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Resumo: Neste trabalho, um sistema dinâmico particular consistindo de um pêndulo simples é 
estudado. O pêndulo é excitado horizontalmente por um mecanismo biela-manivela conectado em 
um motor de corrente continua, considerado de potência limitada. Nestas condições o sistema é 
dito não-ideal e os parâmetros como força externa e freqüência não são constantes arbitrárias, 
mas são definidos por uma equação diferencial aumentando assim os graus de liberdade do 
sistema. Investiga-se numericamente o comportamento deste sistema principalmente através do 
diagrama de bifurcação, detectando as principais características não lineares próximo à região de 
ressonância fundamental. 
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1. INTRODUÇÃO 
 

Sistemas dinâmicos não lineares possuem como característica principal uma variedade de 
soluções cuja complexidade estão expressas em um atrator estranho. Esta variedade não linear 
concentra-se na existência de soluções periódicas, multi-periódicas, quase-periódicas e caóticas. Já 
a suposição de não idealidade oferece uma representação matemática mais precisa do movimento 
do sistema dinâmico real em questão, visto que engloba um número maior de efeitos dinâmicos. No 
entanto, para a investigação de um sistema dinâmico particular deve-se primeiramente verificar se o 
aumento de variáveis independentes (ou seja, de graus de liberdade) e o aumento na complexidade 
das equações justificam a adoção de tal suposição. No entanto, vê-se que o caminho natural para o 
aperfeiçoamento da análise de sistemas não lineares está no aumento da precisão das equações 
matemáticas que os representa; que embora ganhe em complexidade, espera-se que as equações 
forneçam respostas mais próximas à realidade em determinadas fases de funcionamento do 
mecanismo. Porém, ainda falta muito para alcançar um estágio de análise com equações mais 
completas, já que o aumento no número de termos não lineares nas equações complica em muito 
sua análise numérica. 

Condições não-ideais de movimento são obtidas quando os parâmetros do motor o definem 
como de potência limitada, além da interação entre as partes (Kononenko, 1969). Com isso 
aparecem diversas situações, visto que efeitos dinâmicos outras vezes desprezados afetam o 
movimento do sistema, podendo torna-lo irregular (ou até mesmo caótico). Em certas faixas de 
ressonância, a suposição de não idealidade impõe a condição ao sistema de conservar altas 
amplitudes de oscilação do pêndulo, fazendo com que o movimento de estado-estacionário do 

sistema preserve as mesmas características irregulares da resposta transiente. Isto é observado 



durante a ressonância fundamental (onde a freqüência de excitação é mais baixa), em que o 
amortecimento aplicado ao sistema não-ideal não é suficiente para tornar o movimento 
completamente assintótico; fato que acontece para o modelo ideal associado nas mesmas condições 
de movimento onde se obtém um estado-estacionário regular, Belato (2002). Desta forma, tal 
suposição pode afetar a duração temporal da solução transiente em domínios críticos de variação do 
parâmetro de controle, oferecendo novas alternativas para o alcance de uma solução diferente. 

Este trabalho divide-se em: na seção 2 apresentam-se as equações de movimento do sistema 
eletromotor-pêndulo; na seção 3 estão os resultados numéricos que subdividem no cálculo e análise 
da curva de ressonância, cálculo dos multiplicadores de Floquet e análise dos diagramas de 
bifurcação; segue-se na seção 4 as conclusões e comentários finais. 
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Figura 1. Esquema do Sistema Eletromotor-Pêndulo. 

 MATEMÁTICO DO MECANISMO ELETROMOTOR-PÊNDULO  

 considerado neste trabalho consiste de um pêndulo simples, horizontalmente forçado 
 de corrente continua através de um mecanismo biela-manivela (Fig. 1), e as equações 
 (Veja Belato (2002) e Belato e outros (2001) para detalhes), são dadas por: 
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 angular do pêndulo, α é o deslocamento angular do pêndulo e as linhas denotam 
 relação a variável t , onde t* é o tempo adimensional e  é a freqüência 
dulo. Também: J é o momento de inércia do rotor do motor ( ), m é a massa do 

 l é o comprimento do pêndulo (m), a é o comprimento do ponto O até B (m), b é o 
da manivela (m), c  é o coeficiente de amortecimento do pino A (Ns/m), 
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 amortecimento do pêndulo (Nms), V é a voltagem do motor (V), L é a indutância 
istência elétrica (Ω), I é a corrente (A),  é a constante de torque (Nm/A),  é a TK EK



constante de voltagem (Vs),  é o coeficiente de perda interna no motor (Nms), e  é um torque 
de fricção no motor (Nm). 

mc fT

Ressalta-se que o modelo, acima descrito, foi analisado anteriormente por (Krasnopol'kaya e Yu, 
1990). Neste trabalho os resultados são novos e não abordados anteriormente, principalmente no 
que se refere ao estudo bifurcacional e caótico  do problema.      
 
3. RESULTADOS NUMÉRICOS 
 
 Os resultados numéricos, listados a seguir,  foram  obtidos, utilizando-se o modelo definido pelas 
equações (1), utilizando-se integrador  RK5, com passo variável do MATLAB-SIMULINK.   
 
3.1. Curva de Ressonância 
 

A curva de ressonância (gráfico de resposta em freqüência) é uma das ferramentas de análise de 
sistemas dinâmicos mais vastamente usada e conhecida na literatura. Este gráfico descreve o 
comportamento de uma solução do sistema onde sua amplitude máxima de oscilação é disposta de 
acordo com a variação da freqüência de excitação. Para o sistema eletromotor-pêndulo, tal gráfico é 
obtido numericamente através da representação da amplitude máxima de oscilação do pêndulo 

Mα , calculada para cada valor do parâmetro de controle em um dado domínio e dispostas 

consecutivamente em relação à variação da freqüência rotacional média do motor θ′  
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Figura 2. Curva de ressonância θ′×αM obtida com o valor: m = 0,03 kg. 
 

Escolhendo um conjunto de parâmetro, que se diferenciam basicamente pelo valor da massa do 
pêndulo, tem-se: a = 0,07 m; l = 0,3 m; b = 0,3 m; m = 0,03 kg, ou seja, 1∈  = 0,2333; ∈  = 0,2333; 

 = 0,005910 kg.m
2

2β
2; 4β  = 1,47.10-4 kg.m2; 5β  = 6,30.10-4 kg.m2 (Fig. 2). Neste gráfico são 

desenhadas duas curvas que correspondem respectivamente a: (a) máxima amplitude entre a solução 
transiente e a de estado-estacionário (representada por pontos em preto); e, (b) máxima amplitude 
da solução de estado-estacionário (em azul). 

A curva ressonante para ambas as respostas (transiente e estado-estacionário) apresenta alguns 
pequenos “trechos” descontínuos que indicam a presença de “bolhas de bifurcação”, responsáveis 
pelo aumento repentino da amplitude de oscilação do pêndulo (saltos secundários descontínuos). 
Cada bolha aparece pela ação de uma bifurcação tangente, sendo que sua ocorrência se intensifica à 
medida que a altura da amplitude máxima da solução estável diminui, provocando um aumento 
gradual na amplitude de cada salto sobre a curva ressonante (como é observado à medida que se 



distancia da região de ressonância fundamental quando a curva ressonante decresce). Acredita-se 
que cada bolha seja responsável por uma melhor disposição da solução dentro do retrato de fase, já 
que em um parâmetro crítico uma solução quase-periódica salta para alcançar uma solução 
sincronizada de maior amplitude, descrita por uma solução multi-periódica. O período de cada 
conjunto de soluções sincronizadas diminui à medida que a curva ressonante decresce (ou seja, na 
proporção em que se afasta da ressonância fundamental), culminando em uma solução bi-periódico 
quando θ′  ≈ 1,7968. Pela Fig. 2, também identificam-se as velocidades críticas médias do motor, a 
saber: uma super-harmônica ( 5,0≈θ′ ), uma fundamental ou primária ( 1≈θ′ ) e outra secundária 
( 5,2≈θ′ ), sendo este último valor dependente da escolha do comprimento do pêndulo. Cada uma 
destas regiões (definida por uma descontinuidade na curva de ressonância), evidencia a presença de 
bifurcações perigosas no sistema, as quais são identificadas pelos correspondentes multiplicadores 
de Floquet que são apresentados no item logo a seguir. 

Para auxiliar na análise da curva de ressonância, apresenta-se na figura abaixo a característica 
dos respectivos atratores discretizados pelo mapa de Poincaré e dispostos consecutivamente em 
relação à variação do parâmetro de controle, de maneira a formar o respectivo diagrama de 
bifurcação. Este gráfico permite visualizar o tipo de atrator que aparece após um ponto de 
bifurcação (perda de estabilidade da solução). O domínio de variação do parâmetro de controle 
escolhido neste diagrama corresponde ao mesmo intervalo de variação da freqüência média do 
motor representado na Fig. 2. 
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multi-periodicidade é marcada pela diminuição do período da solução sincronizada, culminando em 
uma solução tri-periódico que encerra o processo de multi-periodicidade neste domínio. Também 
detecta-se o aparecimento de uma solução bi-periódico próximo à 1β  ≈ 10,6.10-3. Quando o 
parâmetro de controle é diminuído em cada domínio de multi-periodicidade, a perda de estabilidade 
de cada solução sincronizada ocorre pela ação de uma bifurcação de duplicação de período. Em 
(Grebogi  et al., 1983)  pode-se encontrar uma revisão deste assunto, no que se refere a crises, 
abordado, a seguir. Os resultados, apresentados, para o problema, em estudo, são novos. 
 
3.2. Estabilidade das soluções – Multiplicadores de Floquet 

 
Para a análise da estabilidade das soluções adotam-se os seguintes parâmetros para o sistema de 

equações (1): ∈  = 0,2333; ∈  = 0,2333; J = 0,011 kg.m1 2
2; 2β  = 0,005910 kg.m2; =β3  0;               

 = 1,47.104β
-4 kg.m2;  = 6,30.105β

-4 kg.m2; =β6  0,01 e 1β  é o parâmetro de controle. Estes 
parâmetros são definidos quando a massa do pêndulo adotada é m = 0,03 kg. Para as simulações 
numéricas, as condições iniciais são: θ(0) = θ′(0) = 0; α(0) = α′(0) = 0.  

A análise dos multiplicadores de Floquet1 λi (i = 1,..., 4), junto à análise do diagrama de 
bifurcação na Fig. 3, revela a ocorrência de várias bifurcações, sendo que as mais importantes são 
dadas pelos seguintes parâmetros: 

 
(I) Intermitência do tipo I – β  ≈ 0,00518 1

Bifurcação sela-nó – β  ≈ 0,0052 1

  (λ1 = 1,4524; λ2 = -2,5268; λ3 = 2,0350; λ4 = -0,5956). 
Esta consiste em uma rota para o caos e aparece no limiar da curva ressonante quando      

≈θ′  0,81, na região de ressonância fundamental. Nesta faixa, a intermitência origina um transiente 
caótico e logo após uma bifurcação sela-nó, um atrator caótico aparece. Se o parâmetro de controle 
diminui, verifica-se que aparece um atrator caótico após uma crise interior em β  ≈ 0,005535 (Fig. 
3). 

1

 
(II) “Crisis-induced intermittency” - 1β  ≈ 0,005682 
 Bifurcação de duplicação de período - 1β  ≈ 0,00572 
 

Nesta faixa, um atrator de período-7 perde estabilidade em uma bifurcação de duplicação de 
período, alcançando, após uma cascata de duplicação de período, um atrator caótico limitado. 
Quando  ≈ 0,005682 este atrator caótico perde estabilidade e aparece outro atrator caótico de 
maior amplitude através de uma “crisis-induced intermittency”. Neste domínio também ocorre uma 
boundary-crisis próximo à β  ≈ 0,00569645. 

1β

1

 
(III) Bifurcação sela-nó – β  ≈ 0,0069 1

(λ1 = 1,4384; λ2 = -1,8642; λ3 = 2,7058; λ4 = -0,0076). 
  Bifurcação de duplicação de período - 1β  ≈ 0,00716 
 (λ1 = 1,2301; λ2 = -2,4368; λ3 = 0,3607; λ4 = 0,0588). 

Uma solução quase-periódica perde estabilidade pela ação de uma bifurcação sela-nó, fazendo 
com que a trajetória “salte” para um atrator de período-4. Na direção inversa quando o valor do 
parâmetro de controle diminui, o atrator de período-4 sofre uma bifurcação de duplicação de 
período. 

 

                                                 
1 Lembrando que um sistema dinâmico autônomo sempre tem um multiplicador de Floquet é igual a 1 (um). 
 



(IV) Bifurcação sela-nó - β  ≈ 0,00802 1

  (λ1 = 1,1662; λ2 = -0,9410; λ3 = 1,3868; λ4 = -0,0582). 
 Bifurcação de duplicação de período – 1β  ≈ 0,00846  

 (λ1 = 0,9515; λ2 = -1,0094; λ3 = -0,1678; λ4 = -0,0336). 
Nesta fase, a bifurcação sela-nó leva à criação de um atrator tri-periódico, enquanto que a ação 

de uma bifurcação de duplicação de período leva à destruição deste atrator. 
 
(V) Bifurcação de duplicação de período - 1β  ≈ 0,01062 

 (λ1 = 0,9719; λ2 = -1,0270; λ3 = -0,4595; λ4 = 0,0574). 
 A bifurcação de duplicação de período leva a criação de um atrator bi-periódico. 
 

Entre as bifurcações IV e V existem dois domínios finitos de variação do parâmetro de controle 
onde aparecem soluções não-hiperbólicas. 
 
(VI) “Boundary Crisis” – β  ≈ 0,01616 1

Bifurcação sela-nó – β  ≈ 0,01483 1

(λ1 = 0,9875; λ2 = 1,0847; λ3 = 0,1376; λ4 = -0,0023). 
Bifurcação de duplicação de período – 1β  ≈ 0,0172 

(λ1 = 1,0599; λ2 = -1,0183; λ3 = -0,5416; λ4 = 0,0142). 
Nesta faixa com as C.I. adotadas, o escape do pêndulo do poço potencial local se torna 

inevitável de maneira que o pêndulo entra em rotação durante todo um domínio limitado de 
variação do parâmetro de controle, dado por: 0,0015 ≤ 1β  ≤ 0,0017. Neste caso, a perda de 
estabilidade ocorre fora da vizinhança da solução de período-1 (não-hiperbólica) no centro do 
retrato de fase, que leva ao escape do pêndulo pela ação de uma bifurcação sela-nó onde a 
amplitude de oscilação da trajetória aumenta alcançando soluções rotativas. Detecta-se também pelo 
diagrama de bifurcação, a presença de uma solução ilimitada de período-3. Quando o parâmetro de 
controle diminui a perda de estabilidade da solução de período-3 ocorre pela ação de uma 
bifurcação de duplicação de período, seguida por um salto descontínuo, onde a trajetória limitada 
desaparece por completo do poço potencial local. Este evento ocorre durante a 1a ressonância 
secundária. Também ocorre um inevitável escape do pêndulo em 1β  ≈ 0,01541. 
 
(VII) Bifurcação sela-nó – β  ≈ 0,0375 1

(λ1 = 1,1477; λ2 = 1,4623; λ3 = -1,0854; λ4 = 0,0285). 
Esta bifurcação torna a posição para baixo do pêndulo instável e duas novas posições médias 

estáveis são criadas. Nesta fase, dependendo das C.I. escolhidas o pêndulo alcança uma destas duas 
posições de oscilação média diferente à posição média αm ≈ 0. 

 
Todas as bifurcações acima representam as mais importantes mudanças qualitativas do sistema 

eletromotor-pêndulo. Entre elas algumas são responsáveis pela alteração completa das soluções em 
domínios finitos de variação do parâmetro de controle, principalmente pelas catástrofes presentes na 
ressonância fundamental e na 1a ressonância secundária. Maiores detalhes sobre estas bifurcações 
são possíveis somente com a análise não linear das equações, o que não será abordado aqui. A 
figura abaixo ilustra e resume o que ocorre em cada uma destas duas ressonâncias. 

O diagrama de bifurcação abaixo mostra a evolução da trajetória do pêndulo em relação à 
variação do parâmetro de controle escolhido (a voltagem do motor). Nota-se que ao aumentar o 
valor do parâmetro de controle, um atrator hiperbólico perde estabilidade devido a uma bifurcação 
sela-nó enquanto que diminuindo este valor o sistema perde estabilidade através de uma bifurcação 
de duplicação de período. Em seguida, vários outros eventos aparecem tornando a solução do 
sistema mais complicado. Deve-se ver que as variáveis da equação determinam a forma deste 
gráfico sendo que qualquer mudança faz variar as condições de estabilidade da solução. Já no 



segundo gráfico abaixo, a solução perde estabilidade em uma bifurcação sela-nó quando o valor do 
parâmetro de controle é aumentado enquanto que esta sofre um salto descontínuo alcançando uma 
solução ilimitada dada por rotações do pêndulo. Cada solução reflete uma mudança nas 
características geométricas da superfície que as comportam, fazendo com que sua estrutura evolua 
com o tempo. 
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4. CONCLUSÃO 
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Abstract: In this work, it is studied a particular dynamic system consisting of a simple pendulum. 
The pendulum is horizontally excitated by a crank-shaft mechanism connected in a DC motor, 
considered of limited power. In these conditions the system is called non-ideal and the parameters 
as external force and the frequency are not arbitrary constants, but they are defined by a 
differential equation that increases the degree of freedom of the system. We numerically investigate 
the behavior of this system using the bifurcation diagram, where we detected the main nonlinear 
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