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Abstract: In this paper, a simplified model is used to investigate the nonlinear dynamic behavior of
fixed offshore platforms under the action of ocean waves. The simplified model is capable of
reproducing the levels of fundamental frequencies observed experimentally for reduced size fixed
offshore structures. The wave forces are determined by Morison’s equation, with the velocity and
acceleration obtained from the Airy’s first order wave theory. Design waves with typical
parameters of the Brazilian coast are used in the analysis. The nonlinear equation of motion is
derived using Hamilton’s principle and expanded up to the cubic term. A comparison between the
nonlinear analysis and the linear dynamic analysis is presented. The possibility of this kind of
structures, under the action of ocean waves, exhibiting chaotic motion is investigated. The results
presented highlight the fact that fixed offshore structures may respond in a chaotic way, depending
on the wave and the structure’s characteristics.
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1. INTRODUCTION

Offshore technology is growing rapidly. Platforms have been used in the oil industry for
drilling, producing, storage, materials handling, living quarters, etc. In general, there are two types
of offshore structures. They are fixed and compliant structures. Usually, fixed structures are
designed to withstand environmental forces without any substantial displacement. Therefore, one
could conclude that a linear dynamic analysis should be sufficient. But in fact, for these structures,
the dynamic responses may have nonlinear characteristics, which need to be explored fully (Han
and Benaroya, 2000).

The nonlinear dynamic analysis of a fixed offshore structure is, undoubtedly, a complex subject
due to the variety of topics that play a significant part in the overall response, such as: the three-
dimensional characteristic of the structure and its size; the action of ocean waves, currents and tides;
the fluid-structure interaction, to name just a few. In order to get an insight into the nonlinear
dynamic behavior of fixed offshore structures, a simplified one-degree of freedom model is used
and its characteristics are discussed in the next session of this paper. The study here presented takes
into account the action of ocean waves on the model. The adequacy of such model for the
understanding of the response of fixed offshore structures is illustrated by the comparison between
the results obtained with it and those obtained experimentally by Sotelino and Roehl (1982), and
Teixeira and Roehl (1986), who tested reduced size steel and acrylics fixed platforms under the
action of ocean waves typical of the Brazilian coast. Although in both experimental works the
authors mention that no effort was made to simulate any particular prototype, the nature and quality
of the tests justify the use of the results as means of comparison.



In the present paper the possibility of chaotic motion occurring is investigated using different
ocean wave characteristics. The results obtained show that fixed offshore structures under the action
of ocean waves may exhibit some typical nonlinear system behaviors, such as chaotic motion.

2. THE SIMPLIFIED MODEL

The vibration of the simplified model used in this paper comes from experimental results carried
out by Sotelino and Roehl (1982), and Teixeira and Roehl (1986), who tested reduced size fixed
platform under the action of an ocean wave typical of the Brazilian coast. In their experiment the
similitude criteria was used for the design of the structure with a geometrical scale 1:100. The tested
reduced size offshore structures are shown, respectively, in Fig. 1.

The experimental results were compared to those obtained with an equivalent clamped-free
column (same height, mass and stiffness) with an equivalent mass M.q concentrated at the top, and
expressed as (Pinto, 1993):
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where M, is the mass of the platform’s deck, m the distributed mass of the platform per unit length
(not including the deck) and [ represents the height of the platform. The factor 4.12 dividing the
total mass of the platform ml/ (minus the deck) in Eq. (1), comes from the analogy between a
column with distributed mass m along the length / and no mass at the top (M, = 0) and the column
with m = 0 and a mass M, at the top. For the first case (m > 0 and M; = 0) the fundamental
frequency of vibration, @y, is (Clough and Penzien, 1989):

W = 1.87521/15—14 2)
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where E is the Young’s Modulus and / the moment of inertia of the cross section of the column. For
the second case (m = 0 and M, > 0) the corresponding fundamental frequency is expressed as
(Clough and Penzien, 1989):
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Note that when in the presence of water one has to include the distributed mass along the
cylindrical rigid-bar element, m,, and the distributed added mass, m,, resulting the following
expression (Mc Cormick., 1973)

2
me=m + m@ @)

where [ is the length of the rigid-bar and d the water depth.

The tested reduced platforms had different values for My. Once the fundamental frequency
corresponding to the smallest value of My is known, fn, the values of the natural frequency
corresponding to greater values of My, fi, can be determined from Eq. (3) as follows:
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where M., and M., represent the value of the equivalent mass of the smallest value of M, and for a
greater value of My, respectively. The natural frequencies in Eq. (5) are expressed in Hertz.
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Figure 1. Reduced size models (Sotelino and Roehl 1982, Teixeira and Roehl 1986).

Table 1 shows a comparison between the values of the frequency obtained experimentally (Exp)
for Sotelino and Roehl (1982) and those obtained using Eq. (4) for m; = 11.33 Kg and the following
cases of My: m; = 4.8 Kg, my = 24.87 Kg, m3 = 44.8 Kg and m4 = 64.8 Kg. The tests were carried
out in the presence of water and without water.

Table 1 - Comparison of Frequencies (Hz)

mi my ms my
Exp |Eq4 |Exp |Eq4 |Exp |Eq4 |Exp |Eq4
Air 12.8 12.8 6.7 |6.7 |49 |5.1 |40 |43

Water [12.0[12.0 /64 (64 |47 [49 |40 |4.1

The worst result in the presence of water corresponds to an error of 4.26% (for m3) and in the
absence of water 7.50% (for my). Results of the same order were found for the model of Teixeira
and Roehl (1986). Based on these comparisons, it is possible to conclude that the behavior of the
equivalent column may be a good approximation to the behavior of the fixed platform.

In this paper the equivalent clamped-free column is modeled by the rigid-bar element shown in
Fig. 2, for which the nonlinear dynamic analysis is carried out.
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Figure 2. The simplified model.



It consists of a rigid-bar element with a concentrated mass at the free end and a rotational spring
of stiffness C at the support.

One can see in those works (Sotelino and Roehl 1982, Teixeira and Roehl 1986) that, regarding
to the displacements of the deck, the answer is basically the same of a single degree of freedom
system with the fundamental frequency of the structure. It is also observed that a simpler system, as
a clamped-free column, can serve as a base for an analysis of the behavior of a system as complex
as a fixed platform (Pinto, 1993).

The idea of this work is that given a certain structure there is an equivalent column, with the
same mass and the same rigidity that the structure in subject, which has a very close behavior. This
equivalent column is used in order to specify the characteristics of the simplified model.

As mentioned above, the model shown in Fig. 2 consists of a rigid-bar element free at the top
and fixed at the bottom. It has at the support a rotational spring of constant stiffness C which is
determined in such a way that the lateral displacement at the top of both the equivalent column and
the model is the same for a concentrated load applied at the top. Therefore,

c=222 (6)

where EI and [ have already been defined previously. The value of EI for the equivalent column is
obtained from the fundamental frequency of vibration of the platform, fj, obtained experimentally:

El = % T fy' M, (7)

The displacement coordinate is chosen to be the total angular rotation 6, Fig. 2.

The length of the rigid-bar element is the same as the length of the equivalent column and,
therefore, corresponds to the height of the platform. The cross section of the model is an annulus for
which the external and the internal diameter, D, and D;, respectively. D, is determined in such a
way that using the same added mass coefficient C,, obtained experimentally, the volume of water
displaced is the same. Therefore,
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where S, is the apparent area defined as

M
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M, being the added mass, p the fluid density and d the water depth. S, can also be expressed as

S:ﬂ 10
“~ pd (10)

where M, is the mass displaced by the model. D; is determined in such a way that the total mass of
the model is equal to the total mass of the platform not including the deck. Therefore,
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where V), is the volume of the platform excluding the deck.

Table 2 shows the values of the frequency obtained with the simplified model (Mod) for the
same cases shown in Tab. 1. For the comparison, the characteristics of the model are: D, = 5.11cm,
D; =3.35cm and C = 73.88 KN/m.

Table 2- Frequencies (Hz)

mey mp my ns
Exp |Mod |Exp |Mod |Exp |Mod|Exp |Mod
Air 12.8 [12.0 6.7 6.6 |49 [|5.0 |40 [42
Water [12.0[11.7 |64 |65 |47 |50 [4.0 |42

The results shown in Tab. 2 highlight the capability of the simplified model to reproduce the
measured frequencies of the fixed platform obtained in the experiments reported by Sotelino and
Roehl (1982).

The model adopted in the present study and shown in Fig. 2 was previously used for post-
buckling non-linear dynamic analysis (Souza and Mook, 1991) and for non-linear dynamic analysis
of fixed offshore structures (Souza and Pinto, 1993, Pinto, 1993). Its main stability and dynamical
characteristics were discussed in detail in those references.

3. EQUATION OF MOTION

The equation of motion is obtained by means of a perturbation around a static equilibrium
configuration, @ corresponding to a given load level. In the pre-buckling state the static equilibrium
configuration corresponds to € = 0 and, therefore, the motion takes place around such a
configuration. In the post-buckling state the motion will take place around the static equilibrium

configuration 6, depending on whether the model is perfect or initially imperfect, respectively
(Souza and Pinto, 1993).
The procedure adopted leads to the following nonlinear equation of motion:

I'¢p+ 19+ Cl0+¢— psin(6+9)|=CO,+ M, (1) (12)

where 6, is an initial imperfection (for a perfect model 6, = 0), ¢, ¢ and ¢ represent the perturbed
displacement, velocity and acceleration, respectively, I* is the generalized inertia given by

L d’
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,u* is the damping coefficient and M, (¢) is the external excitation coming from the action of the
ocean waves which will be discussed in the next session, and p is the load parameter defined as

gl d?
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where g is the acceleration of gravity.
Assuming the perturbation to be small, the exact Eq. of motion (12) can be expressed as



I+ o+, p+ap” + o’ =M, (1) (15)

where terms of order O(4) or higher are neglected and the coefficients of ¢, ¢ ? and 1] 3 are defined
as

@} =C(1- pcos8), a:%Cpsine, ﬂzéCpcosH (16)

It is worth mentioning that in the pre-buckling state (for a perfect model) the parameter o is
identically zero and the nonlinear equation of motion becomes a Duffing type equation.

4. WAVE FORCES

In the dynamic analysis of a marine structure, the wave loading is usually the most important of
all environmental loadings for which the structure must be designed. The horizontal force exerted
by waves on a cylindrical object consists of two parts: a drag force, which is related to the kinetic
energy of the fluid, and an inertial or mass force, that is related to the inertia of the fluid. For
representing the wave forces acting on fixed offshore platforms, usually it is used the well-known
Morison’s equation (Morison et. al., 1950):
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In Eq. (17), F is the transverse wave forces per unit length, p is the fluid density, C, the drag
coefficient, D, the external diameter of the cylindrical member, u and du/or the velocity and

acceleration of the fluid perpendicular to the cylinder, respectively, C,, is the inertia coefficient and
t is time. Note that Morison’s equation is applicable when the drag force is predominant, which
occurs when the structural diameter is small compared to the water wavelength (Dean, and
Dalrymple, 1984)

The proper values of C,; and C,, depend in part on the wave theory being used. Typical values
for cylindrical members are 0.6 < C;< 1.0 and 1.5 < C,, £ 2.0, and the values selected should not be
smaller then the lower limits of these ranges (API, 1989). Some available experimental results for
fixed offshore structures of reduced size (Sotelino and Roehl, 1982, Teixeira and Roehl, 1986) point
larger values for C,,. In this work the values C; = 0.8 and C,, = 3.0 obtained experimentally by
Sotelino and Roehl (1986) are used. The higher value of C, obtained reflects the fact that it
corresponds to the actual structure, where besides the additional mass of each element, a portion of
water that is confined in the interior exists and it vibrates together with the structure, increasing the
total additional mass, and not to just one cylinder (Pinto, 1993).

Water particle velocity and acceleration are functions of wave height (H), wave period (7),
water depth (d), distance above bottom and time (#). These parameters may be determined by any
defensible method, e.g., Stokes fifth order wave theory, Airy’s linear theory, modified solitary wave
theory, cnoidal wave theory, etc. Here, the velocity of the fluid is determined from the Airy’s first
order wave theory because in the cases studied in this paper the wave height is small compared to
the wave length or water depth and, therefore, in this case it gives accurate results (Dean, and
Dalrymple, 1984).

The wave’s parameters to be used in Airy’s theory are shown in Fig. 3, where we have, besides
the basic characteristics of the wave, ¢ = celerity, H = water surface elevation measured from the
mean or still water level (SWL).
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Figure 3. Wave profile.

The velocity and acceleration components, u and du/or , respectively, are expressed as

7
_ cosl?[K (d+27)] cos @ (18)
T sinh(Kd )
and
2
du _27°H cos}‘l[K(d+Z)] <in @ (19)
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The wave-length L can be obtained from the transcendental equation
gT*H 21

L= tanh(Kd )
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using Newton’s numerical method.

In the nonlinear Eq. of motion (12) or (15), M, (¢) represents the moment about the fixed end of
the rigid-bar element. The moment is obtained by a numerical integration procedure using
Morison’s equation with Airy’s wave theory.

The moment at the support function M, () was found to be approximately of the form

M()=S, + A cos(wt-@) 22)
where

8, =5 (M =M, 23)

A= (M M) (24)
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M. and M,,;, representing the maximum and minimum values of the moment at the support,
respectively. t,,,. and t,,;, represent the instants of time when M,,,, and M,,;, occur, respectively. The
approximate function, Eq. (22), is obtained in such a way that the amplitude A,, is the same as the
one from Morison’s equation and the phase angle ¢ is such that the difference between the exact
moment and the approximate function be a minimum regarding the occurrence of the peaks, M,
and M,,;;. Comparisons between M, (t) obtained directly from Morison’s equation and from Eq. (22)
for the wave used and the model show that the approximation is extremely close to the exact
solution (Souza and Pinto, 1993, Pinto, 1993). In this paper, the moment function M, (t) is used in
its approximate form given by Eq. (22).

S. RESULTS

The possibility of chaotic motion occurring was investigated using a 5Sth-order Runge-Kutta
procedure for the integration of the non-linear Eq. of motion (12). Fast Fourier transformation and
Poincaré sections were also used in the analysis.

The search for chaos was initially carried out for waves of heights between H = 120mm to
180mm and periods between T = 1.0s to 1.2s, data which correspond to actual waves of H = 120m
and 180m and periods T = 10s to 12s, respectively. For such typical waves of the Brazilian coast no
situation of chaotic motion was found.

Chaotic motion was obtained for the post-buckling load level p = 1.195. The following are the
values of the different parameters which led to the chaotic motion: I*= C = 1.0, ¢* = 0.15, M, =
1.8, Q2 =0.43 and ¢=0.

Figures 4 to 6 illustrate the results obtained and represent, respectively, phase portrait, Poincaré
section and the frequency spectrum.

The phase portrait of Fig. 4 corresponds to the response from time ¢ = 10,0007 to ¢ = 10,020 Tq
(Tq=2m/Q2 =14.612s).

Figure 5 represents Poincaré sections corresponding to 12,0007, typical of chaotic motion.

In the power spectrum shown in Fig. 6 it can be seen the different peaks corresponding to the
frequency of the excitation 2, and its multiples. It can also be observed considerable noise, also a
characteristic of the chaotic motion.
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Figure 4. Phase Portrait.
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Figure 5. Poincaré Section.
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Figure 6. Frequency Spectrum.

6. CONCLUSIONS

The comparison between the experimental results and those obtained with the model in terms of
the fundamental frequency of vibration emphasizes the adequacy of the simplified model for the
study of the nonlinear dynamic response of fixed offshore structures.

For the typical wave of the Brazilian coast used in the analysis the results obtained show that a
linear dynamic analysis provides a good approximation for the response. It was also shown that due
to the nature of the nonlinear equation of motion, for different wave characteristics or different
excitation the linear response is not satisfactory, with the possibility that chaotic behavior can occur.

The non-linear dynamic response of fixed offshore structures was discussed in terms of the
possibility of the occurrence of chaotic motion. The equation of motion was integrated and a
situation of chaotic motion was identified. The study here reported illustrates the fact that fixed
offshore structures can respond in a chaotic way depending on the wave and the structure’s
characteristics. Although the validation of the model was done using experimental results
corresponding to tests carried out on reduced size fixed structures, the results of the present work



highlight the importance of taking into account the possibility of the chaotic response in the analysis
and design of fixed offshore structures.

In summary, the simplified model used in the analysis is a useful tool for the understanding of
the nonlinear dynamic behavior of complex structures such as the fixed platforms.
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