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Abstract. In this work, the phenomenon of self-synchronization and synchronization in 
parametrically and self-excited system subjected to two non-ideal energy source are examined by 
numerical simulations. Considered model consists of a nonlinear spring with periodically changing 
stiffness, a nonlinear damper described by Rayleigh’s term and two unbalanced identical direct 
current motor with limited power. A non-ideal source depends on the response of the nonlinear 
system and acts it on. The non-ideal systems have two additional degrees of freedom in the original 
nonlinear system. 
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1. INTRODUCTION 
 

In engineering practice, we can distinguish systems which oscillations are caused by different 
reasons. The well-known oscillations are: self-excited systems in which, roughly speaking, a 
constant input produces periodic output; parametrically excited systems characterized by 
periodically changing in time parameters and systems excited by an external force. All these 
systems were comprehensively analyzed in literature separately. However, we can find some papers 
devoted interaction between different kinds of vibrations, for example: self and external excited 
vibrations, self and parametric excited vibrations, as well as between self-parametric and external 
excited vibrations (Warminski et al., 2001; 2002). 

When a forcing function is independent of the system it acts on, then the function is called ideal. 
In such case, the excitation may be formally expressed as a pure function of time. If in a certain 
model its ideal source is replaced by a non-ideal source, the excitation can be put in the form, where 
it is a function, which depends on the response of the system. Therefore, non-ideal source cannot be 
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expressed as a pure function of time but rather as an equation that relates the source to the system of 
equations that describes the model. Hence, non-ideal models always have one additional degree of 
freedom as compared with similar ideal (Kononenko, 1969; Balthazar, et al., 2001, 2002). 

The goal of this paper is to analyze the behavior of the phenomenon of self-synchronization 
(Blekhman, 1998, 2000; Dimentberg, 2001, Palacios, 2002, 2003), which may be arisen, if we taken 
into account two DC motors, with a limited power supply and with masses attached eccentrically to 
their rotating shafts. Here, we are interested, in analyze: the influenced of the response of the 
parametrically and self-excited system on the DC motors. Furthermore, we consider the problem of 
synchronization for type systems. 
 
2. DYNAMICAL MODEL OF THE SYSTEM 
 

Let consider the parametric and self-excited model, which includes two direct current (DC) 
motors with limited power, operating on a structure (Fig. 1). The excitation of the system is limited 
by the characteristic of the energy source. Vibration of the system depends on the motion of the 
motors, and the energy sources motion depends on vibration of the system, as well. Then, coupling 
of the vibrating oscillator and the two DC motors takes place. Hence, it is important to analyses 
what will happen to the motors, as the response of the system changes. 
 
 

 
 

Figure 1. Non-ideal parametrically and self excited system model 
 

Taking into account the extension of the differential equation of the complete electro-
mechanical system presented in (Warminski and Balthazar, 2001) and Fig. 1 we can write: 
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where x  is oscillatory coordinate of vibrating body; sϕ  is rotational coordinate of each DC motor; 

sϕ  is rotational speed of rotors;  is a moment of inertia of each motor;  is unbalanced mass of 
each motor;  is eccentricity of each unbalanced mass; 

sJ sm

sr ( )s sL ϕ  is a controlled torque of each DC 
motor; ( )s sH ϕ  is a resistance torque of each DC motor. 

To obtain the governing equations of the system in their dimensionless form, we define the non-

dimensional time tτ ω=  and the non-dimensional displacement 
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3. NUMERICAL RESULTS 
 

Next, we carried out, a number of numerical simulations in order to observe the interaction 
between the two identical non-ideal DC motors and parametrically and self-excited structural 
system (as regular and irregular motion). Furthermore, we observe the self-synchronization and 
synchronization phenomenon in pre-resonance, resonance and post-resonance regions. The 
dimensionless nonlinear equations (2) were simulated using the block diagrams of SIMULINK 
that modeling the non-ideal parametrically self-excited system. To obtain different regimes in the 
system we varied the torques of each DC motor and we varied the initial rotational of second motor.  

The first numerical result, shown in Fig. 2, we illustrate the development of self-synchronization 
by intervals when the torques of each DC motor are equal approximately  = 1 and  = 0.9.   1â 2â
 

 
 

 
 
Figure 2. Detail dynamics of the system in the presence of self-synchronization by intervals for 

torques:  = 1 and a  = 0.9 1â 2ˆ



  

Figure 2(a), shows that the rotors turn in the same direction and arrive it at some average 
angular velocity in steady state motion where the angular velocities are in phase and anti-phase by 
intervals (the rotors synchronize phase and anti-phase), the velocities of rotors are below of 
resonance region (pre-resonance). 

Figures 2(b) and 2(d) confirm this fact, by each interval of synchronization phase the velocity 
difference approaches at value zero and supporting structural response decreases. The phase plane, 
Fig. 2(c), shows the dynamical behavior of system. For this case, we consider the initial conditions 
for the rotors 1(0)ϕ′  = 0.0, 1(0)ϕ  =0.0, 2 (0)ϕ′  = 0.0, 2 (0)ϕ  = π . 
 

 
 

 
 

Figure 3. Detail dynamics of the system in the presence of self-synchronization for torques: 
1â  = 0.7 and  = 0.69 2â

 
The second numerical result, shown in Fig. 3, we illustrates the development of self-

synchronization when the torques of each DC motor are equal  = 0.7 and  = 0.69. Figure 3(a), 
shows that the rotors turn in the same direction and arrive it at some synchronous velocity in steady 
state motion, the velocities of rotors are below of resonance region (pre-resonance). Fig. 3(b) and 
3(d) confirm this fact, by each interval of synchronization phase the velocity difference approaches 
at value zero and supporting structural response decreases. The phase plane, Fig. 3(c), shows the 
dynamical behavior of system. For this case, we consider the initial conditions for the rotors 

1â 2â

1(0)ϕ′  
= 1.5, 1(0)ϕ  =0.0, 2 (0)ϕ′  = 0.0, 2 (0)ϕ  = / 2π . 

The third numerical result, shown in Fig. 4, the same dates of the torques of second numerical 
results, we illustrates the presence of self-synchronization and the synchronization in phase. For this 
case, we consider the initial conditions for the rotors 1(0)ϕ′  = 1.5, 1(0)ϕ  =0.0, 2 (0)ϕ′  = 0.5, 2 (0)ϕ  = 
π . 
 
 



 

 

 
 

 
 

Figure 4. Detail dynamics of the system in the presence of self-synchronization for torques: 
1â  = 0.7 and  = 0.69. 2â

 
The four numerical result, shown in Fig. 5, we illustrates the absence of self-synchronization 

when the torques of each DC motor are different  = 2.7 and  = 1.2. Figure 5(a), shows that the 
rotors turn in the same direction and arrive it at some average angular velocity in steady state 
motion, the velocities of rotors are captured in the resonance region (above) and synchronization 
anti-phase. 

1â 2â

Figures 5(b) and 5(d) confirm this fact, the synchronization anti-phase in steady state motion the 
velocity difference creases and the average velocity difference not tending to at value zero and 
supporting structural response not decreases. The phase plane, Fig. 5(c), shows the dynamical 
behavior of system. For this case, we consider the initial conditions for the rotors 1(0)ϕ′  = 1.5, 1(0)ϕ  
=0.0, 2 (0)ϕ′  = 0.5, 2 (0)ϕ  = / 2π . 

The five numerical result, shown in Fig. 6, we illustrates the slow presence of self-
synchronization when the torques of each DC motor are different  = 3 and  = 2.5. Figure 6(a), 
shows that the rotors turn in the same direction and arrive it at some average angular velocity in 
steady state motion, the velocities of rotors are in the post resonance region and synchronization 
anti-phase.  

1â 2â

Figures 6(b) and 6(d) confirm this fact, the synchronization anti-phase in steady state motion the 
velocity difference creases and the average velocity difference tending approximately to at value 
zero by above and supporting structural response has decreases small. The phase plane, Fig. 6(c), 
shows the dynamical behavior of system. For this case, we consider the initial conditions for the 
rotors 1(0)ϕ′  = 1.5, 1(0)ϕ  =0.0, 2 (0)ϕ′  = 0.5, 2 (0)ϕ  = / 2π . 
 
 



  

 

 
 

Figure 5. Detail dynamics of the system in the absence of self-synchronization for torques: 
1â  = 2.7 and  = 1.2. 2â

 

 
 

 
 

Figure 6. Detail dynamics of the system in the absence of self-synchronization for torques: 
1â  = 3 and  = 2.5. 2â



 

Figure 7, shows different regimes, in the non-ideal parametrically and self excited system when 
we varied the parameter 2α (see Eq. (2)) of the parametric excitation of the second DC motor. Other 
parameters are fixed. For 2α =1, we see a development chaotic, 2α =1.5 we see a development 
periodic with p-period, 2α =2 we see that is tending to a limit cycle with 1-period,  2α =3 we see a 
development periodic with 1-period, 
 

 
 

 
 

Figure 7. Phase plane for values different of the parameter 2α  of the parametric excitation of 
second DC motor: (a) 2α  = 1, (b) 2α  = 1.5, (c) 2α  = 2 and (d) 2α  = 3. 

 
Finally, we present a numerical result in complete regimes of the system in the pre-resonance, 

resonance capture, post-resonance regions corresponding to constant torques increasing. We 
investigated the possibility of the presence, at same time, of the nonlinear phenomenon of self-
synchronization, synchronization, Sommerfeld, and jump (see Fig. 8). 

Figure 8(a), shows four resonance regions.  
The region A corresponding to pre-resonance. 
The region B corresponding to resonance capture were we observe the following: the angular 

velocities of rotors are captures, when increase the constant torques (additional power supplied to 
each motor) results that the rotors continues operating in the resonance region (small change in its 
angular velocities, see Fig. 8(a)) and a large increase in the amplitude of the response of the 
structure supporting (see Fig. 8(b)). In final of the region B and initial of the region C (post-
resonance) was altered angular velocities of the non-ideal sources behavior the jump phenomenon. 
This is referred as the Sommerfeld effect, in honor of the first man who observed it (Sommerfeld, 
1902). 

 
 
 



  

The presence of self-synchronization and manifestations of a non-ideal energy source in the 
regions B and D (post-resonance) as is justified by the average velocity difference approaches the 
value zero but we observe that not arrive constants values and exhibits oscillations due to the 
structural response influence in the rotation of the rotors. In the Region B, the presence of self-
synchronization, minimize the increasing of the amplitudes of the structure supporting. 

 

 
 

 
 

 
 

Figure 8. Detail dynamics of the system in the simultaneously presence of  the nonlinear 
phenomenon: self-synchronization, Sommerfeld, non-ideal and jump. 

 
 
 



 

4. CONCLUSIONS 
 

A particular case of non-linear phenomenon of self-synchronization and synchronization in pre-
resonance, resonance and post-resonance regions between the unbalanced dc motors that interacting 
with the parametrically and self-excited system has been analyzed through numerical simulation. In 
the presence of self-synchronization we observe that the amplitudes of the structure supporting 
decreasing which will be implemented as control technique in work future. From mathematical 
point of view was placed two different parametric excitations in the equation of motion. Moreover, 
we observe the Sommerfeld effect, regular and chaotic motion in non-ideal parametrically self-
excited system.   
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