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Resumo - 43007

Resumo. Neste trabalho sdo propostas as estratégias de controle 6timo que dirigem o movimento
cadtico do sistema de Rossler para um ponto fixo desgjado. O problema é formulado como um
problema de sintese do controle 6timo ndo-linear com horizonte infinito. O fato novo € que este
problema de controle é resolvido sem nenhuma linearizacéo. Aplicando a Programacéo Dinamica,
o problema formulado foi reduzido a resolucdo da equacdo de Hamilton-Jacobi-Bellman. A
solucdo desta equacdo foi encontrada em forma analitica entre as funcées de Lyapunov do sistema
controlado.
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1. INTRODUCAO.

Nos ultimos anos foi observado um significante interesse no controle dos sistemas ndo-lineares
gue exibem comportamento cadtico. Entre estratégias de controle de caos com realimentacéo o
mais popular € método OGY (Ott, Grebogi, York, 1990). Este método usa 0 mapa de Poincaré do
sistema. Kapitaniak (1996) mostra que isto conduz a algumas limitagOes de sua aplicagdo. Um
caminho que permite evitar estes limitagdes € uma sintese de controle 6timo para sistemas do tempo
continuo. Recentemente, uma metodologia baseada na aplicagdo da transformacéo de Lyapunov-
Floguet foi proposta por Sinha et a (2000) para garantir a estabilidade local da érbita periddica
desgada ou o ponto fixo de um sistema cadtico. Este método esta baseado em linearizacdo de
equacles que descrevem o erro entre atrajetéria atual e desejada.

Neste trabalho, sdo propostas as estratégias de controle 6timo que “dirigem” o movimento
cadtico do sistema de Rosser para qualquer ponto desejado. Este problema é formulado como um
problema do controle 6timo para o sistema ndo-linear com horizonte infinito. . Um resultado novo é
gue este problema do controle 6timo € resolvido sem nenhuma linearizacdo. Usando técnicas de
Programacdo Dinadmica (Bellman, 1957), o problema formulado foi reduzido a resolucdo da
egquacdo de Hamilton-Jacobi-Bellman (Braison and Ho, 1969). A funcdo que satisfiz a equacdo de
Hamilton-Jacobi-Bellman foi encontrada entre fungdes de Lyapunov do sistema controlado.



2. PROBLEMA DE SINTESE DO CONTROLE OTIMO

Considere adinamica nao-linear
x=f(x)+g(x)u, f(x)=0 (1)

onde xT R" designa o vetor do estado, ul R™ designa o vetor do controle e funcdes
f(X):R"® R" e g(x):R"® R"™ s3o continuamente diferencidveis em relagdio de todos os
argumentos. Pode ser formulado o seguinte problema do controle 6timo. Determinar o controle
6timo u que dirige o sistema (1) de qualquer estado de inicial para ponto fixo desgado X,
minimizando o seguinte funcional:

J[u] :¥c‘jq(x)+uTRu] dt (2)

para q(x) continuamente diferenciavel, positiva definida e a solucdo desejada € um controle com
realimentacao.

Parase resolver o problema acimaformulado, é utilizada técnicas de Programacéo Dindmica
(Bellman, 1957), i.e., este problema reduz-se a resolucdo da seguinte equacao diferencial parcial de
Hamilton-Jacobi-Bellman (Braison and Ho, 1969).

min?§+w9=?£+w9 =0 (3)

uu adt g édt =0

onde

w=q(x)+u'Ru
e S é geramente chamada como a funcéo valor e pode ser considerada como custo minimo de
deslocamento do estado corrente x(t), isto &

S(x(1)) = min BQ( X) +u' Ru] dt (4)

Num caso geral a equacdo de Hamilton-Jacobi-Bellman (3) € uma equacéo diferencial parcial néo-
linear e aresolucdo desta equacdo € muito dificil.
A seguir, discute-se o caso do oscilador de Rossler

3. FORMULACAO DO PROBLEMA PARA SISTEMA DE ROSSLER EXIBINDO CAOS

O sistema de Rossler tem a seguinte forma:

Xl =- X2 - X3
X, = X, +bx, ®)
X3 =b+X3(X - @)

Rdéssler (1976) descobriu que o sistema (5) tem comportamento cadtico quando b=0.2 e a=5.7
[6]. O diagrama de fase que mostra o comportamento cadtico do sistema (5) estana Fig. (1).
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Figural. Diagrama de fase do sistema de Rossler sem controle
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X = éXZl:I (6)
&% H

ponto de equilibrio desgado. Da Figura (1) € visto que para o sistema sem controle (5) a variavel
X3 > 0. Por isso para o sistema com controle também é considerado que x; > 0.

S&0 consideradas as funcdes de controle que consistem de duas partes. A parte u~ (controle

feedforward) leva o sistema ao ponto desgjado e aparte u € controle feedback.
O sistema de Réssler, com controle, pode ser escrito como:

X1:'X2' X3+u1+u1
XZ:x1+bx2+u;+u2 ) (7)

X; = b+X3(X1 - a) +u; + XUy
onde o controle feedforward é escolhido como:

Up =X + X
Uy == - bx, (8)
Uy =-b- x,(x; - a)

e 0 sistema de Rossler pode ser expresso na seguinte forma:



X, == (X% - X;)' (X, - X;)+ul
Xz = (Xl' X;)+b(X2 - X;)+U2 (9)
Xs = X3[(X1 - X;) +u3]

Nota-se que o sistema(9) , sem o controle feedback é instéavel. Logo, paraencontrar as funcbes
de controle u. éformulado o seguinte problema do controle 6timo:

Encontrar o vetor — fungdo de controle u que transfere o sistema (9) do estado inicial x(0) ao
ponto de equilibrio desgjado (6), minimizando o seguinte funcional:

¥
JUI=FYTQY +m(x, - x;)* +1uf +r,u; +r,ui]dt (10)
0
éx, - X, U : : VI .
onde Y=g' "l eamatriz Q= Sqﬂ qlz,,] é definida positiva
X - X & U2U

4. RESULTADOSPRINCIPAIS

Conforme resultados de Programacéo Dindmica[5] se existe o minimo do funcional (10) e S é
uma funcdo suave(* smooth”) da condicdo inicial, o problema acima formulado reduz-se a
resolucéo da seguinte equacéo diferencial parcial de Hamilton-Jacobi-Bellman (HJB) (3) com

W=YTQY +m(X; - X;)* + Uy +1,U; + 1y (11)
A solucdo da equagéo HIB satisfaz a seguinte condicao final:
S(¥)=0 (12)

Como foi mencionado acima, aresolucdo desta equacdo € complexa.. Na bibliografia referente
a este assunto (Osher e Shu, 1991, Bardi e Capuzzo-Dolcetta, 1997), existe um nimero de métodos
numéricos de resolucdo do problema (3), (11), (12). Neste trabaho a funcdo de Bellman S é
procurada, em forma analitica. Esta funcédo satisfaz a Eqg. (3) com a condicéo final (12), por um
lado, e estabiliza 0 sistema (9) no ponto desgjado (6), por outro.

Considere-se a seguinte funcéo:

& * * w
S(X’ y) :YTle + Céxs - X3t X3 |n%: (13)
X3 %
onde S = gsu SlZL'J é [2x2] matriz simétrica, positiva definida e o coeficiente ¢ é constante

eslz S22u

positiva. E fécil de observar que S é uma funcdo de Lyapunov. A funcdo S é definida positiva
desde que seu segundo termo

® . ., 8,00
S :céxa- Xy - X INg—==
X5 &gy

é positivo. E Gbvio que S, tem o minimo global S, =0 em x, = x; >0. Da condig&0 necessaria
do extremo segue que



d X; 0 .
—Szzcgl-i::o OU X3 = X;.

A condic&o suficiente de minimo é verificada
2
ddx? = c)):—z >0.
Desta forma, confirma-se que a funcdo S, é definida positiva. Entdo a fungdo S € definida
positiva também. Por outro lado, se u=u° é controle 6timo, entdo a equacdo de Hamilton — Jacobi
- Bellman torna-se:

E+W:O.

dt
De onde, segue:

ds

dt
a0 longo da trgjetéria 6tima.
Levando-se em contaquew é definida positiva, a derivada % , calculada em virtude do

sistema (9), é negativa definida. Isto confirmaque S € afuncdo de Lyapunov.
Calculando-se aderivadadafuncdo S elevando em conta (9), a equacdo de HIB pode ser
obtida como
min {2v, 0 - X (% - )= (% = ) +ULT+ 20,06 - )I0 - ) +
+ b(xz - X;) +U2] + 2V12(X2 - X;)[' (Xz - X;) - (Xs - X;) +U1] + (14)
20, (%, - )X - %) +b(x, - %) +U T +e(x, - X)[(% - X)) +U ] +u}=0

Notando-se que asfungdes u, ndo sdo limitadas, elas podem ser encontradas da condi ¢&o:

1 _ L _
'ﬂ_ui{"'}_ 0, =123 (15)

onde atravésde { : } € designada a expressdo dentro das chaves da Eq. (14). Da Equacdo (15) pode
ser obtido:

w == 20 - ) 2 (- %)
1 1

w=- 2 {0 x)- 2 (- ) (16)
2 2

Ug =- Zirg(xs' Xa)

Levando-se as funcBes do controle étimo Eq. (16) na HIB equacéo (14), comparando-se 0s
termos semelhantes e admitindo-se que s, = 0, pode encontrado o seguinte sistema



O - r -
2
0z - % + 2b522 = (17)
2
302
m- —=
4r,
S~ Suth, = 0
_cC
Su = E
Considerando-se que m,q,,,0;,,0,, € I, S30 conhecidos, pode ser obtido
2 = 4r,m
3
S1=7
2
S =S G (18)
2
2b322 + q22
2
=S
Ou

Para se efetuar as simulagfes numéricas, foram considerados, os valores numeéricos,
m=10,=10,=00,=1er,=3.

Do sistema (18) foi obtido ¢=2, s, =5, =L 1, =0, 1, = g .
Logo, o sistema de Rdssler controlado (9), tomaaforma
X, == (X, - X;)' (X, - X;)' (%, - XI)
. « «y O .
X, = (Xl - Xl) +O-2(Xz - Xz) - 7()(2 - Xz) (19)

% = X5[(% - X)) - %(xg- X;)]

Figura (2) mostra a eficécia da estratégia 6tima do controle que leva o sistema de Rossler ao
ponto desgjado (1,1,1).
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Figura 2. Diagrama de fase do sistema de Rdssler com o controle 6timo (16)

5. CONCLUSOES

Algumas novas idéias foram apresentadas para se efetuar o controle de caos, no sistema
dindmico de Rosdler. Estas incluem a formulacdo do problema do controle 6timo néo-linear,
reduzido através do uso de técnicas de Programagdo Dindmica a equacdo de HJB, a obtencdo da
funcéo de Lyapunov gue satisfaz esta equacéo e a determinacéo das fungdes do controle 6timo que
“dirijam” o sistema cadtico de Rossler para ponto fixo desgjado arbitrério.

Foi proposta uma funcéo de Lyapunov de tal forma que combinao termo de forma quadratica
com o termo logaritmico em forma de Volterra. A estrutura da funcdo corresponde a estrutura do
sistema de Rossler, ou sgja, o termo de forma quadrética corresponde a dois primeiros equacoes
lineares do sistema de Rossler e o termo de forma logaritmica corresponde a Ultima equacdo néo-
linear. Respectivamente, as fungdes do controle 6timo u, e u, sdo lineares e o controle 6timo x, u, é

nao-linear para este problema.
Os algoritmos propostos demonstram a efetividade deste esgquema de controle que dirige o
sistema de Rdssler para o ponto fixo desgjado
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