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ABSTRACT 
 

Chaotic behavior of dynamical systems offers a rich variety of orbits, which can be controlled by 
small perturbations in either a specific parameter of the system or a dynamical variable. Chaos 
control usually involves two steps. In the first, unstable periodic orbits (UPOs) that are embedded in 
the chaotic set are identified. After that, a control technique is employed in order to stabilize a 
desirable orbit. This contribution analyzes the effect of noise related to chaos control. Basically, the 
close-return method is employed to identify UPOs and a semi-continuous control method, which is 
built up on the OGY method, is used to stabilize some desirable UPO. As an application to a 
mechanical system, a nonlinear pendulum is considered using signals generated by numerical 
integration of the mathematical model. Results show situations where these techniques may be used 
to control chaos in mechanical systems. 
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1. INTRODUCTION 
 
Chaos control is based on the richness of responses of chaotic behavior. A chaotic attractor 

has a dense set of unstable periodic orbits (UPOs) and the system often visits the neighborhood of 
each one of them. Moreover, chaotic response has sensitive dependence to initial condition, which 
implies that the system’s evolution may be altered by small perturbations. Therefore, chaos control 
may be understood as the use of tiny perturbations for the stabilization of an UPO embedded in a 
chaotic attractor, which makes this kind of behavior to be desirable in a variety of applications, 
since one of these UPO can provide better performance than others in a particular situation. It 
should be pointed out that it is not necessary to have a mathematical model to achieve the control 
goal since all control parameters may be resolved from time series analysis.  

Since noise contamination is unavoidable in cases of experimental data acquisition, it is 
important to evaluate its effect on chaos control procedures. Noise reduction schemes for chaotic 
noisy time series is an alternative (Shin et al., 1999; Davies, 1994; Schreiber & Grassberger, 1991; 
Sauer, 1992; Enge et al., 1993; Kostelich & Schreiber, 1993; Schreiber & Richter, 1999, Bröcker et 
al., 2002) or Kalman filtering (Leung et al., 2000; Lefebvre et al., 2001; Wan & van der Merwe, 
2001) but these subjects are beyond the scope of this paper. On the other hand, it is possible to 
employ robust control procedures to avoid filtering processes. Ott et al. (1990) say that the 
efficiency of the OGY method is close related to the noise level. Spano et al. (1991) also study the 
effect of noise in OGY method, confirming the previous conclusion.  

This contribution evaluates noise sensitivity of chaos control techniques, previously discussed 
by Pereira-Pinto et al. (2003a,b, 2004). Basically, chaos control is applied to a nonlinear pendulum 
that is based on the experimental apparatus previously analyzed by Franca & Savi (2001) and Pinto 
& Savi (2003). This pendulum has both torsional stiffness and damping. All signals are generated 
numerically by the integration of the equations of the mathematical model proposed, which uses 
experimentally identified parameters. The close-return (CR) method (Auerbach et al., 1987) is 
employed to determine the UPO embedded in the attractor. A variation of the OGY technique called 
semi-continuous control (SCC) method, proposed by Hübinger et al. (1994) and extended by Korte 
et al. (1995), is considered to stabilize the desirable orbit. The control analysis considers that all 
state variables are available. The effect of noise in the controlling procedures is analyzed, defining 
some limitations of these techniques. Results confirm the possibility of the use of this approach to 
deal with mechanical systems. Noise suppression is not considered and it is beyond the scope of this 
contribution the influence of noise on the determination of UPOs. For this analysis, see references: 
Pierson & Moss (1995), So et al. (1996), Pei et al. (1998), Dolan et al. (1999) and Dolan (2001).  
 
2. DETERMINATION OF UNSTABLE PERIODIC ORBITS 

 
The control of chaos can be treated as a two-stage process. The first stage is composed by the 

identification of UPO and is named as “learning stage”. Since UPO are system invariants, they can 
be analyzed from phase space reconstructed from a scalar time series (Gunaratne et al., 1989).  

This article considers the close-return (CR) method (Auerbach et al., 1987) for the detection 
of UPO embedded in the attractor. The basic idea is to search for a period−P UPO in the time series 
represented by vectors { }
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. This state vector may be obtained by state space reconstruction from 

a scalar time series sn (n = 1, … N) using delay coordinates, for example (Takens, 1981). The 
identification of a period−P UPO is based on a search for pairs of points in the time series that 
satisfy the condition ( )
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− ≤  where r1 is the tolerance value for distinguishing return 
points. After this analysis, all points that belong to a period-P cycle are grouped together. During 
the search, the vicinity of a UPO may be visited many times, and it is necessary to distinguish each 
orbit, remove any cycle permutation and to average them in order to improve estimations as shown 
by Otani & Jones (1997). 



After the identification of a UPO, one can proceed to the next stage of the control process that 
is the stabilization of the desired orbit. In the following section, it is presented one of the procedures 
used for this aim: the SCC control method. 

 
3. SEMI-CONTINUOUS CONTROL METHOD 

 
The OGY (Ott et al., 1990) approach is described considering a discrete system of the form of 

a map ),(1 pF ii ξξ =+ , where p  is an accessible parameter for control. This is equivalent to a 
parameter dependent map associated with a general surface, usually a Poincaré section. Let 

ℜ∈

),( 0pF FF ξξ =  denote the unstable fixed point on this section corresponding to an orbit in the 
chaotic attractor that one wants to stabilize. Basically, the control idea is to monitor the system 
dynamics until the neighborhood of this point is reached. After that, a proper small change in the 
parameter p causes the next state ξi+1 to fall into the stable direction of the fixed point. In order to 
find the proper variation in the control parameter, δp, it is considered a linearized version of the 
dynamical system near the equilibrium point.  
 
 iii pwA δδξδξ +≅+1  (1) 
 
where Fii ξξδξ −= , 0ppp ii −=δ , ),( 0pFDA Fξξ= , and ),(/ 0ppFw Fξ∂∂= .  

The OGY method can be employed even in situations where a mathematical model is not 
available. Under this situation, all parameters can be extracted from time series analysis. The 
Jacobian A and the sensitivity vector w can be estimated from a time series using a least-square fit 
method as described in Auerbach et al. (1987) and Otani & Jones (1997). 

In order to overcome some limitations of the original OGY formulation such as control of 
orbits with large instability, measured by unstable eigenvalues, and orbits of high period, Hübinger 
et al. (1994) introduced a semi-continuous control (SCC) method or local control method, which 
description is presented as follows. 

The SCC method lies between the continuous and the discrete time control because one can 
introduce as many intermediate Poincaré sections, viewed as control stations, as it is necessary to 
achieve stabilization of a desirable UPO. Therefore, the SCC method is based on measuring 
transition maps of the system. These maps relate the state of the system in one Poincaré section to 
the next. 

In order to use N control stations per forcing period T, one introduces N equally spaced 
successive Poincaré sections )1(,...,0, −= NnnΣ . Let  be the intersections of the UPO 
with 
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nΣ and )1,( +nnF  be the mapping from one control station nΣ  to the next one 1+nΣ . Here, the 
superscript n is used instead of the subscript i of the OGY method, to differentiate both methods.   
Hence, one considers the map 
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Hübinger et al. (1994) analyze the possibility of the eigenvalues of nA  be complex numbers 
and then they use the fact that the linear mapping nA  deforms a sphere around  into an ellipsoid 
around . Therefore, a singular value decomposition (SVD),  
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is employed in order to determine the directions  and  in n

uv n
sv nΣ  which are mapped onto the 

largest, , and shortest, , semi-axis of the ellipsoid in n
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 are the singular values of  An. 
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Korte et al. (1995) establish the control target as being the adjustment of  such that the 
direction  on the map n+1 is obtained, resulting in a maximal shrinking on map n+2. Therefore, 
it demands , where 
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n vαδξ ℜ∈α . Hence, from Equation (3) one has that 
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which is a relation from what α and  can be conveniently chosen.  npδ
 
4. CONTROLING A NONLINEAR PENDULUM 

 
As a mechanical application of general chaos control procedure here presented, a nonlinear 

pendulum is considered. The motivation of the proposed pendulum is an experimental set up, 
previously analyzed by Franca & Savi (2001) and Pinto & Savi (2003). Here, a mathematical model 
is developed to describe the dynamical behavior of the pendulum while the corresponding 
parameters are obtained from the experimental apparatus. Numerical simulations of such model are 
employed in order to obtain time series related to the pendulum response. Finally, some unstable 
periodic orbits are identified with the CR method and their control simulated employing the SCC 
method.  

The considered nonlinear pendulum is shown in Figure 1. The left side presents the 
experimental apparatus while the right side shows a schematic picture. Basically, pendulum consists 
of an aluminum disc (1) with a lumped mass (2) that is connected to a rotary motion sensor (4). A 
magnetic device (3) provides an adjustable dissipation of energy. A string-spring device (6) 
provides torsional stiffness to the pendulum and an electric motor (7) excites the pendulum via the 
string-spring device. An actuator (5) provides the necessary perturbations to stabilize this system by 
properly changing the string length. 



                

 

 
       (d) 

Figure 1 − Nonlinear pendulum. (a) Physical Model. (1) Metallic disc; (2) Lumped mass; (3) 
Magnetic damping device; (4) Rotary Motion Sensor; (5) Actuator; (6) String-spring device; (7) 

Electric motor. (b) Parameters and forces on the metallic disc. (c) Parameters from driving device. 
(d) Experimental apparatus. 

 
In order to describe the dynamics of this pendulum, a mathematical model is proposed. Let F1 

and F2 be the forces exerted on the rotating masses and given by: 
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2
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where ϖ is the forcing frequency, a defines the position of the guide of the string with respect to the 
motor, b is the length of the excitation arm of the motor, D is the diameter of the metallic disc and d 
is the diameter of the driving pulley. The ∆l parameter is the length variation in the string provided 
by the linear actuator (5) shown in Figure 1a. This parameter is considered as the variation on the 
accessible parameter for control purposes.  Therefore, the equation of motion is given by: 
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where I is the total inertia of rotating parts, m is the lumped mass and ζ  is the dissipation parameter. 
The determination of parameters in equation of motion is done by considering the experimental 
setup of Franca & Savi (2001). Table 1 shows the parameters that are evaluated from the 
experimental setup.  
 

Table 1 – Experimental values of parameters. 
a (m) b (m) d (m) D (m) I (kg m4) k (N/m) m (kg) 

1.6 x 10-2 6.0 x 10-2 2.9 x 10-2 9.2 x 10-2 1.876 x 10-4 4.736 1.6 x 10-2

 
Values of the adjustable parameters ϖ and ζ are tuned to generate chaotic response in 

agreement to the experimental work done by Franca & Savi (2001). The ∆l parameter has a null 
value for the system without control action.  Therefore, using the parameters presented in Table 2, it 
is possible to use a fourth-order Runge-Kutta scheme in order to perform numerical simulations of 
the equations of motion.  



 
Table 2 –Values of adjustable parameters. 

ϖ  (rad/s) ζ (kg.m2/s) ∆l (m) 
5.15 5.575 x 10-5 0 

 
In order to explore the possibilities of alternating the stabilized orbits with small changes in 

the control parameter, one performs a simulation that aims the stabilization of the following UPOs 
related to a clean signal, with no noise: a period−3 UPO in the first 500 forcing periods, a period−8 
UPO between 500 and 1000 forcing periods, a period−2 UPO between 1000 and 1500 forcing 
periods and a period−3 UPO, different from the first one, between 1500 and 2000 forcing periods. 
Figure 2 shows the system’s dynamics in the Poincaré section #1 during the actuation. Notice that 
different times are needed for the system to achieve the desired stabilization on a particular UPO. 
This happens because one must wait until the trajectory comes close enough to a control point to 
perform the necessary perturbation, exploiting the ergodicity property of the chaos behavior. 
Moreover, it should be pointed out that, as expected, results show that unstable orbits are stabilized 
with small variations of control parameter after a transient, less than 2mm in this case.  
 

 
(a) 

 
(b) 

Figure 2 − Response under control.  
(a) Temporal alternating of UPOs in Poincaré section #1. (b) Control signal. 

 
5. EFFECT OF NOISE ON THE CONTROL 

 
In order to simulate experimental noisy data sets, a white gaussian noise is introduced in the 

signal, comparing results of control procedures with a clean time series, free of noise. In general, 
noise can be expressed as follows, 
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where x represents state variables, while z represents the observed response. On the other hand, µd 
and µo are, respectively, dynamical and observed noises. Notice that µd has influence on system 
dynamics in contrast with µo. The noise level is parameterized by the root mean square value of the 
clean signal (RMSsignal). Therefore, the noise probability distribution variance is a fraction η of the 
RMSsignal, that is, η = RMSsignal/RMSnoise. 

Basically, three different parameters are related to the SCC method: Jacobian matrix, 
sensitivity vector and maximum contraction direction. Figure 3 shows these parameters as a 
function of noise level. Notice that the increase of noise level causes an oscillatory behavior of 
these parameters. For noise levels with η > 1.5%, there is a great level of uncertainties that can 
cause problems in SCC method efficiency for control purposes. Moreover, it is important to observe 
the high influence of noise associated with the estimation of the sensitivity vector. 



 

η x 100  
(a) 

η x 100  
 (b) 

η x 100 

(c) 

Figure 3 − Influence of noise on control parameters.  
(a) Jacobian matrix. (b) Maximum contraction vector. (c) Sensitivity vector. 

 
The forthcoming analysis concerns to the effect of noise on the stabilization of a UPO. The 

increase of control stations is a useful procedure in order to avoid the effect of noise; however, it is 
limited by the time response of the system as discussed earlier. In order to study this behavior, an 
analysis based on a period-3 unstable orbit is carried out. 

The increase of the number of control stations causes an increase in the value of control 
parameter. This behavior is related to the time response of the system. In order to compensate the 
decrease in the distance between two subsequent control stations, greater values of control 
parameters are needed. Figures 4 illustrate this behavior showing control parameters related to the 
stabilization of the period-3 orbit, for different number of control stations.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4 − Control perturbation for different number of control stations. 
(a) N = 3. (b) N = 4. (c) N = 5. (d) N = 6. 

At this point, the noise effect on the stabilization of the period-3 orbit is discussed. Different 
noise levels and number of control stations are considered. Firstly, a noise level f = 0.6% is treated. 
Figure 5 presents results related to the stabilization of the desirable orbit showing that, for this noise 
level, 3 control stations are sufficient to the stabilization. Moreover, it is should be pointed out that 
the same results can be obtained for N = 4, N = 5 and N = 6.  

 



 
Figure 5 − Stabilization procedure for η  = 0.6% with N = 3.  

(a) State space. (b) Position on Poincaré section. (c) Control perturbation. 
 

 
By increasing the noise level for η  = 3.6%, the influence of the number of control stations is 

more pronounced. Figures 6-7 presents the process of stabilization for this noisy time series, 
showing the difficult related to this procedure.  It should be pointed out that the stabilization is only 
effective for N = 6. For small number of control stations, the control procedure fails and the system 
diverges to other orbits. 
 
 

  
Figure 6 − Stabilization procedure for η  = 3.6% with N = 3.  

(a) State space. (b) Position on Poincaré section. (c) Control perturbation. 
 
 

Figure 7 − Stabilization procedure for η  = 3.6% with N = 6.  
(a) State space. (b) Position on Poincaré section. (c) Control perturbation. 

 
 
 
 
 
 
 
 
 
 
 



6. CONCLUSIONS 
This contribution discusses the effect of noise on the control of chaos in a simulated nonlinear 

pendulum based on an experimental apparatus previously analyzed by Franca & Savi (2001) and 
Pinto & Savi (2003). In the first stage of the control process, the close-return method is employed to 
identify unstable periodic orbits (UPOs) embedded in the chaotic attractor. After that, the semi-
continuous control (SCC) method is considered to stabilize desirable orbits. Least-square fit method 
is employed to estimate Jacobian matrixes and sensitivity vectors. Moreover, SVD decomposition is 
employed to estimate directions of unstable and stable manifolds in the vicinity of control points. 
Signals are generated by the numerical integration of the mathematical model. An analysis related 
to the effect of noise in controlling chaos is of concern. The stabilization of orbits related to noisy 
time series is more complex and the increase of control stations tends to increase the robustness of 
the control procedure. Nevertheless, it is important to notice that time response plays an important 
role in the control procedure, defining the maximum number of control stations.  
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