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1. RESUMO

Neste trabalho, determinamos as regides de estabilidade/instabilidade de um péndulo simples com
excitacdo vertical do suporte em termos da freqiiéncia natural e amplitude de excitagdo. A analise da
estabilidade esta baseada nos multiplicadores de Floquet, que foram obtidos a partir da expansao
polinomial de Chebyshev e na iteragdo de Picard. A aplicagdo da transformagdo L-F ao sistema
reduz a parte linear a forma invariante no tempo, tornando-o mais conveniente para simplificagdes
obtidas a partir da aplicagdo da redugdo a Variedade Central e a teoria da Forma Normal. A equacao
do péndulo pdde, entdo, ser reduzida a uma forma completamente invariante do tempo e sua solucao
calculada na forma fechada. A analise da dinamica da solu¢cdo na forma fechada, no ponto de
bifurcacdo, ¢ equivalente ao da dinamica sistema original.

2. PALAVRAS-CHAVE
Transformagdao Lyapunov-Floquet; Polindmio de Chebyshev; iteracdo de Picard; Forma Normal;
Variedade Central.

3. INTRODUCAO

Muitos problemas de engenharia tém sido modelados por equagdes diferenciais nao-lineares com
coeficientes periddicos no tempo cujas dinamicas, em geral, tm comportamentos imprevisiveis e
muito complexos quando atuam dentro de certas faixas de operagao.

Por outro lado, ¢ conhecido que, as vezes, a performance da dindmica de um sistema pode ser
consideravelmente melhorada quando os parametros do sistema o levam a operar numa vizinhanga da
fronteira de estabilidade. Porém, deve haver a garantia de que, para pequenas vibragdes, se a fronteira
de estabilidade for rompida, o sistema ndo perdera a estabilidade de maneira catastrofica. Portanto, a
solucdo do sistema dinamico e a respectiva analise de estabilidade sdo questdes fundamentais para que
haja bom desempenho de um projeto.

A analise da estabilidade pode ser feita através dos autovalores da Matriz de Transicdo de Estado
(States Transformation Matrix - STM) calculada no final do periodo principal. Porém, a obtencdo da
STM, na maioria dos casos, ndo ¢ uma tarefa trivial.

Recentemente [9;13], foi desenvolvida uma técnica relativamente simples, porém eficiente para a
obtencdo da STM, empregando a expansdo polinomial de Chebyshev e a iteracdo de Picard. Além
disso, a matriz STM pode ser fatorada como produto de duas matrizes, cujos fatores representam a
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amplitude - @(¢) e o decaimento - e® do sistema. A matriz @¢(t) ¢é conhecida como matriz de
transformacdo L-F, cuja aplicagdo ao sistema com coeficientes periddicos ird reduzir a parte linear T-
periddica desse sistema a uma forma equivalente, que ¢ invariante no tempo. A vantagem do sistema
invariante no tempo € que este se torna mais conveniente, por exemplo, para a aplicacdo da redugio a
Variedade Central e a teoria da Forma Normal.

Em recentes estudos, Sinha [7-14] desenvolveu um método analitico que ndo ¢ restrito a pequenos
parametros e ¢ muito preciso na predigdo do ponto de bifurcagdio bem como na dinamica pds-
bifurcacdo. Nesses estudos, mostrou-se que, para sistemas de co-dimensao de bifurcacdo 1, é sempre
possivel construir formas invariantes no tempo equivalentes as equagdes periddicas no tempo, tal que
as caracteristicas de bifurcagdo e estabilidade sdo completamente preservadas.

Nesse trabalho, consideramos a aplicacdo do método S-W para um péndulo excitado estudado
anteriormente em [9], sendo organizado como se segue: na se¢do 4, nds apresentamos 0s principais
resultados utilizados pelo método de S-W. Na segdo 5, discute-se o0 modelo matematico para o sistema
com vibragdo aqui usado e a anélise de estabilidade do sistema original. Ainda, aplicou-se areducao da
dinamica do sistema a sua forma normal invariante no tempo, e, finalmente, na se¢do 6, concluiu-se
com breves observagoes.

4. MATRIZ FUNDAMENTAL VIA METODO S-W
Considere um sistema dinamico nao-linear com coeficientes 7-peridodicos no tempo dado descrito pela

equacao diferencial:
x=f(xat), (1)
onde xeR", f(xat+T)=f(xat) é uma fungdo ndo-linear T-periddica no tempo e

aeR"™,(m<n) contém os parametros do sistema.
Assumindo que x =0 ¢é um ponto de equilibrio, o sistema (1) pode ser expandido em série de Taylor
em torno deste ponto e transformado na forma de espago-estado, assumindo a forma:
x=A(t)x+ F(x,a,t), 2
onde A(t) ¢ uma matriz nxn dos coeficientes periddicos do termo linear e F(.) ¢ um vetor com 0s
termos ndo-lineares.
A estabilidade/instabilidade de (2) pode ser verificada através dos autovalores  (chamados
multiplicadores de Floquet) da Matriz de Transi¢do de Floquet, isto ¢, da matriz de transi¢do de estados
calculada no final do periodo principal T. Uma aproximag¢do para a matriz de transi¢do de estados foi
proposta em [13], podendo ser obtida via polindmio de Chebyshev e o método iterativo de Picard,
através da expressao:
_ it pic
¢(grcheb ’”pic)(t):fvT[i_'_(z[L]i—l)P], (3)
i=1

onde gr.;.p € grau do polindmio de Chebyshev alterado de primeiro tipo, if ;. o nimero da iteragdo de

pic
Picard e as matrizes do segundo membro de (3) estdo definidas no apéndice.
Cada um dos multiplicadores de Floquet fornece uma medida da convergéncia/divergéncia local da

oOrbita ao longo de uma dire¢do particular sobre o periodo T da solucdo periddica.

A matriz ¢(-) pode ser reescrita na forma fatorada como ¢(¢) = Q(t)eRt , onde se observa que a matriz
Q(t) indica as oscilagdes, e a matriz R, o decaimento exponencial da solugdo periddica.

5. Analise da Estabilidade Estrutural do Péndulo Excitado Parametricamente
Considere o sistema com um grau de liberdade consistindo em um péndulo simples forg¢ado
parametricamente mostrado a seguir.
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Figura 1: Péndulo com suporte excitado parametricamente

Este problema, cujo péndulo € livre para oscilar ou girar num plano, cujo pivo € verticalmente
conduzido por uma forga periddica, foi estudado por Bishop e Clifford [ 1996] pela equagdo:

0 =-B0—(1-pcos(wt))senb , (4)
onde € ¢ a medida do deslocamento angular, pcos(wt) for¢a externa aplicada ao pivd, com p e ®
amplitude e freqliéncia, e B ¢ o coeficiente de amortecimento.

Expandindo a fungdo sen@ em série de Taylor até a terceira ordem, em torno da origem, e
transformando a equagdo (4) na forma espago-estado, de modo que x,= 8, x,= 6, temos:

x| _ 0 1 X 0
(xzj = [— (14 pcos(art)) - ﬂ][xzj * {(1 i cgs(“’t)) xEJ ()

Analise da Estabilidade Estrutural
Para analisar a estabilidade estrutural do sistema com vibragao paramétrico, basta considerar somente a
parte linear do sistema (5), isto é:

X B 0 1| x
Xy a —(1+ pcos(at)) — P\ x, ©

A estabilidade do sistema linearizado (6) ¢ analisada pelos autovalores u# da Matriz de Transi¢do de
Floquet, a qual pode ser obtida calculando os autovalores da Matriz de Transi¢do de Estados (3) para

2 . .
t= il ,ou seja, @(T ), onde T é o periodo fundamental do sistema.
w

No espago de pardmetros p—w, pode-se obter o diagrama de estabilidade, isto €, varia-se os
parametros p e @ de a modo obter | x|=1. Para obter o diagrama de estabilidade, foi usado o
polinémio de Chebyshev alterado de 1° tipo de grau g7, =20 e o nimero de iteragdes de Picard
it ;. =40. Consideramos os pardmetros p e @ nos intervalos 0<p<3 e 05<w<3,
respectivamente, ¢ S = 0.1, obtendo:
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FREQUENCIA DE EXCITACAO

Figura 2 — Grafico de estabilidade para 0< p<3 e 0.5<w <3

Observam-se no grafico, dois tipos de fronteiras que determinam mudanga qualitativa na dinamica do
sistema, isto ¢: a bifurcagdo por quebra de simetria e a bifurcacdo com duplica¢do do periodo (flip). O
diagrama de bifurcacdo mostrado na Figura 3 foi obtido fixando a amplitude p =2 e variando a

freqiiéncia de excitagdo 0.5<w<3.
DIAGRAMA DE BIFURCAZAD
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Figura 3: Diagrama de Bifurcacdo parap =2¢ 0.5< @ <3



Na regido 2<we <3 (Figura 4), observa-se o valor critico @, =2.86142 . Para esta freqiiéncia, temos a

bifurcagdo com duplicacdo de periodo, isto é, u, =—1.

angular displacement

I | L

2 21 22 23 24 25 26 2.7 28 | 29 3

2.86142

Figura 4: Refinamento do Diagrama de Bifurcacdo para 2 < @ <3

ANALISE DA ESTABILIDADE NO PONTO DE BIFURCACAO

Para a analise da dindmica do sistema, ¢ conveniente obter uma estimativa quantitativa das solu¢des no
ponto de bifurcagdo, bem como numa vizinhanga desse ponto. Com esse fim, vamos analisar a

estabilidade do sistema (5) para o parametro critico @, = 2.86142 onde ocorre uma bifurcagao flip.

Inicialmente, vamos fatorar a Matriz de Transi¢do de Estados como @(t)= Q(t )eRt , onde:

On(t) le(f)}

On1(t) On(t) 0

Q(t)=[

X

J= o(t )( le transforma a parte linear do sistema (5) na
X2 Y2

de modo que a transformagao de L-F (

forma invariante no tempo:

; 0
b Ry Ry [n -1
= + t)| (1+ pcos(wt ) 8
(yi} |:R21 Rzz}(yz) o) Qrp 6 (er) (O (t)y) +O1a(t)ys ) ®)
z
Aplicando a Transformagdo Modal (y1J= M ( 1} na equacgao (8), obtemos a equacdo na Forma de
Y2 Z2

Jordan:



G0 ali)

)
M~ )| (14 peos(ar)) 0 3
B — [O11(E)(My1z1 + M1z )+ O12(t)(Mp121 + M pp2z) )

onde M sdo as entradas da Matriz M, 4; e 4, correspondentes aos multiplicadores de Floquet critico

e estavel, respectivamente. Como conseqiiéncia dessa correspondéncia, vemos que 4; =0.

Efetuando os produtos e desenvolvendo os termos de ordem cibica, temos:

(21J=|:0 0](21}'_[fll(f)213+f12(f)21222 +f13(f)21222 +f14(f)Z§ J, (10)

Zy 0 4L \z ()2} + fr(1)zi 2, + fos(t)z525 + fou(t)23

onde os f;(t) sdo fungbes 2T-periddicas pois a matriz da transformacdo L-F Q(7) também ¢ 2T-
periodica. Logo, tais fungdes podem ser calculadas em série de Fourier:
‘

/
fii(t)= ag + Zaf{ cos(n7z1)+ Zbgsen(nﬂt) (11)

n=1 n=1

Pela teoria da Variedade Central, existe uma transformagao nao-linear com coeficientes peridodicos da
forma cubica:

2y =H(z,t)=h(1)z, (12)

o0
; a - . ~ g
onde /3(t) = E h‘,e’m 213 e h, =—2, com a, sendo os coeficientes de Fourier da fungio periddica
i
V=—00

contendo os mondmios de z; com ordem 3.

A equacdo reduzida a Variedade Central tem a forma:

5 =w(t)z, (13)
A teoria da Forma Normal garante que existe uma transformagao:
zl=v+f73(v,t), (14)
onde
q 3 a
hy(v,t)= D he'""v e h, =—~ (15)
vy ive

transforma o sistema de co-dimensao de bifurcagdo 1 num sistema completamente invariante no tempo
[14].

De fato, € dbvio que a condi¢ao de redutibilidade de (15) é v # 0, isto ¢, o sistema pode ser reduzido a
sua forma linear se v=0. Como na equagdo (14) s6 temos o termo ndo-linear, a condigdo de
ressonancia v=0 corresponde ao termo constante no tempo da expansdo em séric de Fourier desta

q
funcdo, isto &, hy(v,t)= 2a0v3.
v=—q
Portanto, a redugdo a Forma Normal resultara numa equacio independente do tempo com a forma:

6



V= wpd (16)

Para os parametros p=2 e o, = 2.86142 , obtemos a forma de Jordan:

(éljz[o 0 }(zlj_{ f11(l‘)213+f12(1)21222 +f13(f)z12%+f14(f)23] (17)
5) [0 —02196\z) \ for(t)zi + for(t)zizy + fa3(t)2223 + fog ()23

Aplicando as redugdes a Variedade Central e a Forma Normal, obtemos o sistema invariante no tempo:
v=-23.0232v (18)

A solugao da equagao (18) pode ser obtida facilmente na forma fechada como:
v(t)=10.1473617"> (19)

Logo, pode-se concluir que o sistema ¢ assintoticamente estavel no ponto critico @, = 2.86142 .

5. CONCLUSOES

O péndulo livre a oscilar ou a girar em um plano cujo pivo ¢ excitado verticalmente por uma forca
periddica, ¢ analisado. Para isso, foi construido o diagrama de estabilidade/instabilidade onde se
observaram as regides de fronteira com a bifurcagdo flip e a bifurcacdo por quebra de simetria. Para um
valor do conjunto de parametro p=2 ew, = 2.86142 (bifurcagio flip), analisou-se a estabilidade neste

ponto de bifurcagdo, reduzindo-se o sistema a uma forma invariante no tempo, cuja solu¢ao na forma
fechada ¢ facilmente calculada. A andlise de estabilidade do péndulo no ponto de bifurcacdo pode ser
realizada.
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8. APENDICE
U k .
Considerando gm) =TT [+ (Z[L]1HP] 3
i=1
onde
77 (1) = T, T, (1)...T,,(t) 0* (1 . 0 (A])
0 0o ... 0 T, T, ()...T,,4(t)
T)(t), s=0...m-1, denotam os polinémios de Chebyshev de 1° tipo, sendo dados por:
T, (t)=T,(2t—1) onde T, (1) =2tT, ()T, ,(t),
com Ty(t)=1e I1(¢)=t¢.
I[:=1®Q10 ... 0)" ¢ umamatriznmxn e ® ¢ produto de Kronecker.
—_—
(m=1)
k —
Amatriz L ¢ dada por: L=3%4 ®[GTle. ], (A2)
i=l

onde G e Q, sdo dados por:

1/2 172 0 0 0 0
~1/8 0 1/8 0 0 0
~1/6 ~1/4 0 1/12 0 0
G= 1/16 0 -1/8 0 1/16 0
~1/30 0 0 -1/12 0 0
: : : : - 1/ 4(m—1)
(D" /2m(m=2) 0 0 0 0 1/4(m-2) o |




i i i
di dl d2 m—1
0

2 ‘ 2 e 2
' 4 Lo i 1o i
d| dg +7 E(dl +d-3) E(d,m2 +d!)
Qdi: di l(di+di) di+dj‘ . )
Do 7 :
dy Taiaraly e g

2

onde d, = [dé d{...dfn_l]l pode ser calculada através:
d = 3] SOT () 4 4 [ feos’p)cos(2s4 )dg.
70t (1-t) oo

k
Finalmente, a matriz P ¢ obtida por: P = } 4, ®[GTle. ].

(A3)
i=1



