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Resumo. Este trabalho visa verificar, através do método de Poincaré - Mel’nikov, a ocorrência de
caos (cenário homoclínico) em um sistema robótico de dois graus de liberdade, problema, este que
foi objeto de estudo de Nakamura e outros em um trabalho publicado no ano de 1995. Este
trabalho visa verificar analiticamente tais resultados e propor algumas estratégias de controle.
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1. INTRODUÇÃO

Nakamura e colaboradores implementaram uma simulação numérica e validação de um sistema
robótico, modelado com dois graus de liberdade  (Nakamura et al, 1995). Ao simular numérica e
experimentalmente,  o sistema Hamiltoniano associado a este problema, constataram a total
ausência de irregularidade no comportamento topológico deste sistema dinâmico.

Neste estudo os autores, ao introduzir uma entrada periódica, verificaram,  numericamente, via
mapa de Poincaré, o gradual processo de colapso da integridade do sistema com o aumento da
amplitude do sinal. Este colapso verificado pelos autores (denominado pelos mesmos de
transitividade topológica) é caracterizado pela destruição dos toros invariantes do sistema ou, da
mesma forma, da quebra da integrabilidade do mesmo. Com o sistema operando sob tais condições,
os autores propõem uma técnica de controle para estabilizar uma dada órbita do mesmo.

O objetivo deste trabalho é o estabelecer as condições para a ocorrência de órbitas heteroclínicas
(contornos homoclínicos) com vistas à utilização do critério de Poincaré - Mel’nikov (Mel’nikov,
1963) para a verificação analítica da ocorrência de caos no cenário homoclínico. Os detalhes da
metodologia aplicada podem ser encontradas em, por exemplo em ( Guckheimer e Holmes, 1983), (
Wiggins, 1988), ( Dantas e Balthazar,  2002, 2003), ( Koiller, 1985), etc.

1. MODELAMENTO MATEMÁTICO

Seja o sistema robótico  com dois graus de liberdade, definido pela Fig. (1)
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Figura 1: Esquema do robô (Nakamura,1995)

onde definem-se os seguintes parâmetros

a = m1s1
2 + m2l1

2 + I1,    b = m2l2s2,    c = m2s2
2 + I2                                                                      (1)

si: distância entre o vínculo e o centro de gravidade do i –ésimo tramo;
li: distância entre os vínculos do i –ésimo tramo;
mi: massa do i –ésimo tramo;
Ii: momento de inércia do tramo i.

e cujo Hamiltoniano, então, é dado por

H:IR2×S×S→IR,     
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Ji: i –ésimo momentum generalizado;
H: Hamiltoniana;
θi: i –ésima posição generalizada;

Logo, tem-se as equações de Hamilton
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Pode-se notar que a integração da primeira equação de Eq. (3) é trivial (J1 = constante). As
equações restantes passam, então, a envolver efetivamente apenas as variáveis J2 e θ2 (que será
representado por θ) o que permite desacoplar a terceira equação do sistema integrando-a a posteriori



(o sistema possui simetria radial). Chamando t = J1t/b, J = J2/J1, α = a/b e β=c/b o sistema resultante
adimensional fica:
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Note que o sistema resultante é autônomo e de segunda ordem. Apenas esta constatação já é
suficiente para descartar o comportamento caótico deste sistema pois é demonstrável que sistemas
dinâmicos contínuos no tempo apresentam irregularidade apenas para ordem igual ou superior a três
(Guckheimer e Holmes, 1983). Pode-se perceber que o sistema resultante consiste de um fluxo em
um cilindro (IR×S).

   6. ESTUDO DA ESTABILIDADE E BIFURCAÇÕES

Os pontos fixos do primeiro sistema de Eq. (4) são facilmente determinados pela expressão
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Faz-se uso, aqui, do Teorema de Hartman – Grobman que permite inferir resultados do fluxo de um
sistema analisando o fluxo linear na vizinhança de pontos fixos hiperbólicos. As matrizes
Jacobianas do sistema e suas respectivas equações características  associadas nos pontos fixos, são
dadas por

( )
( )( )

( )
( )( ) 0

21
1e

0
1
2

2
10

*
*J

0
21

1e
0

1
2

2
10

*
*J

2
2

2

2

2
2

1

1

=
−β+α−αβ

−λ



















−αβ
−β+α

−β+α=















θ

=
+β+α−αβ

+λ



















−αβ
+β+α

+β+α
−

=















θ

fD

fD

x

x

                                  (6).

O universo de parâmetros factíveis do sistema é definido como U = {(α, β)∈IR2 : α > 0 ∧ β >0}
pois é aí que os mesmos tem algum significado físico. O conjunto U assim definido pode ser
dividido em subconjuntos segundo a natureza da estabilidade.

Seja o conjunto A = {(α, β)∈U : α + β <2}. Analisando os polinômios característicos verifica-se
que os dois pontos fixos são do tipo sela hiperbólica (um subespaço expande e o outro contrai, fato
verificável pela matriz Jacobiana admitir pares de autovalores reais e opostos: λ = ± [(1 -
αβ)(α+β+2)]-1/2  e   λ = ± [ (1 - αβ) (2-α-β)]-1/2). Sendo assim o sistema, para este conjunto de
parâmetros, é globalmente instável.

Observação: no caso do conjunto B = {(α, β)∈U : α + β =2}-{(1,1)} o ponto fixo [J2* θ2*]t

torna-se impróprio (J2*→∞) e J1* = (β+1)/4. Os elementos do conjunto B são, portanto, pontos de
bifurcação.



Seja agora C = {(α, β)∈U : α + β > 2 ∧ αβ < 1}. O ponto fixo [J1* θ1*]t permanece como ponto
de sela (λ = ± [(1 - αβ)(α+β+2)]-1/2). Já [J2* θ2*]t degenera para um centro (as raízes do polinômio
característico são imaginárias puras: λ = ± j [(1-αβ) (α + β - 2)]-1/2).

Observação: no conjunto ∂H = {(α, β)∈U : αβ =1} ambos pontos fixos são singulares (λ→ ± ∞).
Neste conjunto tem-se que J1 = 1/(1+α) e J2 = 1/(1-α) para α ≠ 1 e J2 = ½ para α = 1. Os elementos
de D também são pontos de bifurcação e a bifurcação que aí ocorre é do tipo sela – malha ou
homoclínica que é objetivo deste trabalho.

No conjunto H = {(α, β)∈U : αβ >1} os pontos trocam de classificação entre si. [J1* θ1*]t torna-
se centro (λ = ±j [(αβ - 1)(α+β+2)]-1/2) e [J2* θ2*]t passa a ser sela hiperbólica (λ = ± [(αβ -1) (α +
β - 2)]-1/2). O conjunto Hc = {(α, β)∈U : αβ ≤1}possui uma singularidade no campo vetorial (αβ =
cos2θ). Tal singularidade inviabiliza a existência de órbitas homoclínicas sob a variedade. Por esta
razão H é o conjunto de trabalho.

   7. DETERMINAÇÃO DAS ÓRBITAS HOMOCLÍNICAS

Para a determinação do fluxo são necessárias duas integrais. A integral primeira é dada pelo
Hamiltoniano que, adimensional, fica
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sendo o valor do Hamiltoniano correspondente às órbitas homoclínicas (valor sob o ponto de sela)
dado por
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    Da Eq. (7) e Eq. (8) determina-se J = J(θ) e substituindo na segunda equação de Eq. (4) tem-se
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Adotada, por exemplo, a seguinte condição inicial fica

θ(0) = 0                                                                                                                                       (10).

A solução na forma de integral explícita fica
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A integral (5.11) não tem forma analítica conhecida e fornece implicitamente θ = θ(t).
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Figura 2: Órbitas Homoclínicas do cilindro projetadas no plano para α=2,32 e β=0,92
(Nakamura, 1995)

Os valores adotados para as órbitas acima foram baseados nos valores utilizados por Nakamura
et al, 1995 no ensaio experimental.

Expandindo o campo de Eq. (9) em série de Taylor em torno de zero tem-se
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Desprezando os termos de ordem superior a 2, a solução fica
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8. CRITERIO DE POINCARÉ - MEL’NIKOV

O método utilizado para a verificação de comportamento caótico é o chamado Critério de
Poincaré - Mel’nikov.

Em sistemas fracamente perturbados cujo sistema não - perturbado associado dispõe de órbitas
homoclínicas a ocorrência de ferraduras pode ser indicada pela quebra transversa de separatrizes.
Define-se uma função de Poincaré - Mel’nikov como um estimador da separação entre sub –
variedades instáveis e estáveis. Definindo uma função de Poincaré - Mel’nikov do tipo escalar o
critério de Poincaré - Mel’nikov estabelece que se a função trocar de sinal, ocorrerá quebra
transversal de separatriz.

Para analisar as condições de quebra de separatriz seja uma perturbação de Eq. (4) do tipo
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,     0 < ε << 1                                                                                                     (14).

Para esta entrada a função de Poincaré - Mel’nikov fica

M(t) = ( ) ( )∫
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Substituindo (13) em (15) tem-se que



( )( )12
3
12k1 −αβ−β+α







+αβ
−αβπ=

( ) 







+αβ
−β+α

−αβπ=
3
221

4
k 2

M(t) = -k1 sech(k2) cossech(k2) cos(t)                                                                                        (16).

A derivada fica

M’(t) = k1 sech(k2) cossech(k2) sen(t)                                                                                        (17).

Portanto o sistema de Eq. (4), para uma perturbação do tipo Eq. (14), tem zeros simples e, por
conseguinte, apresenta ferradura ∀(α,β)∈H, ou seja, αβ > 1 (portanto α+β > 2).

9.  CONTROLE

Seja, então, o sistema autônomo
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Como provado no item anterior, este sistema possui ferradura. Sistemas deste tipo possuem certas
propriedades (Koiller, 1985). Dentre tais propriedades, são enumeradas as seguintes que serão úteis
para o controle:

a) Existência de um conjunto denso de órbitas periódicas instáveis (selas hiperbólicas);
b) Existência de uma órbita densa;
c) Sensibilidade do sistema.
Pode ser utilizado um controle chaveado segundo o seguinte criério: seja x*(t) = [J*(t) θ*(t)]t

onde x(t) = [J(t) θ(t)]t a órbita que se deseja estabilizar. Seja ξ(t) = x(t) – x*(t), define-se u(ξ) da
seguinte forma: u(ξ) = 1 para ||ξ||≤ δ e u(ξ) = 0 para ξ> δ sendo δ > 0 uma constante. A lei de
controle será da forma u(ξ) K(ξ). Como existe uma órbita não - periódica densa, existe t > 0 tal que
x(t)∈Bδ(x*(t)). O controle , então, estabiliza tal órbita.

Fazendo, novamente, uso do Teorema de Hartman – Grobman, seja a matriz Jacobiana dada por
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Para estabilizar um ponto fixo pode-se dispor de várias técnicas clássicas como alocação de
pólos, observadores de ordem completa ou reduzida, etc. Como exemplo seja o estado a ser
estabilizado x* = [J θ]t. Chamando a matriz de Eq. (19) de A e supondo B = [1 0]t tem-se que a
matriz de controlabilidade é
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Fazendo uso da Alocação de Pólos que tem sido tradicionalmente utilizado para controle de
sistemas caóticos (método OGY, Ott et al, 1993), a matriz de ganhos do sistema é
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Além desta, poderiam ser utilizados outras técnicas como observadores de estado ou controle ótimo.
No caso de estabilizar órbitas sob toros ressonantes faz-se uso da Teoria de Floquet. Para efeito

de exemplo, o sistema será estabilizado na órbita [cos(ωt) 0]t. Seja ξ = [J-cos(ωt) θ]t. Neste caso Eq.
(19) reduz-se a
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Note que, para estes valores, o sistema linearizado corresponde à conhecida Equação de Mathieu.
Inicialmente seja a matriz de ganho
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Note que a re - alimentação K elimina os termos dinâmicos reduzindo o sistema a um invariante no
tempo. Neste caso pode-se aplicar alguma das técnicas clássicas de controle como a alocação de
pólos no sistema na matriz
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Assim sendo, por alocação de pólos tem-se
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Fazendo uso direto da Teoria de Floquet o problema é estabilizar o mapa: xn+1(t) = Φ(T)xn(t)
sendo xn(t) = Φ(nt) x0 e Φ(t) o fluxo gerado por Dxf(x(t)). No caso geral Φ(t) não possui uma
expressão analítica fechada. Um caso particular importante que admite soluções fechadas é o de
sistemas ditos comutativos (Sinha et al, 1996). A estabilização do mapa pode ser feita por alocação
de pólos (método OGY). O sistema controlado deverá ter como matriz de monodromia a matriz
controlada Φ(T) – BKt sendo K o ganho que aloca os pólos para o interior do círculo de raio
unitário (|λ1|, |λ2| < 1).

Seja a matriz de monodromia do fluxo gerado por Eq. (19)
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Para esta matriz e com B como definido anteriormente tem-se, por alocação de pólos, que o ganho é
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A técnica proposta por Sinha, 1996 faz uso das chamadas Transformações de Lyapunov –
Floquet que transforma um problema periódico em um problema invariante no tempo. Todo grupo a
um parâmetro {Φt} gerado por um campo linear A(t)x(t), A(t) matriz T - periódica pode ser
decomposto como segue: {Φt} = {Lt}⊕{eCt}, Φ(t) = L(t)eCt (L(t) T – periódica e C constante
ambas complexas) ou {Φt} = {Qt}⊕{eRt}, Φ(t) = Q(t)eRt (Q(t) 2T – periódica e R constante ambas
reais). Note que os grupos {eCt} e {eRt} são gerados por campos invariantes (Cx(t) e Rx(t)
respectivamente). As matrizes L(t) e Q(t) são chamadas matrizes de transformação de Lyapunov –
Floquet e, em geral, não podem ser obtidas de forma analítica. A idéia da técnica é propor um
sistema de controle para estabilizar o sistema invariante (eCt, eRt → 0 para t→∞). Para isto pode-se
fazer uso das várias técnicas disponíveis (alocação de pólos, observadores, controle ótimo, etc). Em
seguida faz-se a transformação inversa obtendo o sistema controlado. Seja a matriz
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Tem-se que R = [ln Φ2(T)]/(2T). Seja R dado por
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R                                                                                                                   (29).

O ganho da re – alimentação do sistema invariante controlado (alocação de pólos) é
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                                                                     (30).

A re – alimentação do sistema é dada por u(t) = B*Q(t)BKtQ-1(t)z(t) sendo B* a inversa
generalizada de B.

10. CONCLUSÕES

O objetivo deste trabalho foi estabelecer as condições paramétricas para a ocorrência de caos no
cenário homoclínico pela verificação de quebra transversa de separatrizes através do critério de
Poincaré - Mel’nikov.

Num segundo momento o objetivo enfocado foi o controle. Como em sistemas caóticos existe
uma órbita não periódica densa, esta permite se faça uma aproximação arbitrária de qualquer órbita
do atrator. Como existe um conjunto denso enumerável de órbitas periódicas instáveis (tipo sela
hiperbólica), pode-se aproximar arbitrariamente da órbita desejada estabilizando uma destas órbitas
periódicas do atrator (pois para qualquer aberto que contém a órbita desejada existirá uma órbita do
sistema caótico). A estabilização poderia ser realizada, por exemplo, através da Teoria de Floquet
(Nayfeh e Balachandran, 1994) onde o controlador posicionará todos os expoentes característicos
no interior do círculo de raio unitário. Foi escolhida uma órbita arbitrária e estabilizado o sistema na
mesma.

Uma outra direção possível seria acoplar (3) pela adição de acoplamentos de amplitude limitada
(motores de potência limitada) nas juntas e analisar as condições de quebra da integrabilidade do
sistema.
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