAC, a equação de Poisson para o potencial ψ é aplicada para todo o
domínio que contém �uido, com as devidas condições de contorno descritas em (Tomé and
McKee, 1994). Nos métodos P1 e P2 utilizando FI, além da equação de Poisson, uma nova
equação é imposta sobre o potencial ψ para as superfícies livres. Essa nova equação é calculada
pela equação da pressão nas superfícies livres
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onde (nx, ny) é o vetor unitário normal à superfície, com as velocidades implícitas, ou seja, as
condições de contorno nas superfícies livres também são implicitadas.

A aplicação dos métodos P1 e P2 para as formulações implícitas no GENSMAC resulta em
3 sistemas lineares esparsos: 2 devido as equações que calculam as velocidades intermediárias
e 1 devido ao cálculo do potencial escalar ψ. Quando se aplica as formulações implícitas,
como o método IR ou CN, os termos viscosos são tratados de forma implícita, e desta forma
é necessário resolver os sistemas provenientes das velocidades ũ e ṽ. Os sistemas lineares re-
sultantes das equações Eq.(4), Eq.(5), Eq.(6), Eq.(7), Eq.(8) e Eq.(9) são esparsos, de�nidos
positivos e simétricos. Devido a essas propriedades, um método iterativo e�ciente é o método
dos Gradientes Conjugados (GC). O sistema linear resultante para o calculo de ψ é esparso,
mas não-simétrico, e portanto o método iterativo utilizado foi o método dos Gradientes Bi-
conjugados com Precondicionamento (GBCP). Além do método GBCP existem outras alterna-
tivas recomendadas na literatura para problemas esparsos: os métodos GMRES (Generalized
Minimal Residual), PCGS (Preconditioned Conjugate Gradiente Squared) entre outros. Entre-
tanto, parece não haver consenso de um método que seja claramente melhor.

3.1.Estabilidade dos Métodos P1 e P2 utilizando Formulações Implícitas

O uso de uma integração temporal explícita na metodologia GENSMAC impõe severas
restrições aos valores permitidos de δt em problemas onde os termos viscosos da equação Eq.(1)
são predominantes. Em particular, esse tipo de problema ocorre quando o escoamento apresenta
número de Reynolds baixo, os chamados creep �ow.

A restrição do tratamento explícito dos termos viscosos exige que

δtvisc ≤ Re

2

(
1

(δx)2
+

1

(δy)2

)−1

, (11)

onde δtvisc é o passo temporal permitido pela condição sobre os termos viscosos. A aplicação
das formulações implícitas, apresentadas neste trabalho, sobre os termos viscosos, como foi
feita nas equações Eq.(4), Eq.(5), Eq.(6), Eq.(7), Eq.(8) e Eq.(9), a princípio pode eliminar a
restrição Eq.(11). Desta forma, as restrições sobre δt para os métodos P1 e P2 utilizando FI,
são mais relaxadas que na metodologia GENSMAC.

4.DISCRETIZAÇÃO DAS EQUAÇÕES

No presente trabalho, para resolver numericamente as equações Eq.(1) e Eq.(2) utilizam-se
formulações implícitas na metodologia GENSMAC. A malha utilizada é a malha deslocada ou
diferenciada (�staggered grid�) de Harlow e Welch (Harlow and Welch, 1965). Nesse tipo de
malha, a numeração das incógnitas na célula, como a pressão (ou outra componente φ do �uido),



segue a mesma numeração da célula, e as velocidades, tem numeração fracionária. A técnica
de discretização utilizada para resolver o conjunto de equações Eq.(1) e Eq.(2) é o método
de diferenças �nitas. No presente trabalho, os termos viscosos das equações Eq.(4), Eq.(5) e
Eq.(6), Eq.(7), Eq.(8) e Eq.(9) são tratados de forma implícita e são aproximados por diferenças
centrais de segunda ordem. A derivada temporal, dessas equações, é aproximada pelo método
de Euler explícito, enquanto que o gradiente de pressão, presente apenas nas equações Eq.(7),
Eq.(8) e Eq.(9), é aproximado por diferenças centrais. Os termos convectivos das equações
Eq.(4), Eq.(5), Eq.(6), Eq.(7), Eq.(8) e Eq.(9) são aproximados pelo esquema monotônico e
anti-difusivo VONOS (Ferreira et al., 2002). A equação de Poisson é aproximada pelo operador
Laplaciano de cinco pontos.

5.RESULTADOS NUMÉRICOS

Nesta seção, os métodos P1 e P2 utilizando Formulações Implícitas são agora aplicados na
simulação de escoamentos de �uidos newtonianos incompressíveis com superfícies livres. Em
geral, os números de Reynolds envolvidos nesses problemas são baixos (Re << 1) ocasionando
di�culdades na determinação das soluções quando aplica-se o método explícito. Essa di�culdade
ocorre devido às restrições de estabilidade em δt dos métodos explícitos. Tais restrições podem
ser reduzidas utilizando formulações implícitas na metodologia GENSMAC. Porém, um cuidado
na aplicação desses métodos implícitos é na escolha do passo temporal, para que não inter�ra
na precisão dos resultados. Nesta seção, apresentam-se os resultados de simulações numéricas
obtidas com as formulações implícitas, para problemas bidimensionais na presença de contorno
rígidos e/ou livres, para comparações com o método explícito original. As comparações têm
como objetivo principal, mostrar a e�ciência dos métodos P1 e P2 utilizando as formulações
IR, CN e AB/CN, em relação ao método explícito em problemas de escoamentos com Re << 1.
Tal e�ciência é clara nos resultados apresentados para o passo temporal, o número de iterações,
o tempo de processamento e outras propriedades importantes para comparar as formulações
explícitas e implícitas. Além das comparações entre os métodos que utilizam as formulações
implícitas e explícita, os resultados numéricos mostraram a diferença entre a formulação IR e
CN, para diferentes problemas e simulações. Em particular, os métodos numéricos foram apli-
cados aos seguintes problemas: Escoamento em um canal, para validar as técnicas numéricas, e
jato incidindo sobre uma superfície rígida, para veri�car a e�ciência dos métodos em problemas
com superfícies livres.

Para o estudo da validação dos resultados numéricos fornecidos pelos métodos P1 e P2
utilizando Formulações Implícitas, considera-se o escoamento de um �uido entre duas placas
paralelas. A solução analítica para este problema pode ser encontrada em (Batchelor, 1970).
Como exemplo para a validação dos métodos numéricos deste trabalho, considere duas placas
paralelas separadas a uma distância L = 1, formando um canal, que no início da simulação
esta completamente vazio e o �uido é injetado na entrada do canal a uma velocidade prescrita
e com per�l do tipo parabólico. Os métodos P1 e P2 utilizando as FI foram aplicados para
o escoamento de Hagen-Poiseuille sobre malha de 100 × 20 células computacionais (δx =
δy = 0.05m). A região considerada para a análise dos resultados numéricos com a solução
analítica para a velocidade na direção x, dada por (Batchelor, 1970) é o meio do canal, após
o escoamento estar plenamente desenvolvido. O escoamento atingiu o estado estacionário após
t = 20s. Os valores de δt nas �guras e tabelas são apresentados em segundos. Para melhor
avaliar os resultados numéricos, e mostrar a convergência dos métodos numéricos apresentados
neste trabalho, foi feito o cálculo do erro relativo (Erel) na norma l2 entre as soluções numéricas



e a solução analítica. O erro relativo é dado pela equação

Erel =
Σ(uanalítica − unumérica)

2

Σ(uanalítica)2
. (12)

Um fato interessante ocorre quando aumentou-se o valor de δt para o método P1, pois o
erro relativo, também aumentou, enquanto que para o método P2, mesmo com o aumento do
δt, o erro permaneceu constante. Esse fato pode ser observado pelas �guras Fig.(1), Fig.(2) e
Fig.(3), que apresentam o comportamento da convergência temporal dos métodos apresenta-
dos, para o escoamento de Hagen-Poiseuille com Re = 0.1. Portanto, pode-se concluir, que
eliminando o gradiente de pressão da equação de conservação de movimento Eq.(1), o método
P1 utilizando FI, tem precisão inferior ao método P2, para valores de δt bem superiores ao
permitido pelo método explícito. Por outro lado, o método P2 utilizando as formulações IR,
CN e AB/CN, apresentou resultados muito semelhantes entre suas formulações implícitas, com
erros relativos pequenos e resultados em boa concordância com a solução analítica. Utilizando
ainda o modelo do problema de Hagen-Poiseuille outras simulações foram realizadas sobre a
malha intermediária, com diferentes valores de Re. Essas simulações tiveram o objetivo de
analisar a estabilidade das formulações implícitas, quando o número de Re diminui, isto é,
para problemas mais viscosos ou creep �ow. A tabela Tab.(1) mostra os resultados dos valores
máximos de δt permitidos pelas formulações implícitas e o pelo método explícito. Para os va-
lores de δt apresentados na tabela, os métodos foram estáveis e não apresentaram oscilações.
Novamente, os métodos que utilizam a formulação IR admitiram valores para δt maiores que
as outras formulações, em particular, maiores que as formulações CN e AB/CN. Apesar da
diferença de valores de δt das formulações implícitas, os métodos P1 e P2 admitiram valores
para δt bem maiores que o método explícito, isto é, todas as formulações implícitas, como era
esperado, superaram a restrição de estabilidade do método explícito GENSMAC.

Outra simulação realizada utilizando os métodos P1 e P2 com as FI, foi o preenchimento
de uma caixa por um �uido newtoniano com Re = 0.01. Para este modelo, os parâmetros
L (diâmetro do injetor que escoa o �uido) e U (velocidade de entrada do �uido no inje-
tor) são, repsectivamente, 0.05m e 1.0ms−1, uma malha de 100 × 100 células computacionais
(δx = δy = 0.00050m) foi utilizada para todos os métodos, o campo gravitacional age sob o
escoamento e o tempo �nal das simulações foi t = 5s. Mais uma vez foram realizadas compara-
ções entre os métodos que utilizam as formulações implícitas e explícita, veri�cando o valor
de δt permitido para cada método, o número de iterações e o tempo de processamento, para
o tempo de simulação t = 0.28s. Os resultados são apresentados na tabela Tab.(2). Nova-
mente, as formulações implícitas superaram a restrição de estabilidade do método explícito,
como era esperado, e utilizaram menos iterações para se obter a solução no tempo t = 0.28s.
Com relação ao tempo de processamento, os métodos P1 e P2 utilizando as FI foram bem
mais rápidos que o método explícito, determinando a solução em t = 0.28s. Em particular, o
método P2 utilizando a formulação IR, apresentou melhores resultados de estabilidade entre
as formulações implícitas. Em todas as simulações, a formulação IR com os métodos P1 e
P2 apresentou-se mais estável que as formulações que utilizam o método CN. Esse fato ocorre
porque o método CN tem seu erro contaminado com oscilações numéricas e o método IR não
tem. Esse fato também foi observado por (Turek, 1996). Observa-se que o método GBCP,
utilizado nos métodos P1 e P2 com as FI, convergiu para a solução com números razoáveis de
iterações. Portanto, mesmo não existindo resultados que garantam sua convergência, o método
GBCP mostrou-se e�ciente.
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Figura 1: Erro relativo na norma l2, para a velocidade u e os métodos P1 e P2 utilizando a
formulação IR.
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Figura 2: Erro relativo na norma l2, para a velocidade u e os métodos P1 e P2 utilizando a
formulação CN.
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Figura 3: Erro relativo na norma l2, para a velocidade u e os métodos P1 e P2 utilizando a
formulação AB/CN.

Tabela 1: Limite de estabilidade para δt(s) no escoamento de Hagen-Poiseuille, com diferentes
valores para Re.

Método Re = 0.1 Re = 0.01 Re = 0.001 Re = 0.0001
Explícito 2.5× 10−5 2.5× 10−6 2.5× 10−7 2.5× 10−8

P1-IR 1.25× 10−2 1.25× 10−2 1.25× 10−2 1.25× 10−2

P1-CN 5.0× 10−4 5.0× 10−5 5.0× 10−6 5.0× 10−7

P1-AB/CN 5.0× 10−4 5.0× 10−5 5.0× 10−6 5.0× 10−7

P2-IR 1.25× 10−2 1.25× 10−2 1.25× 10−2 1.25× 10−2

P2-CN 5.0× 10−4 5.0× 10−5 5.0× 10−6 5.0× 10−7

P2-AB/CN 5.0× 10−4 5.0× 10−5 5.0× 10−6 5.0× 10−7

Tabela 2: Resultados para o escoamento de um jato preenchendo um caixa de L = 0.05m,
U = 1.0 ms−1, Re = 0.01 no instante t = 0.28s.

Método δt(s) Número de iterações Tempo de processamento-(m:s)
Explícito 5.0× 10−8 5599980 4326 : 43
P1-IR 3.0× 10−6 112000 738 : 23
P1-CN 1.0× 10−6 280000 1108 : 57

P1-AB/CN 1.0× 10−6 280000 1149 : 01
P2-IR 6.0× 10−5 8960 54 : 51
P2-CN 1.0× 10−6 280000 1047 : 44

P2-AB/CN 1.0× 10−6 280000 1059 : 18

6.CONCLUSÃO

As formulações implícitas apresentaram um desempenho satisfatório nos problemas tran-
sientes com superfície livre. Os métodos P1 e P2 apresentaram diferentes resultados na simu-



lação de um escoamento no canal. Como foi observado nas �guras Fig.(1), Fig.(2) e Fig.(3), o
método P1 utilizando as formulações implícitas apresentou erros maiores que o método P2. Os
resultados mostram que é necessário diminuir o passo temporal δt no método P1 para que este
apresente erros a um nível aceitável. Nas simulações de jatos, os resultados numéricos obtidos
pelos métodos P1 e P2 utilizando as formulações implícitas foram próximos entre si e daquele
do método explícito. Os resultados comprovaram a capacidade desses métodos de simularem
problemas com superfícies livres. Os resultados numéricos mostraram que as formulações im-
plícitas superaram a condição de estabilidade do método explícito. Entretanto, as formulações
CN e AB/CN introduziram oscilações, e como consequência, o valor de δt permitido foi mais
restrito do aquele da formulação IR. Embora as formulações CN e AB/CN tenham permitido
um passo temporal maior que o método explícito, a formulação IR mostrou ser mais estável
permitindo valores para δt bem maiores. Porém, recomenda-se escolher o valor do passo tem-
poral com muito cuidado, para que a precisão numérica não seja afetada. Mesmo utilizando
formulações implícitas, um estudo sobre δt a ser utilizado deve ser feito com muita atenção.

Um dos objetivos principais deste trabalho foi a comparação das formulações implícita e
explícita. Propriedades como o valor do passo temporal δt, a precisão numérica, o número
de iterações e o tempo de processamento foram apresentadas em tabelas comparativas. Em
todas as simulações, as formulações implícitas superaram o valor do passo temporal do método
explícito, sendo que em alguns casos, o δt foi aproximadamente 500000 vezes maior que o do
método explícito. Os métodos P1 e P2 utilizando as formulações implícitas apresentaram
erros próximos ao do método explícito com número de iterações bem menor. O tempo de
processamento exigido pelas formulações implícitas foram signi�cativamente menores que a
formulação explícita.
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Abstract. In this work, implicit schemes are studied with the purpose of adapting them to
the two-dimensional GENSMAC method, for the numerical solution of unsteady newtonian
incompressible �ows. Using the velocity-pressure formulation and di�erent projection methods,
the FreeFlow2D simulation system is employed to solve the conservation equations in the context
of �nite-di�erence. The viscous terms in the Navier-Stokes equations are implicitly treated
via the Implicit Backward (IR), Crank-Nicolson (CN) and Adams-Bashforth/Crank-Nicolson
(AB/CN) schemes. The convective terms are explicitly discretized by an upwind high-order
limited scheme. For channel and jet �ows with low Reynolds number and with free surfaces,
the schemes are robusts and allow for larger time steps. Numerical results that compare very
well with the analytic solutions are shown.
Keywords. Implicit Schemes, Numerical Simulation, Navier-Stokes Equations.


