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Resumo. Neste trabal ho desenvol ve-se 0 estudo de um sistema dinamico, constituido por doisblocos,
conectados por molas e amortecedores. Um motor elétrico de corrente continua do tipo ndo-ideal,
isto € com poténcia limitada, € acoplado a um dos blocos com o intuito de perturbar o sistema,
caracterizando um problema ndo ideal. Uma escolha conveniente dos parametros fisicos deste
sistema propor ciona condi¢des ressonantes entre suas frequiéncias naturais e, através de integracoes
numéricas é possivel obter oscilacdes regulares e comportamento caético, os quais dependem da
escol ha destes parametros. Uma solucéo analitica é obtida através da analise de perturbacges, o que
torna possivel uma comparacao entre os resultados numeéricos e analiticos.

Palavras—chave: sistemas ndo lineares, sistemas ndo ideais, método da média, poténcia limitada,
ressonancia.

1. INTRODUCAO

O primeiro relato que se tem arespeito dainteracdo entre um sistema oscilante e afonte de energia
€ apresentado por Sommerfeld em 1904 (Kononenko, 1969). Em seu experimento, constituido por
umamesa e um motor elétrico (o qual serviacomo fonte de excitacdo), ele observou que avel ocidade
do motor ndo era uma fungdo suave que dependia apenas da energia inserida ao sistema. Quando a
amplitude atingia o seu valor maximo, na regido de ressonancia, 0 gasto de energia crescia
aproximadamente o dobro. Por outro lado, apds a ressonancia, a amplitude decrescia bruscamente,
enquanto a velocidade do motor rapidamente crescia. A este fendmeno atribuiu-se o nome de Efeito
Sommerfeld. Em 1969, Kononenko dedica um livro a este assunto, o qual faz referéncia a varios
trabal hos e experimentos na érea (K ononenko, 1969).

Recentemente, a formulag&o de sistemas dinamicos como n&o ideais tem sido explorada de forma
intensiva. Balthazar e colaboradores (2003) apresentam umaricarevisao bibliogréfica sobre sistemas



ndo ideais e apresentam varios sistemas mecéanicos recentemente analisados com formulagfes ndo
ideais. Umarevisdo completa de diferentes teorias sobre sistemas vibrantes ndo ideais é apresentada.
M uitas das equagdes diferenciais que descrevem sistemas vibratérios sdo ndo lineares e sua solugdo
analitica dificilmente pode ser encontrada. Por esse motivo, 0 estudo de vibragdes em sistemas
mecanicos geralmente restringe-se a solugdes numeéricas, baseadas em al goritmos adequados, sujeitas
a uma condicdo inicial. Porém, muitas vezes desgja-se encontrar tais solugdes a partir de métodos
analiticos, ja que sua existéncia € garantida pelo teorema da existéncia e unicidade de solucdes de
equacOes diferenciais. Este trabalho propde o uso do método da média para encontrar uma solugdo
analitica aproximada de um sistema dindmico ndo ideal. Este sistema € constituido por duas massas
acopladas por molas e amortecedores, e um motor de corrente continua é acoplado a uma das massas
com o intuito de perturbar o sistema, como apresentado no esguema do préximo capitulo. Ele foi
anteriormente apresentado com uma formulagdo n&o ideal em (Balthazar et al, 2001). Foi proposta
uma técnica de controle, usando técnicas de regularizacdo de Tikhonov, para evitar o0 mal
condicionamento do problema. Algumas simulagctes numeéricas foram efetuadas, preliminarmente nas
regioes deressonancial:1 e 1:2 em (Guilherme et al, 2001, 2002), (Tsuchidaet al, 2003(a), 2003 (b)).

2. APRESENTACAO DO SISTEMA NAO IDEAL DE DOISGRAUSDE LIBERDADE

O sistema néo ideal de dois graus de liberdade estudado neste trabalho é apresentado na Fig. (1).
Investiga-se os regimes de vibragdo deste sistema dinamico formado por dois blocos de massas my e
My, sobrepostos e separados por uma mola de coeficiente de elasticidade k, e um amortecedor de
coeficiente de amortecimento c,. O bloco inferior, de massa my, € sustentado por uma mola e um
amortecedor de coeficientes k; e ¢, respectivamente, e a este bloco € fixado um motor de poténcia
limitada (DC motor), como mostrado na Fig. (1). O motor é dotado de uma massa mp a uma distancia
r do eixo de rotagdo, de modo que, quando acionado, gera vibragoes e transforma o sistema em um
problema ndo ideal. As equacbes (1) descrevem o movimento do sistema dinamico apresentado na
Fig. (1) (Balthazar et &, 2001):
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sendo a e b parametros que definem a poténcia do motor. Escolhendo-se convenientemente os
parémetros fisicos, é possivel obter as frequéncias naturais w1 e W, em ressonancia O efeito
Sommerfeld, que é caracterizado pelo aumento brusco das vibragdes, ocorre quando a freqiéncia w

do rotor coincide com as frequéncias naturais do sistema (Guilherme et a, 2001, 2002). Esse
fenbmeno pode ser observado através da passagem pela ressonancia, que consiste em variar



continuamente o valor de w, desde um valor menor até um valor maior que W, e W,. Quando
W1 =W» (ressonancia interna 1:1) temos apenas uma passagem, € em geral, a passagem pela
ressonancia 1:1 (w igua a frequéncia natural do sistema) € a mais importante (Tsuchida et al,
2003(a)), mas outras passagens em diferentes ressonancias podem ser analisadas (Tsuchida et a,
2003(b)).

I .,

Figura 1. Sistema dinamico com dois graus de liberdade. Os blocos vibram pela acéo da massa
excéntrica mp do motor de poténcialimitada.

3. METODO DA MEDIA

Originalmente criado por Krylov e Bogoliubov, o0 método da média € um dos métodos que
podem ser utilizados para obter uma solugdo analitica de equacbes diferenciais. Aplicavel
particularmente a problemas em oscilagdes ndo lineares, este € um método de perturbacdo que
consiste em considerar certas quantidades como fungdes que variam suavemente no tempo. O
método da média contém uma grande vantagem: ele permite um maior dominio quanto as regides de
estabilidade (ou instabilidade) do sistema dindmico, a partir do conhecimento analitico de seus
parémetros fisicos. Ou sgja, a solucdo é totalmente voltada para a fisica do problema, facilitando
assim o entendimento do seu comportamento.

Pode-se introduzir ao sistema (1) um balanceamento de ordem (Evan-lwanowski, 1976),
considerando as forgas de amortecimento, as forcas de inércia e os momentos de inércia muito
menores em relacdo as outras forcas e momentos envolvidos no sistema. Considerase que esses
termos sd0 pequenos e entdo introduz-se um pequeno pardmetro | e escreve-se o sistema dindmico
(2) naformamatricial:

Mii(t) + Ku(t) = ef(t) — eCult) ©)
' =€eAl+epy] sen g,

sendo u=[c, c,]" o vetor adimensiona de deslocamento do sistema,
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as matrizes de massa, amortecimento e rigidez do sistema adimensional (1). A funcéo vetorial f
contém os termos ndo lineares, acoplados e for¢ados das duas primeiras equacdes do sistema
adimensional (1). Pode-se observar que paral = 0, obtém-se um sistema ndo perturbado, que neste
caso, apresenta termos acoplados em sua matriz de rigidez k (4). Para aplicar o método da média de
Krylov-Bogoliubov no sistema dindmico apresentado na Fig. (1), é conveniente que as equagdes do
sistema dindmico estgjam na forma normal. Para remover o acoplamento no lado esquerdo da
equacio (3), introduz-se a coordenada v = [vi V5] ", através datransformaco linear u = Pv, onde P é
uma matriz quadrada de ordem 2, cujas colunas p; = [pi1  piz] | S0 0s autovetores correspondentes

aos autovalores |1 e |, de Kpi = W°Mp.. O sistema completo com a parte ndo perturbada
desacoplada é
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4. Método da Variacado de Parametrose o Método da M édia

O segundo passo para a aplicacdo do método da média é transformar o sistema dindmico (5) na
forma padrdo, utilizando o0 método da variacdo de parémetros. O termo "forma padrdo” foi
introduzido por Bogoliubov e consiste em tomar um sistema naforma (5) e, utilizando o método da

variagdo de parametros, construir a tranformagdo s para z, sendo s=[v, v, v, V, W]' as
coordenadas do sistema origina s+ L s=1F (s, $,t),e z=[a; b, a b, W] as coordenadas do
sistemapadrao z=1 f (z t)+ O( 2.

As coordenadas a e b, de z representam as amplitudes e fases das oscilagdes das coordenadas vi

e W afreguéncia de rotagcdo do motor. Assume-se que a solugdo particular do sistema de equacdes
diferenciais (5) € a solugdo das equagdes diferenciais homogéneas correspondentes, acrescidas de
outros termos. Assim, introduz-se as substituigoes:

alv; = a; cos(o+ d:). by ;= —a;; sen ([ + ), e) P =@, (8)



as quais transformam a variavel dependente s nanovavariavel dependente z. Paral =0 considera-se
gue as coordenadas de z sdo fungdes que variam suavemente no tempo. Deriva-se as equagdes em t
sob essas consideragdes. Comparando a derivada de primeira ordem obtida a partir desta derivacao,
com a equacdo (8 b), obtém-se uma restricdo que deve ser aplicada ao sistema. Substituindo esta
restricdo, as equacOes (8) e a derivada de segunda ordem obtida da equacgéo (8 b) no sistema (5),
obtém-se o sistemanaformapadrdoem | :
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Desqja-se obter uma aproximagéo de primeira ordem paraa solucdo do sistema (1) sob condigdes
de ressonancia 1:1. Para isso sdo introduzidos os parametros de sintonia S; e Sp, tal que
W, =W,+1 s, ew =w,+1 s,. Por simplificagio foram adotadas asnotagdesi a, =-1 (s, +s,) €
Ta,=-Ts,.

Pode-se observar que o sistema (9)-(10) determina que as equacdes diferenciaisde a, bi (i=1,2)
e W com relacdio aj  sfo pequenas quantidades de T . Conseqiientemente, sio funcdes que variam
suavemente no tempo, e sua solucdo serd da forma:

y=z+1 U(z]) (12)

Z=[Ax1Ax2W],y =[ a by as b, W] so valores constantes que representam a solucéo
estacionéria do sistema (11)-(12), eT U " (zj7) = [Ux(z] ) U2(zj ) Us(zj ) Ua(z,j ") Us(z,j )] SBo
pequenas fungdes periddicas de j— . Obtém-se Ag, X1, Az, X2 € W através das equages médias, isto é,
expande-se o lado direito das equacdes (11) e calcula-se amédia utilizando a equagéo

1, (12)
y =l ?(\)f(y,l ) dj
0



Nestaintegracdo T representa o periodo das equacdes (9) e Ay, X1, A2, X2 € W sdo consideradas
constantes. As equacfes médias obtidas sdo
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Obtém-se as posi¢des médias de equilibrio (solucdo estacionaria do sistema médio) fazendo as
equacBes médias (13) iguaisazero. Utilizando identidades trigonométricas, apos alguns al gebrismos,
obtém-se uma solugdo estaciondria para as amplitudes estacionarias A; e A, paraasfases x; e X:
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(18)
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Asexpressdes (17) e (18) sdo independentes entre si e dependem apenas da frequénciade rotagéo
W, cuja expressao pode ser obtida de (13 e):

(1 — paa) 19
2N ;:{.— [ + 52 + W2 pa) + (1 + 12 + T2 paz)] + )
(1 — pra1)
i : 1+ 4 a2 pi® ' ot 3 »
! Mo - Fla iy | 3 Gl F 7] P TR
BTN Era (1 —pa )| (1 —pa)* @ nz +4a3 p”
Efl.jlf.'? 4 o ._;,_f 2
* |:|"j"—.«}: + (1 — paz)™{m + 12 + M2 P22) ) A; =0

Observa-se que aexpressao para W depende apenas de A,. Para aumentar a precisdo da solugéo,
usando (11), é preciso encontrar as fungdes periddicas T Ui (Aq, X1, Az, X2, W, ), parai=1,2,...,5.
Seguindo o método proposto por Kononenko (1969) expande-se o lado direito das equagdes (9),
utilizando (10), nas coordenadas A4, X1, Az , X2 € W. Essas equagdes apresentam termos constantes
e termos harménicos em j~. Integrando esses termos com relacdo a j~ obtém-se as funcdes 1 U,

(Aq, X1, Ao, X2, W, j7), parai=1,2,...,5. Substituindo-as em (11) obtém-se a solugéo
£
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Voltando as varidveisiniciais do sistema, adependénciado anguloj~ comrelagdo at, devido ao
movimento do motor, € dada pelas equacdes:

iz . B : : 21
L =84 i [ Ay cos(28 + &) + Deds cos(28 + &) (21)
dt 4 )

":- J = s Y = i 1
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Obtém-se entdo a solugdo analitica aproximada do sistema normal (5) nas variaveis v e Vs:
o= Avcos(Qr + &) + gy [P cos(307 + 261) — @u A (m + e + mapn) {Sin(307 + 361)4 (23)
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sendo A1, x1, A2, x2 e W considerados constantes. As equagdes (22) e (23) séo obtidas com a
utilizacdo da equagdo (21), aplicando-se um esguema de sucessivas aproximacdes. Para obter a
solucdo do sistema (1) basta fazer

C, =itV e Co = Pyt PV, -

onde p21 € p2 sd0 0s elementos da segunda linha da matriz P utilizada na transformagéo linear de
normalizacdo do sistema (u=Pv). As propriedades caracteristica da solucéo analitica obtida sdo a
presenca de harmoénicos de 3W nas expressdes (23) do movimento oscilatério do sistema e a
presenca de pequenos harmonicos de 2W nas expressoes (21) e (22), que representam a velocidade
angular e a coordenada angular do motor, respectivamente.

10. CONCLUSOES

O objetivo deste trabalho € encontrar uma solucgéo analitica aproximada de um sistema ndo ideal
constituido por duas massas, sustentadas por molas e amortecedores, sendo excitado por um motor
el étrico de corrente continua que esta acoplado a uma das massas. Encontrar a solugdo numéricatem
a desvantagem de que esta solucdo € apenas particular, para alguns valores paramétricos pré-
determinados. Por esse motivo interessa-se por uma solugdo analitica, a qual permitira uma vasta
variabilidade dos parametros fisicos do problema e, quando aplicado um estudo de estabilidade sobre
ela, permitird que essa escolha seja conveniente ao estudo realizado. A técnica de perturbacéo
utilizadafoi o método da média, que emboratrabal hoso tem dado resultados sati sfatérios pois em seu
espaco de estados, ele preservaatopologia do sistemadindmico original. Pelaanalise de estabilidade
da soluc&o obtida pode-se obter o fendmeno do salto e até mesmo bifurcagdes com a aplicacdo do



teorema de Sotomayor (Sotomayor, 1986) ou com critérios de estabilidade tais como o critério de
Routh-Hurwitz. O teorema de Sotomayor estabelece condi¢bes para a existéncia de bifurcactes
estaticas tais como bifurcagdo sela-no, transcritica, ou por quebra de simetriatransversal em sistemas
din@micos de primeira ordem tal como o sistema médio. Essas condig¢des sdo baseadas no sinal de
derivadas direcionais do sistema. Quando examina-se oscilagdes forgadas de um sistema néo ideal

uma série de fendbmenos podem ser observados, tais como: o fenbmeno do salto na curva de
ressonancia; apresencade condigdesinstévei s de oscilaghes estacionarias naregido deressonancia; a
dependéncia dessas condi¢Bes com relacdo ao sentido de variagdo de W . Outra caracteristica
intrinsica a esses sistemas € a presenca de harmdnicos de 3W e 2W nas expressdes do movimento
oscilatorio do sistema, da vel ocidade angular e da coordenada angular do motor. Esta propriedade foi

observada na solucéo analitica aproximada, obtida neste trabal ho através do método damédia.
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