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1. RESUMO 

Neste trabalho, determinamos as regiões de estabilidade/instabilidade de um pêndulo simples com 
excitação vertical do suporte em termos da freqüência natural e amplitude de excitação. A análise da 
estabilidade está baseada nos multiplicadores de Floquet, que foram obtidos a partir da expansão 
polinomial de Chebyshev e na iteração de Picard. A aplicação da transformação L-F ao sistema 
reduz a parte linear à forma invariante no tempo, tornando-o mais conveniente para simplificações 
obtidas a partir da aplicação da redução à Variedade Central e à teoria da Forma Normal. A equação 
do pêndulo pôde, então, ser reduzida a uma forma completamente invariante do tempo e sua solução 
calculada na forma fechada. A análise da dinâmica da solução na forma fechada, no ponto de 
bifurcação, é equivalente ao da dinâmica sistema original. 
 
2. PALAVRAS-CHAVE 
Transformação Lyapunov-Floquet; Polinômio de Chebyshev; iteração de Picard; Forma Normal; 
Variedade Central. 

 
3. INTRODUÇÃO 
Muitos problemas de engenharia têm sido modelados por equações diferenciais não-lineares com 
coeficientes periódicos no tempo cujas dinâmicas, em geral, têm comportamentos imprevisíveis e 
muito complexos quando atuam dentro de certas faixas de operação.  
Por outro lado, é conhecido que, às vezes, a performance da dinâmica de um sistema pode ser 
consideravelmente melhorada quando os parâmetros do sistema o levam a operar numa vizinhança da 
fronteira de estabilidade. Porém, deve haver a garantia de que, para pequenas vibrações, se a fronteira 
de estabilidade for rompida, o sistema não perderá a estabilidade de maneira catastrófica. Portanto, a 
solução do sistema dinâmico e a respectiva análise de estabilidade são questões fundamentais para que 
haja bom desempenho de um projeto. 
A análise da estabilidade pode ser feita através dos autovalores da Matriz de Transição de Estado 
(States Transformation Matrix - STM) calculada no final do período principal. Porém, a obtenção da 
STM, na maioria dos casos, não é uma tarefa trivial.  
Recentemente [9;13], foi desenvolvida uma técnica relativamente simples, porém eficiente para a 
obtenção da STM, empregando a expansão polinomial de Chebyshev e a iteração de Picard. Além 
disso, a matriz STM pode ser fatorada como produto de duas matrizes, cujos fatores representam a 
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amplitude - )t(φ  e o decaimento - Rte do sistema. A matriz )t(φ  é conhecida como matriz de 
transformação L-F, cuja aplicação ao sistema com coeficientes periódicos irá reduzir a parte linear T-
periódica desse sistema a uma forma equivalente, que é invariante no tempo. A vantagem do sistema 
invariante no tempo é que este se torna mais conveniente, por exemplo, para a aplicação da redução à 
Variedade Central e à teoria da Forma Normal. 
Em recentes estudos, Sinha [7-14] desenvolveu um método analítico que não é restrito a pequenos 
parâmetros e é muito preciso na predição do ponto de bifurcação bem como na dinâmica pós-
bifurcação. Nesses estudos, mostrou-se que, para sistemas de co-dimensão de bifurcação 1, é sempre 
possível construir formas invariantes no tempo equivalentes às equações periódicas no tempo, tal que 
as características de bifurcação e estabilidade são completamente preservadas. 
Nesse trabalho, consideramos a aplicação do método S-W para um pêndulo excitado estudado 
anteriormente em [9], sendo organizado como se segue: na seção 4, nós apresentamos os principais 
resultados utilizados pelo método de S-W. Na seção 5, discute-se o modelo matemático para o sistema 
com vibração aqui usado e a análise de estabilidade do sistema original. Ainda, aplicou-se a redução da 
dinâmica do sistema a sua forma normal invariante no tempo, e, finalmente, na seção 6, concluiu-se 
com breves observações. 

4. MATRIZ FUNDAMENTAL VIA MÉTODO S-W  
Considere um sistema dinâmico não-linear com coeficientes T-periódicos no tempo dado descrito pela 
equação diferencial: 

)t,,x(fx α=& ,        (1) 

onde nx ℜ∈ , )t,,x(f)Tt,,x(f αα =+  é uma função não-linear T-periódica no tempo e 
)nm(,m ≤ℜ∈α  contém os parâmetros do sistema.  

Assumindo que 0=x  é um ponto de equilíbrio, o sistema (1) pode ser expandido em série de Taylor 
em torno deste ponto e transformado na forma de espaço-estado, assumindo a forma: 

)t,,x(Fx)t(Ax α+=& ,      (2) 
onde )t(A  é uma matriz nxn  dos coeficientes periódicos do termo linear e (.)F  é um vetor com os 
termos não-lineares. 
A estabilidade/instabilidade de (2) pode ser verificada através dos autovalores µ  (chamados 
multiplicadores de Floquet) da Matriz de Transição de Floquet, isto é, da matriz de transição de estados 
calculada no final do período principal T. Uma aproximação para a matriz de transição de estados foi 
proposta em [13], podendo ser obtida via polinômio de Chebyshev e o método iterativo de Picard, 
através da expressão: 

]P)]L[(Î[T̂)t(
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1φ ,         (3) 

onde chebgr  é grau do polinômio de Chebyshev alterado de primeiro tipo, picit  o número da iteração de 
Picard e as matrizes do segundo membro de (3) estão definidas no apêndice. 
Cada um dos multiplicadores de Floquet fornece uma medida da convergência/divergência local da 
órbita ao longo de uma direção particular sobre o período T da solução periódica. 
A matriz )(⋅φ  pode ser reescrita na forma fatorada como tRetQt )()( =φ , onde se observa que a matriz 
Q(t) indica as oscilações, e a matriz R, o decaimento exponencial da solução periódica.  
 
5. Análise da Estabilidade Estrutural do Pêndulo Excitado Parametricamente  
Considere o sistema com um grau de liberdade consistindo em um pêndulo simples forçado 
parametricamente mostrado a seguir.  
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Figura 1: Pêndulo com suporte excitado parametricamente 

 
Este problema, cujo pêndulo é livre para oscilar ou girar num plano, cujo pivô é verticalmente 
conduzido por uma força periódica, foi estudado por Bishop e Clifford [1996] pela equação: 

θωθβθ sen))tcos(p( −−−= 1&&& ,      (4) 
onde θ  é a medida do deslocamento angular, )tcos(p ω  força externa aplicada ao pivô, com p  e ω  
amplitude e freqüência, e β  é o coeficiente de amortecimento.  
Expandindo a função θsen  em série de Taylor até a terceira ordem, em torno da origem, e 
transformando a equação (4) na forma espaço-estado, de modo que θ=1x , θ&=2x , temos: 
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Análise da Estabilidade Estrutural  
Para analisar a estabilidade estrutural do sistema com vibração paramétrico, basta considerar somente a 
parte linear do sistema (5), isto é:  
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A estabilidade do sistema linearizado (6) é analisada pelos autovalores µ  da Matriz de Transição de 
Floquet, a qual pode ser obtida calculando os autovalores da Matriz de Transição de Estados (3) para 

ω
π2

=t , ou seja, )T(Φ , onde T é o período fundamental do sistema.  

No espaço de parâmetros ω−p , pode-se obter o diagrama de estabilidade, isto é, varia-se os 
parâmetros p  e ω  de a modo obter 1=|| µ . Para obter o diagrama de estabilidade, foi usado o 
polinômio de Chebyshev alterado de 10 tipo de grau 20=chebgr  e o número de iterações de Picard 

40=picit . Consideramos os parâmetros p  e ω  nos intervalos 30 << p  e 350 << ω. , 
respectivamente, e 10.=β , obtendo: 

L 
θ 

mg 

tcosA ω  



 4  

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

FREQUENCIA DE EXCITAÇAO

A
M

P
LI

TU
DE

 D
E

 E
X

C
IT

A
ÇA

O

GRAFICO DE ESTABILIDADE

Bif. Quebra de Simetria
Bif Flip

Instável
Instável

Estável Estável 

 
Figura 2 – Gráfico de estabilidade para 30 << p  e 350 << ω.  

 
Observam-se no gráfico, dois tipos de fronteiras que determinam mudança qualitativa na dinâmica do 
sistema, isto é: a bifurcação por quebra de simetria e a bifurcação com duplicação do período (flip). O 
diagrama de bifurcação mostrado na Figura 3 foi obtido fixando a amplitude 2=p  e variando a 
freqüência de excitação 350 ≤≤ ω. .  

  
Figura 3: Diagrama de Bifurcação para p = 2 e 0.5 < ω < 3 
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Na região 2<ω <3 (Figura 4), observa-se o valor crítico 861422.c =ω . Para esta freqüência, temos a 
bifurcação com duplicação de período, isto é, 1−=cµ .  
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Figura 4: Refinamento do Diagrama de Bifurcação para 2 < ω  < 3 

 
 

ANÁLISE DA ESTABILIDADE NO PONTO DE BIFURCAÇÃO 

Para a análise da dinâmica do sistema, é conveniente obter uma estimativa quantitativa das soluções no 
ponto de bifurcação, bem como numa vizinhança desse ponto. Com esse fim, vamos analisar a 
estabilidade do sistema (5) para o parâmetro crítico 861422.c =ω  onde ocorre uma bifurcação flip.  

Inicialmente, vamos fatorar a Matriz de Transição de Estados como Rte)t(Q)t( =Φ , onde: 
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de modo que a transformação de L-F 
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 transforma a parte linear do sistema (5) na 

forma invariante no tempo: 
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Aplicando a Transformação Modal 
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 na equação (8), obtemos a equação na Forma de 

Jordan: 
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onde ijM  são as entradas da Matriz M, 1λ  e 2λ  correspondentes aos multiplicadores de Floquet crítico 
e estável, respectivamente. Como conseqüência dessa correspondência, vemos que 01 =λ . 

Efetuando os produtos e desenvolvendo os termos de ordem cúbica, temos:  
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onde os )t(fij  são funções 2T-periódicas pois a matriz da transformação L-F )t(Q  também é 2T-
periódica. Logo, tais funções podem ser calculadas em série de Fourier:  
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Pela teoria da Variedade Central, existe uma transformação não-linear com coeficientes periódicos da 
forma cúbica: 
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contendo os monômios de 1z  com ordem 3. 

A equação reduzida à Variedade Central tem a forma:  
3
11 z)t(wz =& ,       (13) 

A teoria da Forma Normal garante que existe uma transformação: 
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transforma o sistema de co-dimensão de bifurcação 1 num sistema completamente invariante no tempo 
[14].  

De fato, é óbvio que a condição de redutibilidade de (15) é 0≠v , isto é, o sistema pode ser reduzido a 
sua forma linear se 0=v . Como na equação (14) só temos o termo não-linear, a condição de 
ressonância 0=v  corresponde ao termo constante no tempo da expansão em série de Fourier desta 

função, isto é, 3
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Portanto, a redução à Forma Normal resultará numa equação independente do tempo com a  forma: 
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3wvv =&        (16) 

Para os parâmetros 2=p  e 861422.c =ω , obtemos a forma de Jordan: 
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Aplicando as reduções à Variedade Central e à Forma Normal, obtemos o sistema invariante no tempo: 

v.v 023223−=&       (18) 
A solução da equação (18) pode ser obtida facilmente na forma fechada como:  

50147360 .t.)t(v −±=       (19) 

Logo, pode-se concluir que o sistema é assintoticamente estável no ponto crítico 861422.c =ω . 

 

5.  CONCLUSÕES 
 
O pêndulo livre a oscilar ou a girar em um plano cujo pivô é excitado verticalmente por uma força 
periódica, é analisado. Para isso, foi construído o diagrama de estabilidade/instabilidade onde se 
observaram as regiões de fronteira com a bifurcação flip e a bifurcação por quebra de simetria. Para um 
valor do conjunto de parâmetro p=2 e 861422.c =ω (bifurcação flip), analisou-se a estabilidade neste 
ponto de bifurcação, reduzindo-se o sistema a uma forma invariante no tempo, cuja solução na forma 
fechada é facilmente calculada. A análise de estabilidade do pêndulo no ponto de bifurcação pode ser 
realizada. 
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8. APÊNDICE 
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