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Abstract: In this paper, a simplified model is used to investigate the nonlinear dynamic behavior of 
fixed offshore platforms under the action of ocean waves. The simplified model is capable of 
reproducing the levels of fundamental frequencies observed experimentally for reduced size fixed 
offshore structures. The wave forces are determined by Morison’s equation, with the velocity and 
acceleration obtained from the Airy’s first order wave theory. Design waves with typical 
parameters of the Brazilian coast are used in the analysis. The nonlinear equation of motion is 
derived using Hamilton’s principle and expanded up to the cubic term. A comparison between the 
nonlinear analysis and the linear dynamic analysis is presented. The possibility of this kind of 
structures, under the action of ocean waves, exhibiting chaotic motion is investigated. The results 
presented highlight the fact that fixed offshore structures may respond in a chaotic way, depending 
on the wave and the structure’s characteristics. 
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1. INTRODUCTION 
 

Offshore technology is growing rapidly. Platforms have been used in the oil industry for 
drilling, producing, storage, materials handling, living quarters, etc. In general, there are two types 
of offshore structures. They are fixed and compliant structures. Usually, fixed structures are 
designed to withstand environmental forces without any substantial displacement. Therefore, one 
could conclude that a linear dynamic analysis should be sufficient. But in fact, for these structures, 
the dynamic responses may have nonlinear characteristics, which need to be explored fully (Han 
and Benaroya, 2000). 

The nonlinear dynamic analysis of a fixed offshore structure is, undoubtedly, a complex subject 
due to the variety of topics that play a significant part in the overall response, such as: the three-
dimensional characteristic of the structure and its size; the action of ocean waves, currents and tides; 
the fluid-structure interaction, to name just a few. In order to get an insight into the nonlinear 
dynamic behavior of fixed offshore structures, a simplified one-degree of freedom model is used 
and its characteristics are discussed in the next session of this paper. The study here presented takes 
into account the action of ocean waves on the model. The adequacy of such model for the 
understanding of the response of fixed offshore structures is illustrated by the comparison between 
the results obtained with it and those obtained experimentally by Sotelino and Roehl (1982), and 
Teixeira and Roehl (1986), who tested reduced size steel and acrylics fixed platforms under the 
action of ocean waves typical of the Brazilian coast. Although in both experimental works the 
authors mention that no effort was made to simulate any particular prototype, the nature and quality 
of the tests justify the use of the results as means of comparison. 



  

In the present paper the possibility of chaotic motion occurring is investigated using different 
ocean wave characteristics. The results obtained show that fixed offshore structures under the action 
of ocean waves may exhibit some typical nonlinear system behaviors, such as chaotic motion. 

 
2. THE SIMPLIFIED MODEL 

 
The vibration of the simplified model used in this paper comes from experimental results carried 

out by Sotelino and Roehl (1982), and Teixeira and Roehl (1986), who tested reduced size fixed 
platform under the action of an ocean wave typical of the Brazilian coast. In their experiment the 
similitude criteria was used for the design of the structure with a geometrical scale 1:100. The tested 
reduced size offshore structures are shown, respectively, in Fig. 1. 

The experimental results were compared to those obtained with an equivalent clamped-free 
column (same height, mass and stiffness) with an equivalent mass Meq concentrated at the top, and 
expressed as (Pinto, 1993): 
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where Md is the mass of the platform’s deck, m the distributed mass of the platform per unit length 
(not including the deck) and l represents the height of the platform. The factor 4.12 dividing the 
total mass of the platform ml (minus the deck) in Eq. (1), comes from the analogy between a 
column with distributed mass m along the length l and no mass at the top (Md = 0) and the column 
with m = 0 and a mass Md at the top. For the first case (m > 0 and Md = 0) the fundamental 
frequency of vibration, ω1, is (Clough and Penzien, 1989): 
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where E is the Young’s Modulus and I the moment of inertia of the cross section of the column. For 
the second case (m = 0 and Md > 0) the corresponding fundamental frequency is expressed as 
(Clough and Penzien, 1989): 
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Note that when in the presence of water one has to include the distributed mass along the 

cylindrical rigid-bar element, mo, and the distributed added mass, ma, resulting the following 
expression (Mc Cormick., 1973) 
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where l is the length of the rigid-bar and d the water depth. 

The tested reduced platforms had different values for Md. Once the fundamental frequency 
corresponding to the smallest value of Md is known, fm0, the values of the natural frequency 
corresponding to greater values of Md, fm, can be determined from Eq. (3) as follows: 
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where Meq0 and Meq represent the value of the equivalent mass of the smallest value of Md and for a 
greater value of Md, respectively. The natural frequencies in Eq. (5) are expressed in Hertz. 

 

   
 

Figure 1. Reduced size models (Sotelino and Roehl 1982, Teixeira and Roehl 1986). 
 

Table 1 shows a comparison between the values of the frequency obtained experimentally (Exp) 
for Sotelino and Roehl (1982) and those obtained using Eq. (4) for ml = 11.33 Kg and the following 
cases of Md: m1 = 4.8 Kg, m2 = 24.87 Kg, m3 = 44.8 Kg and m4 = 64.8 Kg. The tests were carried 
out in the presence of water and without water. 

 
Table 1 - Comparison of Frequencies (Hz) 

 
m1 m2 m3 m4  

Exp Eq4 Exp Eq4 Exp Eq4 Exp Eq4 
Air 12.8 12.8 6.7 6.7 4.9 5.1 4.0 4.3 
Water 12.0 12.0 6.4 6.4 4.7 4.9 4.0 4.1 

 
The worst result in the presence of water corresponds to an error of 4.26% (for m3) and in the 

absence of water 7.50% (for m4). Results of the same order were found for the model of Teixeira 
and Roehl (1986). Based on these comparisons, it is possible to conclude that the behavior of the 
equivalent column may be a good approximation to the behavior of the fixed platform. 

In this paper the equivalent clamped-free column is modeled by the rigid-bar element shown in 
Fig. 2, for which the nonlinear dynamic analysis is carried out.  

 

 
 

Figure 2. The simplified model. 



  

 
It consists of a rigid-bar element with a concentrated mass at the free end and a rotational spring 

of stiffness C at the support. 
One can see in those works (Sotelino and Roehl 1982, Teixeira and Roehl 1986) that, regarding 

to the displacements of the deck, the answer is basically the same of a single degree of freedom 
system with the fundamental frequency of the structure. It is also observed that a simpler system, as 
a clamped-free column, can serve as a base for an analysis of the behavior of a system as complex 
as a fixed platform (Pinto, 1993). 

The idea of this work is that given a certain structure there is an equivalent column, with the 
same mass and the same rigidity that the structure in subject, which has a very close behavior. This 
equivalent column is used in order to specify the characteristics of the simplified model. 

As mentioned above, the model shown in Fig. 2 consists of a rigid-bar element free at the top 
and fixed at the bottom. It has at the support a rotational spring of constant stiffness C which is 
determined in such a way that the lateral displacement at the top of both the equivalent column and 
the model is the same for a concentrated load applied at the top. Therefore, 
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where EI and l have already been defined previously. The value of EI for the equivalent column is 
obtained from the fundamental frequency of vibration of the platform, f0, obtained experimentally: 
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The displacement coordinate is chosen to be the total angular rotation θ, Fig. 2. 
The length of the rigid-bar element is the same as the length of the equivalent column and, 

therefore, corresponds to the height of the platform. The cross section of the model is an annulus for 
which the external and the internal diameter, De and Di, respectively. De is determined in such a 
way that using the same added mass coefficient Ca, obtained experimentally, the volume of water 
displaced is the same. Therefore, 
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where Sa is the apparent area defined as 
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Ma being the added mass, ρ the fluid density and d the water depth. Sa can also be expressed as 
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where M0  is the mass displaced by the model. Di is determined in such a way that the total mass of 
the model is equal to the total mass of the platform not including the deck. Therefore, 
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where Vp is the volume of the platform excluding the deck. 

Table 2 shows the values of the frequency obtained with the simplified model (Mod) for the 
same cases shown in Tab. 1. For the comparison, the characteristics of the model are: De = 5.11cm, 
Di =3.35cm and C = 73.88 KN/m. 

 
Table 2- Frequencies (Hz) 

 
mo m1 m2 m3  

Exp Mod Exp Mod Exp Mod Exp Mod 
Air 12.8 12.0 6.7 6.6 4.9 5.0 4.0 4.2 
Water 12.0 11.7 6.4 6.5 4.7 5.0 4.0 4.2 

 
The results shown in Tab. 2 highlight the capability of the simplified model to reproduce the 

measured frequencies of the fixed platform obtained in the experiments reported by Sotelino and 
Roehl (1982). 

The model adopted in the present study and shown in Fig. 2 was previously used for post-
buckling non-linear dynamic analysis (Souza and Mook, 1991) and for non-linear dynamic analysis 
of fixed offshore structures (Souza and Pinto, 1993, Pinto, 1993). Its main stability and dynamical 
characteristics were discussed in detail in those references.  

 
3. EQUATION OF MOTION 
 

The equation of motion is obtained by means of a perturbation around a static equilibrium 
configuration, θ corresponding to a given load level. In the pre-buckling state the static equilibrium 
configuration corresponds to θ = 0 and, therefore, the motion takes place around such a 
configuration. In the post-buckling state the motion will take place around the static equilibrium 
configuration θ, depending on whether the model is perfect or initially imperfect, respectively 
(Souza and Pinto, 1993). 

The procedure adopted leads to the following nonlinear equation of motion: 
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where θo is an initial imperfection (for a perfect model θo = 0), φ , φ�  and φ��  represent the perturbed 
displacement, velocity and acceleration, respectively, I* is the generalized inertia given by 
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µ* is the damping coefficient and Mt (t) is the external excitation coming from the action of the 
ocean waves which will be discussed in the next session, and p is the load parameter defined as 
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where g is the acceleration of gravity. 

Assuming the perturbation to be small, the exact Eq. of motion (12) can be expressed as 
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where terms of order O(4) or higher are neglected and the coefficients of φ, φ 2 and φ 3 are defined 
as 
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It is worth mentioning that in the pre-buckling state (for a perfect model) the parameter α is 

identically zero and the nonlinear equation of motion becomes a Duffing type equation. 
 

4. WAVE FORCES 
 
In the dynamic analysis of a marine structure, the wave loading is usually the most important of 

all environmental loadings for which the structure must be designed. The horizontal force exerted 
by waves on a cylindrical object consists of two parts: a drag force, which is related to the kinetic 
energy of the fluid, and an inertial or mass force, that is related to the inertia of the fluid. For 
representing the wave forces acting on fixed offshore platforms, usually it is used the well-known 
Morison’s equation (Morison et. al., 1950): 
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In Eq. (17), F is the transverse wave forces per unit length, ρ is the fluid density, Cd the drag 

coefficient, De the external diameter of the cylindrical member, u and tu ∂∂ the velocity and 
acceleration of the fluid perpendicular to the cylinder, respectively, Cm is the inertia coefficient and 
t is time. Note that Morison’s equation is applicable when the drag force is predominant, which 
occurs when the structural diameter is small compared to the water wavelength (Dean, and 
Dalrymple, 1984) 

The proper values of Cd and Cm depend in part on the wave theory being used. Typical values 
for cylindrical members are 0.6 ≤ Cd ≤ 1.0 and 1.5 ≤ Cm ≤ 2.0, and the values selected should not be 
smaller then the lower limits of these ranges (API, 1989). Some available experimental results for 
fixed offshore structures of reduced size (Sotelino and Roehl, 1982, Teixeira and Roehl, 1986) point 
larger values for Cm. In this work the values Cd = 0.8 and Cm = 3.0 obtained experimentally by 
Sotelino and Roehl (1986) are used. The higher value of Cm obtained reflects the fact that it 
corresponds to the actual structure, where besides the additional mass of each element, a portion of 
water that is confined in the interior exists and it vibrates together with the structure, increasing the 
total additional mass, and not to just one cylinder (Pinto, 1993). 

Water particle velocity and acceleration are functions of wave height (H), wave period (T), 
water depth (d), distance above bottom and time (t). These parameters may be determined by any 
defensible method, e.g., Stokes fifth order wave theory, Airy’s linear theory, modified solitary wave 
theory, cnoidal wave theory, etc. Here, the velocity of the fluid is determined from the Airy’s first 
order wave theory because in the cases studied in this paper the wave height is small compared to 
the wave length or water depth and, therefore, in this case it gives accurate results (Dean, and 
Dalrymple, 1984). 

The wave’s parameters to be used in Airy’s theory are shown in Fig. 3, where we have, besides 
the basic characteristics of the wave, c = celerity, H = water surface elevation measured from the 
mean or still water level (SWL). 

 



 

 
 

Figure 3. Wave profile. 
 

The velocity and acceleration components, u and tu ∂∂ , respectively, are expressed as  
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and 
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where 
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The wave-length L can be obtained from the transcendental equation 
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using Newton’s numerical method. 

In the nonlinear Eq. of motion (12) or (15), Mt (t) represents the moment about the fixed end of 
the rigid-bar element. The moment is obtained by a numerical integration procedure using 
Morison’s equation with Airy’s wave theory. 

The moment at the support function Mt (t) was found to be approximately of the form 
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Mmax and Mmin representing the maximum and minimum values of the moment at the support, 
respectively. tmax and tmin represent the instants of time when Mmax and Mmin occur, respectively. The 
approximate function, Eq. (22), is obtained in such a way that the amplitude Am is the same as the 
one from Morison’s equation and the phase angle ϕ is such that the difference between the exact 
moment and the approximate function be a minimum regarding the occurrence of the peaks, Mmax 
and Mmin. Comparisons between Mt (t) obtained directly from Morison’s equation and from Eq. (22) 
for the wave used and the model show that the approximation is extremely close to the exact 
solution (Souza and Pinto, 1993, Pinto, 1993). In this paper, the moment function Mt (t) is used in 
its approximate form given by Eq. (22). 

 
5. RESULTS 

 
The possibility of chaotic motion occurring was investigated using a 5th-order Runge-Kutta 

procedure for the integration of the non-linear Eq. of motion (12). Fast Fourier transformation and 
Poincaré sections were also used in the analysis. 

The search for chaos was initially carried out for waves of heights between H = 120mm to 
l80mm and periods between T = 1.0s to 1.2s, data which correspond to actual waves of H = 120m 
and 180m and periods T = l0s to 12s, respectively. For such typical waves of the Brazilian coast no 
situation of chaotic motion was found. 

Chaotic motion was obtained for the post-buckling load level p = 1.195. The following are the 
values of the different parameters which led to the chaotic motion: I*= C = 1.0, µ* = 0.15, Mot = 
1.8, Ω = 0.43 and ϕ = 0. 

Figures 4 to 6 illustrate the results obtained and represent, respectively, phase portrait, Poincaré 
section and the frequency spectrum. 

The phase portrait of Fig. 4 corresponds to the response from time t = 10,000TΩ to t = 10,020 TΩ 
( TΩ = 2π/Ω = l4.612s). 

Figure 5 represents Poincaré sections corresponding to 12,000TΩ, typical of chaotic motion. 
In the power spectrum shown in Fig. 6 it can be seen the different peaks corresponding to the 

frequency of the excitation Ω, and its multiples. It can also be observed considerable noise, also a 
characteristic of the chaotic motion. 
 
 

 
 

Figure 4. Phase Portrait. 



 

 

 
 

Figure 5. Poincaré Section. 
 

 
 

Figure 6. Frequency Spectrum. 
 
 

6. CONCLUSIONS 
 
The comparison between the experimental results and those obtained with the model in terms of 

the fundamental frequency of vibration emphasizes the adequacy of the simplified model for the 
study of the nonlinear dynamic response of fixed offshore structures. 

For the typical wave of the Brazilian coast used in the analysis the results obtained show that a 
linear dynamic analysis provides a good approximation for the response. It was also shown that due 
to the nature of the nonlinear equation of motion, for different wave characteristics or different 
excitation the linear response is not satisfactory, with the possibility that chaotic behavior can occur. 

The non-linear dynamic response of fixed offshore structures was discussed in terms of the 
possibility of the occurrence of chaotic motion. The equation of motion was integrated and a 
situation of chaotic motion was identified. The study here reported illustrates the fact that fixed 
offshore structures can respond in a chaotic way depending on the wave and the structure’s 
characteristics. Although the validation of the model was done using experimental results 
corresponding to tests carried out on reduced size fixed structures, the results of the present work 



  

highlight the importance of taking into account the possibility of the chaotic response in the analysis 
and design of fixed offshore structures. 

In summary, the simplified model used in the analysis is a useful tool for the understanding of 
the nonlinear dynamic behavior of complex structures such as the fixed platforms. 
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