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Resumo. Este trabalho visa verificar, através do método de Poincaré - Mel 'nikov, a ocorréncia de
caos (cenario homoclinico) em um sistema robotico de dois graus de liberdade, problema, este que
foi objeto de estudo de Nakamura e outros em um trabalho publicado no ano de 1995. Este
trabalho visa verificar analiticamente tais resultados e propor algumas estratégias de controle.
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1. INTRODUCAO

Nakamura e colaboradores implementaram uma simulagdo numérica e validacdo de um sistema
robotico, modelado com dois graus de liberdade (Nakamura et al, 1995). Ao simular numérica e
experimentalmente, o sistema Hamiltoniano associado a este problema, constataram a total
auséncia de irregularidade no comportamento topoldgico deste sistema dinamico.

Neste estudo os autores, ao introduzir uma entrada periddica, verificaram, numericamente, via
mapa de Poincaré, o gradual processo de colapso da integridade do sistema com o aumento da
amplitude do sinal. Este colapso verificado pelos autores (denominado pelos mesmos de
transitividade topologica) é caracterizado pela destruicdo dos toros invariantes do sistema ou, da
mesma forma, da quebra da integrabilidade do mesmo. Com o sistema operando sob tais condigdes,
os autores propdem uma técnica de controle para estabilizar uma dada orbita do mesmo.

O objetivo deste trabalho € o estabelecer as condigdes para a ocorréncia de Orbitas heteroclinicas
(contornos homoclinicos) com vistas a utilizagao do critério de Poincaré - Mel’nikov (Mel’nikov,
1963) para a verificagdo analitica da ocorréncia de caos no cendrio homoclinico. Os detalhes da
metodologia aplicada podem ser encontradas em, por exemplo em ( Guckheimer e Holmes, 1983), (
Wiggins, 1988), ( Dantas e Balthazar, 2002, 2003), ( Koiller, 1985), etc.

1. MODELAMENTO MATEMATICO

Seja o sistema robotico com dois graus de liberdade, definido pela Fig. (1)
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Figura 1: Esquema do rob6 (Nakamura,1995)
onde definem-se os seguintes parametros
_ 2 2 _ _ 2
a = mis + l’l’lzl] + ]1, b = n’l212S2, C = mmS, + 12
si: distancia entre o vinculo e o centro de gravidade do 1 —€simo tramo;
li: distancia entre os vinculos do 1 —€simo tramo;
mi: massa do 1 —€simo tramo;

I;;: momento de inércia do tramo 1.

e cujo Hamiltoniano, entdo, ¢ dado por

~

) aJ2+2bJ ,(J, =J,)cos®, +c(J, —J,)
2(ac b*cos’ 0 )

H:IR’xSxS—IR,

> > N

[SS]

Ji: 1 —€simo momentum generalizado;
H: Hamiltoniana;

0;: 1 —€¢sima posicao generalizada;

Logo, tem-se as equagdes de Hamilton

0
bsen 0,[bJ, cos8, —(a +bcosO, ), JeJ, — (bcosO, +c), ]
(ac —b* cos’ 62)2
LAREN cJ, —(bcos®, —c)J,
ac —b* cos® 0,
0, (aercosez)J2 —bJ, cos 0, —[ch —(bcos, +c)J2]

ac —b* cos” 0,

(M

Q).

3).

Pode-se notar que a integragdo da primeira equagdo de Eq. (3) ¢ trivial (J; = constante). As
equagdes restantes passam, entdo, a envolver efetivamente apenas as variaveis J, e 0, (que sera
representado por 0) o que permite desacoplar a terceira equacao do sistema integrando-a a posteriori



(o sistema possui simetria radial). Chamando t = Jy#/b, J = J,/J;, o = a/b e B=c/b o sistema resultante
adimensional fica:

sen e[cos 0- (oc +cos O)J][B - (cos 0+ B)J]

dlr]_ (oc[?)—cos2 6)2 o de, _ B—(cosO B 4)
dt| o (0.+PB+2cosO)] —cosO—P dt af —cos’ 0 .
af —cos’ 0

Note que o sistema resultante ¢ autonomo e de segunda ordem. Apenas esta constatacdo ja ¢
suficiente para descartar o comportamento cadtico deste sistema pois ¢ demonstravel que sistemas
dindmicos continuos no tempo apresentam irregularidade apenas para ordem igual ou superior a trés
(Guckheimer e Holmes, 1983). Pode-se perceber que o sistema resultante consiste de um fluxo em
um cilindro (IRxS).

6. ESTUDO DA ESTABILIDADE E BIFURCACOES
Os pontos fixos do primeiro sistema de Eq. (4) sdo facilmente determinados pela expressao

{] *:| p+1 J. * -1
1* =la+B+2| ¢ { 2*}2 a+p-2 ().
0, 0 0, .

Faz-se uso, aqui, do Teorema de Hartman — Grobman que permite inferir resultados do fluxo de um
sistema analisando o fluxo linear na vizinhanga de pontos fixos hiperbdlicos. As matrizes
Jacobianas do sistema e suas respectivas equagdes caracteristicas associadas nos pontos fixos, sao
dadas por

0 -
UM (a+B+2) : ! _
D"f([el*D_ atP+2 0 C @ g
af -1 ©)
o 1L |
L) (a+p-2) - 1 B
D"fﬂez*D_ at+p-2 0 © @ ap-2)
af—1

O universo de pardmetros factiveis do sistema ¢ definido como U = {(a., B)EIR2 a>0AB>0}
pois ¢ ai que os mesmos tem algum significado fisico. O conjunto U assim definido pode ser
dividido em subconjuntos segundo a natureza da estabilidade.

Seja o conjunto A = {(a, B)eU: a + B <2}. Analisando os polindmios caracteristicos verifica-se
que os dois pontos fixos sdo do tipo sela hiperbdlica (um subespaco expande e o outro contrai, fato
verificavel pela matriz Jacobiana admitir pares de autovalores reais e opostos: A = = [(1 -
ocB)(oc+B+2)]'l/2 e A=x[({-ap) (2-oc-B)]'1/2). Sendo assim o sistema, para este conjunto de
parametros, ¢ globalmente instavel.

Observagdo: no caso do conjunto B = {(a, B)eU : o + B =2}-{(1,1)} o ponto fixo [J.* 6,*]'
torna-se improprio (Jo*—x) e J;* = (B+1)/4. Os elementos do conjunto B sdo, portanto, pontos de
bifurcagao.



Seja agora C = {(a, B)eU: o+ B>2 A af < 1}. O ponto fixo [J;* 0;*]' permanece como ponto
de sela (A = = [(1 - af)(a+B+2)]"?). Ja [Jo* 0,*]' degenera para um centro (as raizes do polinémio
caracteristico sao imaginarias puras: A =+ j [(1-af}) (o + B - 2)]'1/ )

Observagao: no conjunto 0H = {(a, B)eU : oy =1} ambos pontos fixos sdo singulares (A— + ).
Neste conjunto tem-se que J; = 1/(1+a) e J, = 1/(1-a) para oo # 1 e J, = Y2 para a = 1. Os elementos
de D também sao pontos de bifurcacdo e a bifurcacdo que ai ocorre ¢ do tipo sela — malha ou
homoclinica que € objetivo deste trabalho.

No conjunto H = {(a,, B)eU: aff >1} os pontos trocam de classificagio entre si. [J;* 0,*]' torna-
se centro (A = 1j [(aff - D)(a+B+2)]"?) e [Jo* 0,*]' passa a ser sela hiperbolica (A =+ [(af -1) (o0 +
B- 2)]'1/ %). O conjunto H® = {(a, B)eU : op <1}possui uma singularidade no campo vetorial (ap =
cos°0). Tal singularidade inviabiliza a existéncia de orbitas homoclinicas sob a variedade. Por esta
razdo H € o conjunto de trabalho.

7. DETERMINACAO DAS ORBITAS HOMOCLINICAS

Para a determinacdo do fluxo sdo necessdrias duas integrais. A integral primeira ¢ dada pelo
Hamiltoniano que, adimensional, fica

bH
20
1

ol +2J(J-1)cosO+B(J-1)

h= 2(a[3 —cos’ 6)

J
h:IR xS — IR, LJH (7)

sendo o valor do Hamiltoniano correspondente as 6rbitas homoclinicas (valor sob o ponto de sela)
dado por

_aB-1) +2(B -1 o~ 1) +p(a—1)’
e B2  ap-1) ®

Da Eq. (7) e Eq. (8) determina-se J = J(0) e substituindo na segunda equacao de Eq. (4) tem-se

do \/2/10 (a+2cos 0+p )1

E = i oc[ifcos2 0 (9)

Adotada, por exemplo, a seguinte condicao inicial fica
06(0)=0 (10).

A solucdo na forma de integral explicita fica

(1) af—cos’
t= iJ.O \/2%(0{52 cosnTlB)—l dn (11).

A integral (5.11) ndo tem forma analitica conhecida e fornece implicitamente 6 = 6(t).




Figura 2: Orbitas Homoclinicas do cilindro projetadas no plano para a=2,32 ¢ $=0,92
(Nakamura, 1995)

Os valores adotados para as orbitas acima foram baseados nos valores utilizados por Nakamura
et al, 1995 no ensaio experimental.
Expandindo o campo de Eq. (9) em série de Taylor em torno de zero tem-se

211? ~ Jatp —12)(043— 1)[2 {ngj@ +o(®’ )} (2

Desprezando os termos de ordem superior a 2, a solugao fica

_ ap-1 af+3 (13).
0(t) = 2\/2(a[3+ 3)tanh[ast— I \/ 2o+p —2)}

8. CRITERIO DE POINCARE - MEL’NIKOV

O método utilizado para a verificagdo de comportamento cadtico ¢ o chamado Critério de
Poincaré - Mel nikov.

Em sistemas fracamente perturbados cujo sistema ndo - perturbado associado dispde de Orbitas
homoclinicas a ocorréncia de ferraduras pode ser indicada pela quebra transversa de separatrizes.
Define-se uma fun¢do de Poincaré - Mel’nikov como um estimador da separacdo entre sub —
variedades instaveis e estdveis. Definindo uma fun¢do de Poincaré - Mel’nikov do tipo escalar o
critério de Poincaré - Mel’nikov estabelece que se a fungdo trocar de sinal, ocorrerd quebra
transversal de separatriz.

Para analisar as condi¢des de quebra de separatriz seja uma perturbacao de Eq. (4) do tipo

sent
sg(t)—s{ 0 } 0<e<<l1 (14).

Para esta entrada a funcao de Poincaré - Mel’nikov fica
M(t) = — [ 0(c)sen(t + T)dx (15).

Substituindo (13) em (15) tem-se que



k, = 2{253%@ +B—2)ap-1)

ky =5 op-1) 2(QJBB+_32J

M(t) = -k; sech(k) cossech(k,) cos(t) (16).

A derivada fica
M’(t) = k; sech(k,) cossech(k,) sen(t) (17).

Portanto o sistema de Eq. (4), para uma perturbacao do tipo Eq. (14), tem zeros simples e, por
conseguinte, apresenta ferradura V(a,)eH, ou seja, af > 1 (portanto o+ > 2).

9. CONTROLE

Seja, entdo, o sistema autonomo

sen B[cos 0 — (. +cos0)I[B — (cos 0+ B )]
dld|_ (ap —cos® )
(a+B+2cos0)] —cosO—P
ap—cos’ 0

(18).

+usent

Como provado no item anterior, este sistema possui ferradura. Sistemas deste tipo possuem certas
propriedades (Koiller, 1985). Dentre tais propriedades, sdo enumeradas as seguintes que serdo uteis
para o controle:

a)  Existéncia de um conjunto denso de oOrbitas periddicas instaveis (selas hiperbdlicas);

b)  Existéncia de uma 6rbita densa;

c)  Sensibilidade do sistema.

Pode ser utilizado um controle chaveado segundo o seguinte criério: seja x*(t) = [J*(t) 0*(t)]'
onde x(t) = [J(t) O(t)]' a orbita que se deseja estabilizar. Seja &(t) = x(t) — x*(t), define-se u(§) da
seguinte forma: u(&) = 1 para ||€||< 0 e u(§) = 0 para | € |> 8 sendo & > 0 uma constante. A lei de
controle sera da forma u(§) K(§). Como existe uma 6rbita ndo - periddica densa, existe t > 0 tal que
x(t)eBs(x*(t)). O controle , entdo, estabiliza tal orbita.

Fazendo, novamente, uso do Teorema de Hartman — Grobman, seja a matriz Jacobiana dada por

A
_|a] 08
D"f@‘ o o
o] 00

8f_ sen0 2 (19)
oJ (m[ (ot +cosO)(B +cos@)I — (o + 2B cos O+ cos 0)]

gjg = (OLB ) [[[B - (cos 8 +B)I Jcos B[cos O — (o + cos 0)] -
—sen O[(1+ J)sen 0+ aJ]]+ Jsen® O]cos 0 — (o + cos ) [J(ap — cos® ) —

—4sen’ 0cos OB — (cos 0+ B)I J[cos 0 — (o + cos 0)]]




of, _o+B+2cosH
o] of-cos’0

aa](% = %[ﬂ — 21 )(ap —cos> 0)+2[B +cos B —(c+ P +2cos0)] Jcos 6]

Para estabilizar um ponto fixo pode-se dispor de varias técnicas classicas como alocagdo de
polos, observadores de ordem completa ou reduzida, etc. Como exemplo seja o estado a ser
estabilizado x* = [J 0]'. Chamando a matriz de Eq. (19) de A e supondo B = [1 0]' tem-se que a
matriz de controlabilidade é

A (20).
_ oJ
[B AB]= )
o]

Fazendo uso da Aloca¢do de Polos que tem sido tradicionalmente utilizado para controle de
sistemas caoticos (método OGY, Ott et al, 1993), a matriz de ganhos do sistema ¢é

o9 9
o e )

SRR

; A, A2 <0 (21).

Além desta, poderiam ser utilizados outras técnicas como observadores de estado ou controle 6timo.
No caso de estabilizar orbitas sob toros ressonantes faz-se uso da Teoria de Floquet. Para efeito

de exemplo, o sistema sera estabilizado na orbita [cos(wt) 0]'. Seja & = [J-cos(wt) 0]'. Neste caso Eq.
(19) reduz-se a

o al+Deoston)-p] @2)
D"choséwt)D: B2 (aBo_ !
ap—1

Note que, para estes valores, o sistema linearizado corresponde a conhecida Equag¢do de Mathieu.
Inicialmente seja a matriz de ganho

k, (23).
K'=|, oa(B+1)cos(ot)

2 2
(B —1)
Note que a re - alimentacdo K elimina os termos dinamicos reduzindo o sistema a um invariante no

tempo. Neste caso pode-se aplicar alguma das técnicas classicas de controle como a alocagdo de
polos no sistema na matriz




0 0

a+B+2 |-Blk k] o
aff—1
Assim sendo, por alocacdo de polos tem-se
af-1)A, +A
(B )(1 2) Re(\1), Re(A) < 0 (25).

K= a+B+2
_}\‘17“2

Fazendo uso direto da Teoria de Floquet o problema ¢ estabilizar o mapa: Xp:1(t) = D(T)xy(t)
sendo x,(t) = ®(nt) xo e O(t) o fluxo gerado por Dyf(x(t)). No caso geral ®(t) ndo possui uma
expressao analitica fechada. Um caso particular importante que admite solugdes fechadas é o de
sistemas ditos comutativos (Sinha ef al, 1996). A estabiliza¢dao do mapa pode ser feita por alocacdo
de polos (método OGY). O sistema controlado devera ter como matriz de monodromia a matriz
controlada @(T) — BK' sendo K o ganho que aloca os polos para o interior do circulo de raio
unitario (|Aif, |2 < 1).

Seja a matriz de monodromia do fluxo gerado por Eq. (19)

O O (26).
m):[ " ”},cpfcpﬁ(a,sx)
(PZI (PZZ

Para esta matriz e com B como definido anteriormente tem-se, por aloca¢ao de pdlos, que o ganho ¢é

?y _}“1 +O,, _}“z (27).
K=AA,—90,0,+0, —A, +0, —A
» — 0,0, ((gn 7O, 2 +¢,
21

A técnica proposta por Sinha, 1996 faz uso das chamadas Transformagoes de Lyapunov —
Floquet que transforma um problema peridédico em um problema invariante no tempo. Todo grupo a
um parametro {®} gerado por um campo linear A(t)x(t), A(t) matriz T - periddica pode ser
decomposto como segue: {®} = {LJ®{e"}, ®(t) = L(t)e™ (L(t) T — periddica ¢ C constante
ambas complexas) ou {®@} = {Q®{e"'}, ®(t) = Q(t)e® (Q(t) 2T — periddica e R constante ambas
reais). Note que os grupos {e“'} e {e"} sdo gerados por campos invariantes (Cx(t) e Rx(t)
respectivamente). As matrizes L(t) e Q(t) sdo chamadas matrizes de transforma¢do de Lyapunov —
Floquet e, em geral, ndo podem ser obtidas de forma analitica. A idéia da técnica é propor um
sistema de controle para estabilizar o sistema invariante (<, e®' — 0 para t—). Para isto pode-se
fazer uso das vérias técnicas disponiveis (alocacio de pdlos, observadores, controle 6timo, etc). Em
seguida faz-se a transformagdo inversa obtendo o sistema controlado. Seja a matriz



olt)= {q“(t) d, (t)} (28).

4 (1) q,(t)

Tem-se que R =[In @*(T)]/(27T). Seja R dado por

R = I, I (29).
L, Iy

O ganho da re — alimentagdo do sistema invariante controlado (alocacao de polos) ¢

L, —A 41, —A, (30).
K= }\‘17\'2 -, +1, _}"1 + 1, _7\'2 4t
¢ 12

21

A re — alimentagio do sistema ¢ dada por u(t) = B*Q(t)BK'Q(t)z(t) sendo B* a inversa
generalizada de B.

10. CONCLUSOES

O objetivo deste trabalho foi estabelecer as condi¢des paramétricas para a ocorréncia de caos no
cenario homoclinico pela verificacdo de quebra transversa de separatrizes através do critério de
Poincaré - Mel’nikov.

Num segundo momento o objetivo enfocado foi o controle. Como em sistemas caoticos existe
uma orbita ndo periddica densa, esta permite se faga uma aproximagao arbitraria de qualquer 6rbita
do atrator. Como existe um conjunto denso enumeravel de oOrbitas periddicas instaveis (tipo sela
hiperbolica), pode-se aproximar arbitrariamente da orbita desejada estabilizando uma destas orbitas
periddicas do atrator (pois para qualquer aberto que contém a orbita desejada existirda uma orbita do
sistema cadtico). A estabilizacdo poderia ser realizada, por exemplo, através da Teoria de Floquet
(Nayfeh e Balachandran, 1994) onde o controlador posicionard todos os expoentes caracteristicos
no interior do circulo de raio unitario. Foi escolhida uma orbita arbitraria e estabilizado o sistema na
mesma.

Uma outra direg@o possivel seria acoplar (3) pela adi¢do de acoplamentos de amplitude limitada
(motores de poténcia limitada) nas juntas e analisar as condi¢cdes de quebra da integrabilidade do
sistema.
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Abstract. This work aims at to verify, through the method of Poincaré — Mel 'nikov, the occurrence
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object of study of Nakamura and others in a work published in the year of 1995. This work aims at
to verify such results analytical and to consider some strategies of control.

Keywords. homoclinics orbits, separatrix, stability, robot.


mailto:jeferson@fem.unicamp.br
mailto:jmbaltha@rc.unesp.br

