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Resumo: Neste trabalho, um sistema dindmico particular consistindo de um péndulo simples é
estudado. O péndulo é excitado horizontalmente por um mecanismo biela-manivela conectado em
um motor de corrente continua, considerado de poténcia limitada. Nestas condigoes o sistema é
dito ndo-ideal e os parametros como for¢a externa e freqiiéncia ndo sdo constantes arbitrarias,
mas sdo definidos por uma equagdo diferencial aumentando assim os graus de liberdade do
sistema. Investiga-se numericamente o comportamento deste sistema principalmente através do
diagrama de bifurcagdo, detectando as principais caracteristicas ndo lineares proximo a regido de
ressondncia fundamental.
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1. INTRODUCAO

Sistemas dindmicos ndo lineares possuem como caracteristica principal uma variedade de
solugdes cuja complexidade estdo expressas em um atrator estranho. Esta variedade ndo linear
concentra-se na existéncia de solugdes periddicas, multi-periddicas, quase-periddicas e cadticas. Ja
a suposi¢cdo de ndo idealidade oferece uma representacdo matematica mais precisa do movimento
do sistema dinamico real em questdo, visto que engloba um niimero maior de efeitos dindmicos. No
entanto, para a investiga¢do de um sistema dinamico particular deve-se primeiramente verificar se o
aumento de variaveis independentes (ou seja, de graus de liberdade) e o aumento na complexidade
das equagdes justificam a adog¢do de tal suposicdo. No entanto, vé-se que o caminho natural para o
aperfeicoamento da analise de sistemas ndo lineares estd no aumento da precisdo das equagdes
matematicas que os representa; que embora ganhe em complexidade, espera-se que as equacdes
fornecam respostas mais proximas a realidade em determinadas fases de funcionamento do
mecanismo. Porém, ainda falta muito para alcancar um estdgio de andlise com equacdes mais
completas, ja que o aumento no nimero de termos ndo lineares nas equagdes complica em muito
sua andlise numérica.

Condigdes nao-ideais de movimento s3o obtidas quando os parametros do motor o definem
como de poténcia limitada, além da interacdo entre as partes (Kononenko, 1969). Com isso
aparecem diversas situagdes, visto que efeitos dinamicos outras vezes desprezados afetam o
movimento do sistema, podendo torna-lo irregular (ou até mesmo caotico). Em certas faixas de
ressonancia, a suposi¢do de ndo idealidade impde a condigdo ao sistema de conservar altas
amplitudes de oscilagdo do péndulo, fazendo com que o movimento de estado-estacionario do
sistema preserve as mesmas caracteristicas irregulares da resposta transiente. Isto ¢ observado



durante a ressonancia fundamental (onde a freqiiéncia de excitagdo ¢ mais baixa), em que o
amortecimento aplicado ao sistema ndo-ideal ndo é suficiente para tornar o movimento
completamente assintotico; fato que acontece para o modelo ideal associado nas mesmas condigdes
de movimento onde se obtém um estado-estaciondrio regular, Belato (2002). Desta forma, tal
suposi¢do pode afetar a duragdo temporal da solucdo transiente em dominios criticos de variagao do
parametro de controle, oferecendo novas alternativas para o alcance de uma solu¢do diferente.

Este trabalho divide-se em: na se¢do 2 apresentam-se as equacdes de movimento do sistema
eletromotor-péndulo; na se¢do 3 estdo os resultados numéricos que subdividem no célculo e andlise
da curva de ressonancia, calculo dos multiplicadores de Floquet e andlise dos diagramas de
bifurcacdo; segue-se na se¢do 4 as conclusdes e comentarios finais.
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Figura 1. Esquema do Sistema Eletromotor-Péndulo.
2. MODELO MATEMATICO DO MECANISMO ELETROMOTOR-PENDULO
O sistema considerado neste trabalho consiste de um péndulo simples, horizontalmente for¢ado

por um motor de corrente continua através de um mecanismo biela-manivela (Fig. 1), e as equagdes
de movimento (Veja Belato (2002) e Belato e outros (2001) para detalhes), sdo dadas por:
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deslocamento angular do péndulo, a ¢ o deslocamento angular do péndulo e as linhas denotam
derivadas em relagdo a variavel t*=w,t, onde t* ¢ o tempo adimensional e ®, ¢ a freqiiéncia
natural do péndulo. Também: J é o momento de inércia do rotor do motor (kgm?), m é a massa do
péndulo (kg), / ¢ o comprimento do péndulo (m), a é o comprimento do ponto O até¢ B (m), b € o
comprimento da manivela (m), c, ¢ o coeficiente de amortecimento do pino A (Ns/m), p, é o
coeficiente de amortecimento do péndulo (Nms), V ¢ a voltagem do motor (V), L ¢ a indutancia
(H), R ¢ a resisténcia elétrica (€2), I € a corrente (A), K. ¢ a constante de torque (Nm/A), K ¢ a



constante de voltagem (Vs), ¢ ¢ o coeficiente de perda interna no motor (Nms), e T, ¢ um torque
de friccao no motor (Nm).

Ressalta-se que o modelo, acima descrito, foi analisado anteriormente por (Krasnopol'kaya e Yu,
1990). Neste trabalho os resultados sdo novos e ndo abordados anteriormente, principalmente no
que se refere ao estudo bifurcacional e cadtico do problema.

3. RESULTADOS NUMERICOS

Os resultados numéricos, listados a seguir, foram obtidos, utilizando-se 0 modelo definido pelas
equacdes (1), utilizando-se integrador RKS5, com passo variavel do MATLAB-SIMULINK.

3.1. Curva de Ressonancia

A curva de ressonancia (grafico de resposta em freqiiéncia) ¢ uma das ferramentas de analise de
sistemas dinamicos mais vastamente usada e conhecida na literatura. Este grafico descreve o
comportamento de uma solu¢do do sistema onde sua amplitude maxima de oscilacdo ¢ disposta de
acordo com a variacdo da freqiiéncia de excitagdo. Para o sistema eletromotor-péndulo, tal grafico ¢
obtido numericamente através da representacdo da amplitude maxima de oscilagdo do péndulo

|aM , calculada para cada valor do parametro de controle em um dado dominio e dispostas

consecutivamente em relagdo a variagdo da freqiiéncia rotacional média do motor 6’

(0'= (ie; )/ ), possibilitando a identificacdo dos varios processos existentes no sistema.
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Figura 2. Curva de ressonancia |aM| x ' obtida com o valor: m = 0,03 kg.

Escolhendo um conjunto de parametro, que se diferenciam basicamente pelo valor da massa do
péndulo, tem-se: a = 0,07 m; /= 0,3 m; b = 0,3 m; m = 0,03 kg, ou seja, €, =0,2333; €, =0,2333;
B, = 0,005910 kg.m* B, = 1,47.10* kg.m?*; B, = 6,30.10™ kg.m* (Fig. 2). Neste grafico sdo

desenhadas duas curvas que correspondem respectivamente a: (a) maxima amplitude entre a solug¢ao
transiente e a de estado-estaciondrio (representada por pontos em preto); e, (b) méxima amplitude
da solucdo de estado-estacionario (em azul).

A curva ressonante para ambas as respostas (transiente e estado-estacionario) apresenta alguns
pequenos “trechos” descontinuos que indicam a presenga de “bolhas de bifurcacdo”, responsaveis
pelo aumento repentino da amplitude de oscilagdo do péndulo (saltos secundarios descontinuos).
Cada bolha aparece pela acao de uma bifurcagdo tangente, sendo que sua ocorréncia se intensifica a
medida que a altura da amplitude maxima da solucdo estavel diminui, provocando um aumento
gradual na amplitude de cada salto sobre a curva ressonante (como ¢ observado a medida que se



distancia da regido de ressonancia fundamental quando a curva ressonante decresce). Acredita-se
que cada bolha seja responsdvel por uma melhor disposi¢do da solugdo dentro do retrato de fase, ja
que em um parametro critico uma solucdo quase-periddica salta para alcancar uma solucio
sincronizada de maior amplitude, descrita por uma solu¢do multi-peridodica. O periodo de cada
conjunto de solugdes sincronizadas diminui a medida que a curva ressonante decresce (ou seja, na
propor¢ao em que se afasta da ressonancia fundamental), culminando em uma solugdo bi-periddico
quando 6’ ~ 1,7968. Pela Fig. 2, também identificam-se as velocidades criticas médias do motor, a

saber: uma super-harmoénica ( 0’ ~ 0,5), uma fundamental ou primaria ( ' ~1) e outra secundaria

(0'~2,5), sendo este ultimo valor dependente da escolha do comprimento do péndulo. Cada uma

destas regides (definida por uma descontinuidade na curva de ressonancia), evidencia a presenca de
bifurcacdes perigosas no sistema, as quais sao identificadas pelos correspondentes multiplicadores
de Floquet que sdo apresentados no item logo a seguir.

Para auxiliar na andlise da curva de ressonancia, apresenta-se na figura abaixo a caracteristica
dos respectivos atratores discretizados pelo mapa de Poincaré e dispostos consecutivamente em
relagdo a variagdo do parametro de controle, de maneira a formar o respectivo diagrama de
bifurcacdo. Este grafico permite visualizar o tipo de atrator que aparece apds um ponto de
bifurcacdao (perda de estabilidade da solugdo). O dominio de variacdo do parametro de controle
escolhido neste diagrama corresponde ao mesmo intervalo de variagdo da freqiiéncia média do
motor representado na Fig. 2.
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Figura 3. Diagrama de bifurcagdo para m = 0,03 kg.

O diagrama de bifurcagdo retrata claramente o processo de “sincronizagdo” das solugdes, que
corresponde ao aparecimento de solu¢des multi-periddicas apoés um ponto de bifurcagdo. Tais
solucdes estdo posicionadas sobre a curva ressonante decrescente logo apos a regido de ressonancia
fundamental. Com o aumento do parametro de controle, a passagem entre uma ¢ outra janela de



multi-periodicidade ¢ marcada pela diminui¢do do periodo da solugdo sincronizada, culminando em
uma solucdo tri-periddico que encerra o processo de multi-periodicidade neste dominio. Também
detecta-se o aparecimento de uma solugdo bi-periddico proximo a B, = 10,6.10°. Quando o
parametro de controle ¢ diminuido em cada dominio de multi-periodicidade, a perda de estabilidade
de cada solucdo sincronizada ocorre pela agdo de uma bifurcacdo de duplicacdo de periodo. Em
(Grebogi et al., 1983) pode-se encontrar uma revisdo deste assunto, no que se refere a crises,
abordado, a seguir. Os resultados, apresentados, para o problema, em estudo, sdo novos.

3.2. Estabilidade das solu¢des — Multiplicadores de Floquet

Para a analise da estabilidade das solucdes adotam-se os seguintes parametros para o sistema de
equagdes (1): € = 02333; €, = 0,2333; J = 0,011 kg.m*; B, = 0,005910 kg.m* P, = O0;
B, = 1,47.10* kg.m%; B, = 6,30.10" kg.m?; Bs= 0,01 e B, ¢ o parametro de controle. Estes
parametros sdo definidos quando a massa do péndulo adotada ¢ m = 0,03 kg. Para as simulagdes
numéricas, as condic¢des iniciais sao: 0(0) = 6'(0) = 0; a(0) = a'(0) = 0.

A analise dos multiplicadores de Floquet' A; (i = 1,..., 4), junto a analise do diagrama de

bifurcacdo na Fig. 3, revela a ocorréncia de varias bifurcagdes, sendo que as mais importantes sao
dadas pelos seguintes parametros:

(I) Intermiténcia do tipo I - 3, ~ 0,00518
Bifurcagdo sela-n6 — 3, = 0,0052
(M = 1,4524; X, =-2,5268; A3 = 2,0350; Ag = -0,5956).

Esta consiste em uma rota para o caos ¢ aparece no limiar da curva ressonante quando
9~ 0,81, na regido de ressonancia fundamental. Nesta faixa, a intermiténcia origina um transiente
cadtico e logo apds uma bifurcacdo sela-n6, um atrator cadtico aparece. Se o pardmetro de controle
diminui, verifica-se que aparece um atrator cadtico ap6s uma crise interior em 3, ~ 0,005535 (Fig.
3).

(II)  “Crisis-induced intermittency” - 3, = 0,005682
Bifurcagdo de duplicagdo de periodo - 3, = 0,00572

Nesta faixa, um atrator de periodo-7 perde estabilidade em uma bifurcacdo de duplicagao de
periodo, alcancando, apds uma cascata de duplicagdo de periodo, um atrator cadtico limitado.
Quando B, = 0,005682 este atrator caodtico perde estabilidade e aparece outro atrator cadtico de
maior amplitude através de uma “crisis-induced intermittency”. Neste dominio também ocorre uma
boundary-crisis proximo a 3, = 0,00569645.

(II)  Bifurcagao sela-né — B, = 0,0069
(M =1,4384; L, =-1,8642; A3 = 2,7058; Ay = -0,0076).
Bifurcagao de duplicagao de periodo - B, = 0,00716
(M =1,2301; Ay =-2,4368; A3 = 0,3607; As = 0,0588).

Uma solucao quase-periddica perde estabilidade pela agdo de uma bifurcagao sela-n6, fazendo
com que a trajetoria “salte” para um atrator de periodo-4. Na dire¢do inversa quando o valor do
parametro de controle diminui, o atrator de periodo-4 sofre uma bifurcagdo de duplicagdo de
periodo.

! Lembrando que um sistema dindmico auténomo sempre tem um multiplicador de Floquet ¢ igual a 1 (um).



(IV) Bifurcagdo sela-no - B, = 0,00802
(M =1,1662; A, =-0,9410; A3 = 1,3868; As = -0,0582).
Bifurcacdo de duplicagao de periodo — 3, = 0,00846
(A =0,9515; A, =-1,0094; A3 =-0,1678; Ay = -0,0336).
Nesta fase, a bifurcacdo sela-n6 leva a criagdo de um atrator tri-periddico, enquanto que a agao
de uma bifurcacao de duplicagdo de periodo leva a destruicdo deste atrator.

(V) Bifurcagado de duplicagdo de periodo - 3, = 0,01062
(A =0,9719; A, = -1,0270; A3 =-0,4595; A4 = 0,0574).
A bifurcacdo de duplicacdo de periodo leva a criagdo de um atrator bi-periddico.

Entre as bifurcagdes IV e V existem dois dominios finitos de variacdo do parametro de controle
onde aparecem solugdes nao-hiperbolicas.

(VI) “Boundary Crisis” — 8, = 0,01616
Bifurcacdo sela-n6 — 3, = 0,01483
(M =0,9875; A, =1,0847; 3 =0,1376; s =-0,0023).
Bifurcagdo de duplicagdo de periodo — 3, = 0,0172
(M =1,0599; A, =-1,0183; A3 =-0,5416; Ay = 0,0142).

Nesta faixa com as C.I. adotadas, o escape do péndulo do pogo potencial local se torna
inevitavel de maneira que o péndulo entra em rotacdo durante todo um dominio limitado de
variagdo do pardmetro de controle, dado por: 0,0015 < B, < 0,0017. Neste caso, a perda de
estabilidade ocorre fora da vizinhanca da solu¢do de periodo-1 (ndo-hiperbolica) no centro do
retrato de fase, que leva ao escape do péndulo pela acdo de uma bifurcagdo sela-n6 onde a
amplitude de oscilagdo da trajetéria aumenta alcangando solugdes rotativas. Detecta-se também pelo
diagrama de bifurcagdo, a presenca de uma solucao ilimitada de periodo-3. Quando o parametro de
controle diminui a perda de estabilidade da solucdo de periodo-3 ocorre pela acdo de uma
bifurca¢ao de duplicagdo de periodo, seguida por um salto descontinuo, onde a trajetoria limitada
desaparece por completo do pogo potencial local. Este evento ocorre durante a 1* ressonancia
secundaria. Também ocorre um inevitavel escape do péndulo em B3, = 0,01541.

(VID) Bifurcagao sela-n6 — B, = 0,0375
(M =1,1477; A, = 1,4623; A3 =-1,0854; A4 = 0,0285).
Esta bifurcacdo torna a posicao para baixo do péndulo instavel e duas novas posi¢cdes médias
estaveis sdo criadas. Nesta fase, dependendo das C.I. escolhidas o péndulo alcanga uma destas duas
posicdes de oscilagdo média diferente a posi¢ao média oy, = 0.

Todas as bifurcagdes acima representam as mais importantes mudangas qualitativas do sistema
eletromotor-péndulo. Entre elas algumas sdo responsaveis pela alteragdo completa das solugdes em
dominios finitos de variacdo do pardmetro de controle, principalmente pelas catastrofes presentes na
ressonancia fundamental e na 1* ressonancia secundaria. Maiores detalhes sobre estas bifurcagdes
sdo possiveis somente com a analise nao linear das equagdes, o que ndo serd abordado aqui. A
figura abaixo ilustra e resume o que ocorre em cada uma destas duas ressonancias.

O diagrama de bifurcagdo abaixo mostra a evolugdo da trajetoéria do péndulo em relagdo a
variacdo do parametro de controle escolhido (a voltagem do motor). Nota-se que ao aumentar o
valor do pardmetro de controle, um atrator hiperbdlico perde estabilidade devido a uma bifurcagio
sela-n6 enquanto que diminuindo este valor o sistema perde estabilidade através de uma bifurcacao
de duplicagdo de periodo. Em seguida, varios outros eventos aparecem tornando a solug¢do do
sistema mais complicado. Deve-se ver que as variaveis da equag¢dao determinam a forma deste
grafico sendo que qualquer mudanga faz variar as condi¢des de estabilidade da solugdo. J4 no



segundo grafico abaixo, a solucdo perde estabilidade em uma bifurcagdo sela-né quando o valor do
parametro de controle ¢ aumentado enquanto que esta sofre um salto descontinuo alcangando uma
solugdo ilimitada dada por rotagdes do péndulo. Cada solucdo reflete uma mudanca nas
caracteristicas geométricas da superficie que as comportam, fazendo com que sua estrutura evolua
com o tempo.
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(a) ressonancia fundamental; (b) 1° ressonincia secundaria.
4. CONCLUSAO

Neste trabalho, as principais bifurca¢cdes de um particular mecanismo pendular ndo-ideal foram
abordadas, mostrando as principais regioes de ressonancia e perda de estabilidade do sistema.
Constatou-se o aparecimento de uma solu¢do ndo-hiperbolica limitada na segunda regido de
ressonancia secundaria, cuja escolha de condic¢des iniciais fora da area que descreve sua bacia de
atracdo no retrato de fase determina solugdes rotativas do péndulo.
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Abstract: In this work, it is studied a particular dynamic system consisting of a simple pendulum.
The pendulum is horizontally excitated by a crank-shaft mechanism connected in a DC motor,
considered of limited power. In these conditions the system is called non-ideal and the parameters
as external force and the frequency are not arbitrary constants, but they are defined by a
differential equation that increases the degree of freedom of the system. We numerically investigate
the behavior of this system using the bifurcation diagram, where we detected the main nonlinear
features near the fundamental resonance region.
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