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Resumo. Neste trabalho desenvolve-se o estudo de um sistema dinâmico, constituído por dois blocos, 
conectados por molas e amortecedores. Um motor elétrico de corrente contínua do tipo não-ideal, 
isto é, com potência limitada, é acoplado a um dos blocos com o intuito de perturbar o sistema, 
caracterizando um problema não ideal. Uma escolha conveniente dos parâmetros físicos deste 
sistema proporciona condições ressonantes entre suas freqüências naturais e, através de integrações 
numéricas é possível obter oscilações regulares e comportamento caótico, os quais dependem da 
escolha destes parâmetros. Uma solução analítica é obtida através da análise de perturbações, o que 
torna possível uma comparação entre os resultados numéricos e analíticos. 
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1. INTRODUÇÃO 

 
O primeiro relato que se tem a respeito da interação entre um sistema oscilante e a fonte de energia 

é apresentado por Sommerfeld em 1904 (Kononenko, 1969). Em seu experimento, constituído por 
uma mesa e um motor elétrico (o qual servia como fonte de excitação), ele observou que a velocidade 
do motor não era uma função suave que dependia apenas da energia inserida ao sistema. Quando a 
amplitude atingia o seu valor máximo, na região de ressonância, o gasto de energia crescia 
aproximadamente o dobro. Por outro lado, após a ressonância, a amplitude decrescia bruscamente, 
enquanto a velocidade do motor rapidamente crescia. A este fenômeno atribuiu-se o nome de Efeito 
Sommerfeld. Em 1969, Kononenko dedica um livro a este assunto, o qual faz referência a vários 
trabalhos e experimentos na área (Kononenko, 1969).  

Recentemente, a formulação de sistemas dinâmicos como não ideais tem sido explorada de forma 
intensiva.  Balthazar e colaboradores (2003) apresentam uma rica revisão bibliográfica sobre sistemas 



  

não ideais e apresentam vários sistemas mecânicos recentemente analisados com formulações não 
ideais. Uma revisão completa de diferentes teorias sobre sistemas vibrantes não ideais é apresentada.  

Muitas das equações diferenciais que descrevem sistemas vibratórios são não lineares e sua solução 
analítica dificilmente pode ser encontrada. Por esse motivo, o estudo de vibrações em sistemas 
mecânicos geralmente restringe-se a soluções numéricas, baseadas em algorítmos adequados, sujeitas 
a uma condição inicial. Porém, muitas vezes deseja-se encontrar tais soluções a partir de métodos 
analíticos, já que sua existência é garantida pelo teorema da existência e unicidade de soluções de 
equações diferenciais. Este trabalho propõe o uso do método da média para encontrar uma solução 
analítica aproximada de um sistema dinâmico não ideal. Este sistema é constituído por duas massas 
acopladas por molas e amortecedores, e um motor de corrente contínua é acoplado a uma das massas 
com o intuito de perturbar o sistema, como apresentado no esquema do próximo capítulo. Ele foi 
anteriormente apresentado com uma formulação não ideal em (Balthazar et al, 2001). Foi proposta 
uma técnica de controle, usando técnicas de regularização de Tikhonov, para evitar o mal 
condicionamento do problema. Algumas simulações numéricas foram efetuadas, preliminarmente nas 
regiões de ressonância 1:1 e 1:2 em (Guilherme et al, 2001, 2002), (Tsuchida et al, 2003(a), 2003 (b)). 

  

2. APRESENTAÇÃO DO SISTEMA NÃO IDEAL DE DOIS GRAUS DE LIBERDADE 

O sistema não ideal de dois graus de liberdade estudado neste trabalho é apresentado na Fig. (1). 
Investiga-se os regimes de vibração deste sistema dinâmico formado por dois blocos de massas m1 e 
m2, sobrepostos e separados por uma mola de coeficiente de elasticidade k2 e um amortecedor de 
coeficiente de amortecimento c2. O bloco inferior, de massa m1, é sustentado por uma mola e um 
amortecedor de coeficientes k1 e c1 respectivamente, e a este bloco é fixado um motor de potência 
limitada (DC motor), como mostrado na Fig. (1). O motor é dotado de uma massa m0 a uma distância 
r do eixo de rotação, de modo que, quando acionado, gera vibrações e transforma o sistema em um 
problema não ideal. As equações (1) descrevem o movimento do sistema dinâmico apresentado na 
Fig. (1) (Balthazar et al, 2001): 
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sendo a e b parâmetros que definem a potência do motor. Escolhendo-se convenientemente os 
parâmetros físicos, é possível obter as freqüências naturais 1ω  e 2ω  em ressonância. O efeito 
Sommerfeld, que é caracterizado pelo aumento brusco das vibrações, ocorre quando a freqüência ω  
do rotor  coincide com as freqüências naturais do sistema (Guilherme et al, 2001, 2002). Esse 
fenômeno pode ser observado através da passagem pela ressonância, que consiste em variar 



  

continuamente o valor de ω , desde um valor menor até um valor maior que 1ω  e 2ω . Quando 

21 ωω =  (ressonância interna 1:1) temos apenas uma passagem, e em geral, a passagem pela 
ressonância 1:1 (ω  igual à freqüência natural do sistema) é a mais importante (Tsuchida et al, 
2003(a)), mas outras passagens em diferentes ressonâncias podem ser analisadas (Tsuchida et al, 
2003(b)). 

                                         

                                                          

 

 
 

Figura 1. Sistema dinâmico com dois graus de liberdade. Os blocos vibram pela ação da massa 
excêntrica m0 do motor de potência limitada. 

  
 

3. MÉTODO DA MÉDIA 
 

Originalmente criado por Krylov e Bogoliubov, o método da média é um dos métodos que 
podem ser utilizados para obter uma solução analítica de equações diferenciais. Aplicável 
particularmente a problemas em oscilações não lineares, este é um método de perturbação que 
consiste em considerar certas quantidades como funções que variam suavemente no tempo. O 
método da média contém uma grande vantagem: ele permite um maior domínio quanto às regiões de 
estabilidade (ou instabilidade) do sistema dinâmico, a partir do conhecimento analítico de seus 
parâmetros físicos.  Ou seja, a solução é totalmente voltada para a física do problema, facilitando 
assim o entendimento do seu comportamento.  

Pode-se introduzir ao sistema (1) um balanceamento de ordem (Evan-Iwanowski, 1976), 
considerando as forças de amortecimento, as forças de inércia e os momentos de inércia muito 
menores em relação às outras forças e momentos envolvidos no sistema. Considera-se que esses 
termos são pequenos e então introduz-se um pequeno parâmetro ∈ e escreve-se o sistema dinâmico 
(1) na forma matricial: 
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as matrizes de massa, amortecimento e rigidez do sistema adimensional (1). A função vetorial f 
contém os termos não lineares, acoplados e forçados das duas primeiras equações do sistema 
adimensional (1). Pode-se observar que para ∈ = 0, obtém-se um sistema não perturbado, que neste 
caso, apresenta termos acoplados em sua matriz de rigidez k (4). Para aplicar o método da média de 
Krylov-Bogoliubov no sistema dinâmico apresentado na Fig. (1), é conveniente que as equações do 
sistema dinâmico estejam na forma normal. Para remover o acoplamento no lado esquerdo da 
equação (3), introduz-se a coordenada v = [v1  v2]

T , através da transformação linear u = Pv, onde P é 
uma matriz quadrada de ordem 2, cujas colunas pi = [pi1   pi2]

T são os autovetores correspondentes 
aos autovalores λ1 e λ2 de Kpi = ii Mp2ω . O sistema completo com a parte não perturbada 
desacoplada é 
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4. Método da Variação de Parâmetros e o Método da Média 

 
O segundo passo para a aplicação do método da média é transformar o sistema dinâmico (5) na 

forma padrão, utilizando o método da variação de parâmetros. O termo "forma padrão" foi 
introduzido por Bogoliubov e consiste em tomar um sistema na forma (5) e, utilizando o método da 
variação de parâmetros, construir a tranformação s para z, sendo Tvvvvs ][ 2211 ω&&=    as 

coordenadas do sistema original  s&+ Λ s = ∈F (s, s& , t), e  z = [a1 1β&  a2 ωβ2
& ] as coordenadas do 

sistema padrão z& = ∈f (z, t)+ O(∈2).  
As coordenadas ai e iβ&  de z representam as amplitudes e fases das oscilações das coordenadas vi  

e ω  a freqüência de rotação do motor. Assume-se que a solução particular do sistema de equações 
diferenciais (5) é a solução das equações diferenciais homogêneas correspondentes, acrescidas de 
outros termos. Assim, introduz-se as substituições: 
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as quais transformam a variável dependente s na nova variável dependente z. Para ∈=0  considera-se 
que as coordenadas de z são funções que variam suavemente no tempo. Deriva-se as equações em τ  
sob essas considerações. Comparando a derivada de primeira ordem obtida a partir desta derivação, 
com a equação (8 b), obtém-se uma restrição que deve ser aplicada ao sistema. Substituindo esta 
restrição, as equações (8) e a derivada de segunda ordem obtida da equação (8 b) no sistema (5), 
obtém-se o sistema na forma padrão em ϕ :  
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Deseja-se obter uma aproximação de primeira ordem para a solução do sistema (1) sob condições 

de ressonância 1:1. Para isso são introduzidos os parâmetros de sintonia σ1 e σ2, tal que 

112 σωω ∈+=  e 22 σωω ∈+= .  Por simplificação foram adotadas as notações )( 211 σσα +∈−=∈  e 

22 σα ∈−=∈ .  
Pode-se observar que o sistema (9)-(10) determina que as equações diferenciais de ai,  βi  (i=1,2) 

e ω  com relação a ϕ  são pequenas quantidades de ∈. Conseqüentemente, são funções que variam 
suavemente no tempo, e sua solução será da forma: 
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zT = [ A1 ξ1 A2 ξ2 Ω ], yT = [ a1 β1 a2 β2 ω ] são valores constantes que representam a solução 

estacionária do sistema (11)-(12), e ∈U T (z,ϕ ) = [U1(z,ϕ ) U2(z,ϕ ) U3(z,ϕ ) U4(z,ϕ ) U5(z,ϕ )] são 

pequenas funções periódicas de ϕ . Obtém-se  A1, ξ1, A2 , ξ2  e Ω  através das equações médias, isto é, 
expande-se o lado direito das equações (11) e calcula-se a média utilizando a equação 
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Nesta integração T representa o período das equações (9) e A1, ξ1, A2 , ξ2  e Ω  são consideradas 
constantes. As equações médias obtidas são 
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Obtém-se as posições médias de equilíbrio (solução estacionária do sistema médio) fazendo as 

equações médias (13) iguais a zero. Utilizando identidades trigonométricas, após alguns algebrismos, 
obtém-se uma solução estacionária para as amplitudes estacionárias  A1 e  A2  para as fases ξ1 e ξ2:  
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As expressões (17) e (18) são independentes entre si e dependem apenas da freqüência de rotação 

Ω, cuja expressão pode ser obtida de (13 e): 
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Observa-se que a expressão para Ω depende apenas de A2. Para aumentar a precisão da solução, 

usando (11), é preciso encontrar as funções periódicas ∈Ui (A1, ξ1, A2 , ξ2, Ω, ϕ ), para i=1,2,...,5. 
Seguindo o método proposto por Kononenko (1969) expande-se o lado direito das equações (9), 
utilizando (10), nas coordenadas A1, ξ1, A2 , ξ2  e Ω. Essas equações apresentam termos constantes 
e termos harmônicos em ϕ . Integrando esses termos com relação a ϕ  obtém-se as funções ∈Ui 

(A1, ξ1, A2 , ξ2 , Ω, ϕ ), para i=1,2,...,5. Substituindo-as em (11) obtém-se a solução 
 

 

(20) 



  

Voltando às variáveis iniciais do sistema, a dependência do ângulo ϕ  com relação a τ, devido ao 
movimento do motor, é dada pelas equações: 
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Obtém-se então a solução analítica aproximada do sistema normal (5) nas variáveis v1 e v2: 
 

 

(23) 

 
sendo A1, ξ1, A2 , ξ2  e Ω  considerados constantes. As equações (22) e (23) são obtidas com a 
utilização da equação (21), aplicando-se um esquema de sucessivas aproximações. Para obter a 
solução do sistema (1) basta fazer 
 

211 vv +=χ  e  .2221212 vpvp +=χ  
 
onde p21 e p22 são os elementos da segunda linha da matriz P utilizada na transformação linear de 
normalização do sistema (u=Pv). As propriedades característica da solução analítica obtida são a 
presença de harmônicos de 3Ω  nas expressões (23) do movimento oscilatório do sistema e a 
presença de pequenos harmônicos de 2Ω nas expressões (21) e (22), que representam a velocidade 
angular e a coordenada angular do motor, respectivamente. 
 

10. CONCLUSÕES 
 
O objetivo deste trabalho é encontrar uma solução analítica aproximada de um sistema não ideal 

constituído por duas massas, sustentadas por molas e amortecedores, sendo excitado por um motor 
elétrico de corrente contínua que está acoplado a uma das massas. Encontrar a solução numérica tem 
a desvantagem de que esta solução é apenas particular, para alguns valores paramétricos pré-
determinados. Por esse motivo interessa-se por uma solução analítica, a qual permitirá uma vasta 
variabilidade dos parâmetros físicos do problema e, quando aplicado um estudo de estabilidade sobre 
ela, permitirá que essa escolha seja conveniente ao estudo realizado. A técnica de perturbação 
utilizada foi o método da média, que embora trabalhoso tem dado resultados satisfatórios pois em seu 
espaço de estados, ele preserva a topologia do sistema dinâmico original. Pela análise de estabilidade 
da solução obtida pode-se obter o fenômeno do salto e até mesmo bifurcações com a aplicação do 



  

teorema de Sotomayor (Sotomayor, 1986) ou com critérios de estabilidade tais como o critério de 
Routh-Hurwitz. O teorema de Sotomayor estabelece condições para a existência de bifurcações 
estáticas tais como bifurcação sela-nó, transcrítica, ou por quebra de simetria transversal em sistemas 
dinâmicos de primeira ordem tal como o sistema médio. Essas condições são baseadas no sinal de 
derivadas direcionais do sistema. Quando examina-se oscilações forçadas de um sistema não ideal 
uma série de fenômenos podem ser observados, tais como: o fenômeno do salto na curva de 
ressonância; a presença de condições instáveis de oscilações estacionárias na região de ressonância; a 
dependência dessas condições com relação ao sentido de variação de Ω . Outra característica 
intrínsica a esses sistemas é a presença de harmônicos de 3Ω  e 2Ω  nas expressões do movimento 
oscilatório do sistema, da velocidade angular e da coordenada angular do motor. Esta propriedade foi 
observada na solução analítica aproximada, obtida neste trabalho através do método da média. 
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Abstract. In this work develop studies of a system constituted by two blocks connected by springs and 
dampers. The system is excited by a DC motor with limited power supply (Non-Ideal problem), and a 
suitable choose of physical parameters leads to resonance conditions between the natural 
frequencies of the dynamical system. By using numerical integrations we obtain regular and chaotic 
behavior by using suitable physical parameters. An analytical solution is also obtained through 
perturbation analysis with good agreement between with the numerical ones.  
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