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Resumo. Neste trabalho são propostas as estratégias de controle ótimo que dirigem o movimento
caótico do sistema de Rössler para um ponto fixo desejado. O problema é formulado como um
problema de síntese do controle ótimo não-linear com horizonte infinito. O fato novo é que este
problema de controle é resolvido sem nenhuma linearização. Aplicando a Programação Dinâmica,
o problema formulado foi reduzido à resolução da equação de Hamilton-Jacobi-Bellman. A
solução desta equação foi encontrada em forma analítica entre as funções de Lyapunov do sistema
controlado.
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1. INTRODUÇÃO.

Nos últimos anos foi observado um significante interesse no controle dos sistemas não-lineares
que exibem  comportamento caótico. Entre estratégias de controle de caos com realimentação o
mais popular é método OGY (Ott, Grebogi, York, 1990). Este método usa o mapa de Poincaré do
sistema. Kapitaniak (1996) mostra que isto conduz a algumas limitações de sua aplicação. Um
caminho que permite evitar estes limitações é uma síntese de controle ótimo para sistemas do tempo
contínuo. Recentemente, uma metodologia baseada na aplicação da transformação de Lyapunov-
Floquet foi proposta por Sinha et al (2000) para garantir a estabilidade local da órbita periódica
desejada ou o ponto fixo de um sistema caótico. Este método está baseado em linearização de
equações que descrevem o erro entre a trajetória atual e desejada.

Neste  trabalho,  são  propostas  as  estratégias  de  controle  ótimo  que  “dirigem” o movimento
caótico do sistema de Rössler para qualquer ponto desejado. Este problema é formulado como um
problema do controle ótimo para o sistema não-linear com horizonte infinito. . Um resultado novo é
que este problema do controle ótimo é resolvido sem nenhuma linearização. Usando técnicas de
Programação Dinâmica (Bellman, 1957), o problema formulado foi reduzido à resolução da
equação de Hamilton-Jacobi-Bellman (Braison and Ho, 1969). A função que satisfiz a equação de
Hamilton-Jacobi-Bellman foi encontrada entre funções de Lyapunov do sistema controlado.



2. PROBLEMA DE SÍNTESE DO CONTROLE ÓTIMO

Considere a dinâmica  não-linear
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onde nRx ∈  designa o vetor do estado, mRu ∈  designa o vetor do controle e funções
nn RRxf →:)(  e mnn RRxg ×→:)(  são continuamente diferenciáveis em relação de todos os

argumentos. Pode ser formulado o seguinte problema do controle ótimo. Determinar o controle
ótimo u que dirige o sistema (1) de qualquer estado de inicial para ponto fixo desejado *x ,
minimizando o seguinte funcional:
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para q(x) continuamente diferenciável, positiva definida e a solução desejada é um controle com
realimentação.

Para se  resolver o problema acima formulado, é utilizada técnicas de  Programação Dinâmica
(Bellman, 1957), i.e., este problema reduz-se à resolução da seguinte equação diferencial parcial de
Hamilton-Jacobi-Bellman (Braison and Ho, 1969).
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onde
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e S é geralmente chamada como a função valor e pode ser considerada como custo mínimo de
deslocamento do estado corrente x(t), isto é:
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Num caso geral a equação de Hamilton-Jacobi-Bellman (3) é uma equação diferencial parcial não-
linear e a resolução desta equação é muito difícil.

A seguir, discute-se o caso do oscilador de Rossler

3. FORMULAÇÃO DO PROBLEMA PARA SISTEMA DE RÖSSLER EXIBINDO CAOS

O sistema de Rossler tem a seguinte forma:
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Rössler (1976) descobriu que o sistema (5) tem comportamento caótico quando 2.0=b  e 7.5=a
[6]. O diagrama de fase que mostra o comportamento caótico do sistema (5) está na Fig. (1).



Figura 1. Diagrama de fase do sistema de Rossler sem controle
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ponto de equilíbrio desejado. Da Figura (1) é visto que para o sistema sem controle (5) a variável

0*
3 >x . Por isso para o sistema com controle também é considerado que 0*

3 >x .

São consideradas as funções de controle que consistem de duas partes. A parte *u  (controle

feedforward) leva o sistema ao ponto desejado e a parte  u  é controle feedback.
O sistema de Rössler,  com controle,  pode ser escrito como:
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onde o controle feedforward é escolhido como:

)( *
13

*
3

*
2

*
1

*
2

*
3

*
2

*
1

axxbu

bxxu

xxu

−−−=

−−=

+=

(8)

e o sistema de Rössler pode ser expresso na seguinte forma:
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Nota-se que  o sistema (9) , sem o controle feedback é instável. Logo,  para encontrar as funções
de controle iu  é formulado o seguinte problema do controle ótimo:

Encontrar o vetor – função de controle  u  que transfere o sistema (9) do estado inicial  x(0)  ao
ponto de equilíbrio desejado (6), minimizando o seguinte funcional:
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4. RESULTADOS PRINCIPAIS

Conforme  resultados de  Programação Dinâmica [5] se existe o mínimo do funcional (10) e  S  é
uma função suave(“ smooth”) da condição inicial, o problema acima formulado reduz-se à
resolução da seguinte equação diferencial parcial de Hamilton-Jacobi-Bellman (HJB) (3) com
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A solução da equação HJB satisfaz a seguinte condição final:

0)( =∞S (12)

Como foi mencionado  acima,  a resolução desta equação é complexa.. Na bibliografia referente
a este assunto (Osher e Shu, 1991, Bardi e Capuzzo-Dolcetta, 1997),  existe um número de métodos
numéricos de resolução do problema (3), (11), (12). Neste trabalho a função de Bellman S é
procurada,  em forma analítica. Esta função satisfaz a Eq. (3) com a condição final (12), por um
lado, e estabiliza o sistema (9) no ponto desejado (6), por outro.

Considere-se  a seguinte função:
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S  é [2x2] matriz simétrica, positiva definida e o coeficiente c é constante

positiva. É fácil de observar  que  S é uma função de Lyapunov. A função S é definida positiva
desde que seu segundo termo
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é positivo. É óbvio que 2S  tem o mínimo global 02 =S  em 0*
33 >= xx . Da condição necessária

do extremo segue que
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A condição suficiente de mínimo é verificada
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Desta forma, confirma-se  que a função 2S  é definida positiva. Então a função S  é definida

positiva também. Por outro lado, se ouu =  é controle ótimo, então a equação de Hamilton – Jacobi

- Bellman torna-se:
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De onde , segue:

w
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ao longo da trajetória ótima.

Levando-se  em conta que w  é definida positiva, a derivada 
dt

dS
, calculada em virtude do

sistema (9), é negativa definida. Isto confirma que  S  é a função de Lyapunov.
Calculando-se  a derivada da função S  e levando em conta (9), a equação de HJB pode ser

obtida como

{
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Notando-se  que as funções  iu  não são limitadas, elas podem ser encontradas da condição:
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onde  através de { }...  é designada a expressão dentro das chaves da Eq. (14). Da Equação (15) pode
ser obtido:
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Levando-se  as funções do controle ótimo Eq. (16) na HJB equação (14), comparando-se os
termos semelhantes e  admitindo-se  que 012 =s , pode encontrado o seguinte sistema
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Considerando-se  que 221211 ,,, qqqm  e 3r  são conhecidos, pode ser obtido
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Para se efetuar as simulações numéricas,  foram considerados,  os valores numéricos,
1,0,1,1 221211 ==== qqqm  e 33 =r .

Do sistema (18) foi obtido  
7

5
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Logo, o sistema de Rössler controlado (9),  toma a forma
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Figura (2) mostra a eficácia da estratégia ótima do controle que leva o sistema de Rössler ao
ponto desejado (1,1,1).



Figura 2. Diagrama de fase do sistema de Rössler com o controle ótimo (16)

5. CONCLUSÕES

Algumas  novas  idéias  foram  apresentadas  para  se  efetuar  o  controle  de  caos,  no  sistema
dinâmico de Rössler. Estas incluem a formulação do problema do controle ótimo não-linear,
reduzido através do uso de técnicas de Programação Dinâmica à equação de HJB, a obtenção da
função de Lyapunov que satisfaz esta equação e a determinação das funções do controle ótimo que
“dirijam” o sistema caótico de Rössler para ponto fixo desejado arbitrário.

Foi proposta  uma função de Lyapunov de tal forma que combina o termo  de  forma  quadrática
com o termo logarítmico em forma de Volterra. A estrutura da função corresponde à estrutura do
sistema de Rössler, ou seja, o termo de forma quadrática corresponde a dois primeiros equações
lineares do sistema de Rössler e o termo de forma logarítmica corresponde a última equação não-
linear. Respectivamente, as funções do controle ótimo 1u e 2u são lineares e o controle ótimo 33 ux  é

não-linear para este problema.
Os algoritmos  propostos  demonstram  a  efetividade  deste  esquema  de  controle  que dirige  o

sistema de Rössler para o ponto fixo desejado

.6. AGRADECIMENTOS

O segundo autor agradece ao CNPq, e FAPESP,  pelo apoio através de Bolsa de Produtividade em
pesquisa e Montagem de Laboratório.

7. REFERÊNCIAS

Bardi, M. and Capuzzo-Dolcetta, I., 1997, “Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser, Boston.

Bellman, R., 1957, “Dynamic Programing”, Princeton, New Jersey.
Bryson, A.E. and Ho, Y.C., 1969, “Applied Optimal Control”, Blaisdell, Waltham, Mass.
Osher, S. and Shu, C.W., 1991, “High-order Essentially Nonoscillatory Schemes for Hamilton

Jacobi Equations”, SIAM J. Numerical Analysis, 28, pp. 907-922.
Ott, E., Greboggi, C., Yorke, J. A., 1990, “Controlling Chaos”, Phys. Rev. Lett., 64, 1196-1199.



Kapitaniak, T., 1996, “Controlling Chaos: Theoretical and Practical Methods in Non-linear
Dynamics”, Academic Press., 165 p.
Rossler, O.E., 1976, “An Equation for Continuous Chaos”, Phys. Lett. A, 57, pp. 397-398.
Sinha, S.C., Henrichs, J.T., Ravindra, B.A., 2000, “A General Approach in the Design of Active

Controllers for Nonlinear Systems Exhibiting Chaos”, Int. J. Bifur. Chaos, 10 (1), pp.165-178.


