DESENVOLVIMENTO DE UM MODELADOR DE SOLIDOS B-REP
UTILIZANDO PROGRAMACAO GENERICA

Marcos de S. G. Tsuzuki

Nelson Vogel

Escola Politécnica da Universidade de Sao Paulo

Departamento de Engenharia Mecatronica e de Sistemas Mecanicos

CEP 05508-900, Sao Paulo, SP, Brasil. E-mail: mtsuzuki@usp.br

Resumo. Neste trabalho é apresentado o USPDesigner, um modelador de solidos baseado na
estrutura B-Rep (Boundary Representation) que utiliza diversos elementos da programacdo genérica e
STL C++. O objetivo é tornar esse modelador uma ferramenta reutilizavel, na qual possam ser criadas
com facilidade novas features. Estaremos definindo um ambiente onde sera possivel solucionar uma
serie de problemas geométricos. O usuario (programador) terd que se preocupar apenas com a logica
relacionada a seu problema especifico, aproveitando todas as outras fungoes existentes no
USPDesigner. A principal contribui¢do deste trabalho esta relacionada as features do modelador:
trabalhos semelhantes, tais como o CGAL (The CGAL Consortium, 1999) e o GrAL (Berti, 2002;
Kettner, 2003), oferecem uma reutilizagdo bastante efetiva, porém em nenhum destes trabalhos
encontramos uma estrutura de dados tdo completa como a que estd sendo implementada. Um exemplo
interessante desta capacidade diferenciada do USPDesigner ¢ o cdlculo do volume apresentado no
trabalho, que se torna extremamente simples e eficiente com o uso da estrutura B-Rep e da
programagdo genérica.

Palavras-chave: Programagdo genérica, CAD, modelagem de sdlidos
1. INTRODUCAO

Funcionalidades geométricas sdo cruciais para uma grande variedade de aplicagdes, incluindo
engenharia mecanica. Por funcionalidades geométricas podemos compreender como sendo processos
que englobem Modelagem de Sélidos e Modelagem Geométrica.

Geralmente, processamentos geométricos estdo embutidos no contexto de um problema maior.
Devido a diversidade dos processos geométricos, diversas ferramentas devem ser combinadas para
obter a solugdo desejada. A implementacdo de algoritmos geométricos ¢ dificil e demanda um grande
tempo, portanto a reutilizacdo ¢ altamente desejavel. Infelizmente, implementagdes tradicionais estao
intimamente amarradas a decisdes que ndo permitem a sua utilizacdo em contextos distintos.

Propostas convencionais de implementacdo de ferramentas geométricas costumam apresentar
problemas de eficiéncia, manutengdo, escalabilidade e qualidade, pois estdo limitadas a copiar dados
via uma API (ou para um arquivo), e acionando uma rotina externa (ou aplicacdo) implementando a
funcionalidade desejada.

A biblioteca CGAL ¢ uma proposta que tornou a reutilizagdo efetiva, mas no CGAL possuimos
apenas um conjunto muito basico de elementos de Modelagem de Solidos. O Modelador de Solidos
USPDesigner (que ¢ o objeto de nosso estudo) utiliza muito do STL C++ e da proposta de padroes de
projeto (Gamma et. al., 1994).

Por exemplo, o USPDesigner podera utilizar aritmética de ponto flutuante ou aritmética intervalar.
Caso se deseje uma nova aritmética, serd necessario definir um conjunto de classes que possam ser
adaptadas ao framework. A fim de garantir o bom desempenho do sistema, estamos incluindo a
possibilidade de definir a estratégia de gerenciamento de memoria: proprio windows, gerenciamento
proprio sem memoria virtual e gerenciamento proprio com memoria virtual. Também utilizaremos os
padrdes de projeto Factory, SmartPointer e Iterator que garantem o uso correto e eficiente da memoria.

Um outro fator importante neste projeto serd a defini¢do de um padrdo para que novas fungdes
sejam acrescentadas ao USPDesigner e para isto estamos utilizando os padrdes de projeto Command e
Mediator. Algumas fungdes podem requerer uma certa interacdo com o usuario para que ele defina os
parametros para o seu acionamento, esta interagdo também esta sendo encapsulada nos padrdes criados,
de modo que o desenvolvedor fique ocupado apenas nas atividades mais importantes para si.

Caso sejam criados complementos a estruturas de dados, eles devem estar associados a Functors
para que ndo ocorra nenhuma modificagdo no moédulo de UNDO e REDO. O USPDesigner esta sendo
implementado para o ambiente Windows e possui saida grafica pelo OpenGl. toda a interagao grafica
ocorre através de APIs do OpenGl, tanto para visualizacdo de saida como sele¢do de elementos
(vértices, arestas, faces ou solidos completos). Esperamos através deste projeto facilitar a sua
reutilizag@o, sua manuten¢ao e a criacao de novas fungoes.

Nesse artigo inicialmente serd detalhada a estrutura B-Rep, base tedrica para a estrutura de dados do
modelador. Depois sera fornecida uma visao geral do modelador, focando nos requisitos de projeto. Em
seguida serdo explorados alguns dos recursos que o modelador oferece, iniciando pela interagdo
homem maquina que foi criada por meio de comandos e menus (classes Command e Mediator), o uso
de Functors para as fungdes de UNDO e REDO, e o mapeamento entre os objetos do USPDesigner
com a interface OpenGL. Também sera explicado o uso do SmartPointer que foi adotado para garantir
o uso correto da memoria e ponteiros. No final do trabalho ¢ relatado um exemplo pratico: o calculo de
volume de um so6lido, mostrando como o USPDesigner consegue implementar de maneira bastante
simples funcionalidades que sdao aparentemente complexas.

2. ESTRUTURA B-REP

A representagdo B-Rep armazena detalhes de como as faces, arestas e vértices de um solido se
unem para representar um so6lido (Mantyld, 1988; Tzusuki, 2002). Um sdlido representado em modelo
B-Rep deve possuir, por exemplo, a capacidade de descrever como cada face estd conectada as suas
faces adjacentes, de modo a formar um volume totalmente fechado no espaco.

Os trés tipos de elementos basicos de um solido (face, aresta e vértice) e a informacdo geométrica
relacionada aos mesmos formam os constituintes bésicos dos modelos B-Rep. Junto com as
informacdes geométricas, como equagdes do plano das faces e coordenadas de vértice, um modelo B-
Rep deve também representar a relagdo entre as faces, arestas e vértices. Normalmente as informagdes
geométricas dos elementos de um so6lido sdo denominadas por geometria do modelo B-Rep, enquanto
as informacdes sobre o compartilhamento dos elementos basicos sdo denominadas informalmente por
topologia do modelo. Pode-se dizer que a topologia funciona como uma goma onde as informagdes
geométricas sdo aglutinadas; ou entdo que “as informagdes topologicas criam um vigamento no qual as
informagdes geométricas sdo posicionadas”.

ListSolid

Edge

Mext

Mext

Halfedge Halfedge

/

Figura 1. Representagao através de half-edges.

Next

Next

Next

Figura 2. Vista hierarquica da estrutura half-edge.

2.1. Estrutura de Dados

No USPDesigner a estrutura de dados se baseia na aresta como elemento de referéncia. Para este
tipo de estrutura se destacam a "winged-edge" e a half-edge (esta utilizada no USPDesigner). Na
estrutura "winged-edge", as arestas assumem duas fung¢des principais: dividir o contorno direcional das
faces e definir a conectividade entre os elementos primitivos por meio de informacdes de adjacéncia da
aresta de referéncia. Porém, do ponto de vista computacional, este ¢ o ponto mais negativo da estrutura
"winged-edge". Esta deficiéncia ¢ clara, em particular, quando o circuito direcional de arestas de uma
face deve ser obtido pelo procedimento que percorre seqiiencialmente todas as arestas que o compdem.
A necessidade deste algoritmo surge com muita freqiiéncia em operagdes graficas e geométricas
aplicadas ao sélido representado.

Para resolver esta deficiéncia, a estrutura meia-aresta foi proposta; onde as duas principais fungdes
da aresta foram separadas. Esta separa¢do foi obtida pela divisdo de cada "winged-edge" em duas
metades. A conectividade entre ambas as metades ¢ mantida por um ponteiro que referencia a metade
oposta. Na estrutura half-edge, cada metade da aresta participa em apenas um circuito de arestas,
portanto, cada metade possui apenas uma Unica orientacdo. Globalmente, cada aresta de referéncia ¢
referenciada duas vezes em direcdes opostas pelos circuitos de arestas que contornam as duas faces
adjacentes. A Figura (1) ilustra a representacao half-edge.

Em cada estrutura half-edge estd sendo representada a metade das informagdes de adjacéncia da

estrutura winged-edge. Cada half-edge possui apenas uma orientagdo, e cada face possui um circuito
direcional de half-edges. Devido ao formalismo das Operagdes Booleanas, ao combinarmos dois
solidos por uma Operacdo Booleana, o resultado serd sempre apenas um sélido. Entretanto, mesmo em
situacdes especiais, onde o resultado da Operacdo Booleana aparenta apresentar dois solidos, o
resultado ¢ considerado como sendo apenas um so6lido. Cada uma das partes do sélido resultante ¢é
considerada um Shell.
Alteragdes na estrutura de dados half-edge de maneira a suportar faces com mais de um contorno nao
afetar@o a estrutura B-Rep ao nivel de aresta, mas sim, ao nivel de face. Uma técnica muito comum ¢
adicionar uma estrutura de tamanho fixo chamada lago (loop) que ¢ associada a cada contorno da face.
A estrutura lago simplesmente fornece a estrutura face um mecanismo para manter uma lista ligada de
ponteiros para os seus multiplos contornos. Cada face possui um lago externo e zero ou mais lagos
internos. A Figura (2) ilustra a hierarquia da estrutura half-edge resultante.

2.2. Operadores de Euler

Por conterem informagdes sobre as adjacéncias entre os elementos primitivos, a estrutura
computacional anteriormente exposta ¢ bastante complexa e a sua manipulacdo exige muitos cuidados
para que a consisténcia dos dados seja mantida. Para contornar este problema, um conjunto de
operadores foi desenvolvido com o objetivo de tornar a manipulacdo das estruturas de dados da
representacdo B-Rep mais intuitiva. Eles permitem que a construcdo do sélido possa ser executada
passo a passo, escondendo todos os detalhes de implementagdo da estrutura de dados. Estes operadores
formam o segundo nivel de representacdo do modelador. A equagdo de Euler-Poincaré diz que um
solido poliédrico € topologicamente valido se a relagdo mostrada na Eq. (1) entre as suas quantidades
de elementos for verificada:

v—e+2f=2s—h)+1 (1)

onde v ¢ o nimero de vértices do soélido, e o numero de arestas, f o nimero de faces, s 0 nimero

de shells, # o nimero de furos e / o nimero de lagos. A forma mais conhecida na literatura da equagao
de Euler-Poincaré supde ainda a existéncia de » anéis no solido, onde » =/— f'. Resulta na Eq. (2):

v—e+ f=2s—h)+r (2)

Viérios autores demonstram que seis operadores sdo suficientes para construir todos os objetos.
Enquanto estes seis operadores podem ser escolhidos de varias maneiras, consideragdes de
modularidade e independéncia criaram apenas pequenas variagdes na colecao encontrada na literatura.
A seguir foram selecionados e estdo descritos os seis operadores mais comumente utilizados na
literatura.

e MVSF (Make Vertex Solid Face): este operador cria um solido inicial com apenas uma face e um
veértice;

e MEV (Make Edge Vertex): este operador adiciona a um sélido uma aresta e um vértice. A aresta ¢
criada conectando-se um vértice ja existente ao novo vértice criado;

e MEF (Make Edge Face): este operador adiciona ao sélido uma aresta e uma face. A face ¢ criada
pela divisdo de uma face ja existente acrescentando-se a nova aresta;

e KEMR (Kill Edge Make Ring): este operador divide o contorno de uma face em dois lagos pela
remocao de uma aresta-ponte;

e KFMRH (Kill Face Make Ring Hole): nenhum dos operadores discutidos anteriormente ¢ capaz de
modificar as propriedades topoldgicas globais da estrutura de dados, como dividir um sélido em
dois componentes ou criar um furo passante. O operador KFMRH possui este objetivo;

e MSFKR (Make Shell Face Kill Ring): este ¢ outro operador que manipula informacgdes globalmente.
Ele transforma o anel de uma face em uma nova face, e todo o conjunto de faces associadas a nova
face constituird um novo shell;

3. VISAO GERAL

No topico anterior descrevemos a estrutura B-Rep e os operadores de Euler. Esses dois elementos
s30 a base para o nosso modelador, do qual podemos ter uma visao geral na Figura (3).

3.1. Requisitos do sistema

Os seguintes requisitos estdo sendo considerados durante o projeto:

Visualizagio e mnteragio |
na tela (inclusive pick-select) |

Comandos de usudno | Memus de opgies
{Command) | (Medhiator)
o

| Formas basicas Mampulagio de solidos
(box, sphere, torus.) (eut, move, boolean.)

Operadores de Enler | | Elementos basicos Classes awaliares
(MEV, MEF, ..) | (vertices, arestas, faces) (matnzes, geom mnter, .)

Figura 3. Visdo geral da arquitetura do USPDesigner.

Flexibilidade: Iniciamos a defini¢do da estrutura de dados do modelador com a utilizagdo da
representacao B-Rep e o uso das half-edges.

Performance: Diversos elementos foram definidos como objetos Singletons, que
garantidamente podem ser instanciados apenas uma vez. O uso intenso de ponteiros ¢ outro
fator que contribui para o melhor desempenho do sistema, porém traz também o risco de se
utilizar de forma incorreta a memoria do sistema. Os SmartPointers (Alexandrescu, 2001) torna
o uso de ponteiros mais simples e seguro, associando uma semantica a sua utilizagao.
Reutilizacdo: O grando sucesso do STL ¢ a principal prova da contribui¢do que a programacao
genérica trouxe para o C++. O uso de listas de objetos, de forma independente do contetido do
objeto, e de Iterator tornam o sistema facil de aprender, dar manutencdo e evoluir com novas
features.

3.2. Elementos basicos

Cada elemento bésico ¢ definido por uma classe. Nesta classe temos uma lista de elementos mais

4

simples. Abaixo, temos a definicdo da classe TSolid que possui uma lista de elementos regides. E
possivel observar que todo elemento possui um identificador para permitir o seu acesso. Nesta classe
existem métodos para adicionar, recuperar e remover regioes.

template <class T>

class TSolid : THierarchicalElement<T> {

public:

class iterator : public CSmartIterator<TRegion<T> > {
public:
iterator() {}:;
iterator (const list<PtrRegion>::iterator it)
CSmartIterator<TRegion<T> >(it) {};

~iterator() {}:;

}i

iterator begin(void) ;

iterator end(void);

void addRegion (PtrRegion r);

int delRegion (PtrRegion r);

int delRegion(const ID rn);

PtrRegion getRegion(const ID rn) const;

Private:

ID solidno; /* solid identifier */
list<PtrRegion> sregions; /* pointer to list of region */

3.3. Operadores de Euler

Os operadores de Euler sdao utilizados de maneira bastante intensiva. Para se criar um cubo ¢
necessario acionar inicialmente cinco Operadores de Euler e depois fazer o processo de extrusdo, que
por si so requer mais dez Operadores. Entretanto, ndo necessitamos mais que uma instancia de cada
Operador de Euler. Tendo em vista essa caracteristica, para garantir o bom desempenho do sistema, os
operadores de Euler foram implementados na forma de Singleton.

Cada operador de Euler foi implementado em dois niveis: alto e baixo. No nivel mais alto, ¢
necessario informar os identificadores dos elementos a serem manipulados desvinculando o seu acesso
dos ponteiros. No nivel mais baixo ¢ necessario informar os ponteiros para os elementos a serem
manipulados. Ambos os niveis ndo necessarios, o primeiro permite programar a nivel de interpretagao
de codigo, e o segundo nivel melhora o desempenho de velocidade por acessar diretamente os
ponteiros. A listagem abaixo mostra como exemplo a codificacdo da classe que implementa o Operador
MEYV (Make Edge Vertex).

template <class T>
class TMEV: public TEulerOperator<T> {

typedef auto_ptr<TMEV> TMEVPtr;

static TMEVPtr & get_ instance() {
static TMEVPtr Singleton(new TMEV) ;
return Singleton;

}s

friend class auto_ ptr<TMEV>;

TMEV (const TMEV &) ;

TMEV & operator = (const TMEV &) ;

protected:
TMEV() { };
~TMEV() { };

public:
static TMEV & instance() { return *get instance(); };
static const TMEV * const_instance() { return instance(); };
int high(const ID sn, const ID fn, const ID vl, const ID v2, const T &x, const T &y, const T &z);
void low(PtrHalfEdge hel, PtrHalfEdge he2, const ID vn, const T &x, const T &y, const T &z);

};

3.4. Criando um solido

Como criar um so6lido a partir de Operadores de Euler? Os so6lidos mais comuns e conhecidos ja
estdo implementados no modelador, e outros podem ser facilmente desenvolvidos no USPDesigner.
Como exemplo, na listagem abaixo ¢ criado um cubo. Para cria-lo ¢ necessario fornecer as dimensdes
do cubo, o seu posicionamento no espago tridimensional e o seu identificador.

template <class T>
ID TBox<T>::low(const T &a_, const T &b_, const T &c_,
const T &x_, const T &y_, const T &z , const ID sn) {
Ta=a -x/2; Tb=b_-y /2; Tc=c_-2z_/2;
T x=x_, y=Y_, 2z=Z_;

TMVSF<T>: :instance() .high (0,
TMEV<T>: :instance () .high(sn,
TMEV<T>: :instance () .high(sn,
TMEV<T>: :instance () .high(sn,
TMEF<T>: :instance () .high(sn,

0, a, br c);

1, a + x, b, c);

2, a+x, b+y, c);
3, a, b+y, c);

0, 1);

oOoooo
wMhHr OO

PtrSolid s = TListSolid<T>::instance() .getSolid(sn) ;
PtrFace fac = s->getFace(l);
MSD_lowMakeSweep<T>(fac, 0, 0, z);

return sn;

1257wt [move 1 20 -4 Lt pustom. [Griecs oo

Figura 4. Interface do USPDesigner.
4. INTERACAO HOMEM-MAQUINA

O USPDesigner dispde de um ambiente de visualizagdo e interagdo com os objetos criados. E nesse
ambiente que o usudrio aciona os comandos e analisa o resultado das fungdes. O OpenGl estd sendo
utilizado por meio das bibliotecas GLUI e GLUT. O OpenGl estd sendo utilizado para exibicdo e
selecdo dos objetos. Atualmente o software estd sendo compilado no ambiente Windows utilizando o
Visual C++ 6.0. A Figura (4) mostra a tela do USPDesigner. As fungdes do USPDesigner podem ser
acionadas por duas maneiras: por linha de comando ou por menu. Serda mostrado como disponibilizar
uma fun¢do para o usudrio. A classe Command possui esta responsabilidade de disponibilizar a fungdo
para ser executada como um comando, e a classe Mediator ¢ responsavel por associar o comando a
uma posi¢ao do menu.

4.1. Command

A classe Command (Gamma et. al., 1994) ¢ um padrdo de projeto que possibilita criar novos
comandos de maneira facil e consistente. Geralmente, cada comando deve receber um determinado
nimero de parametros de entrada. O numero de pardmetros e seu tipo variam de acordo com cada
comando. Por exemplo, uma linha pode ser criada fornecendo-se as coordenadas dos dois vértices, ou
seja, seis nimeros. Uma esfera pode ser criada passando como pardmetro o ponto central e o raio, € 0
numero de divisdes, portanto quatro niimeros de ponto flutuante e um inteiro. Desta maneira, a classe
Comand encapsula a transferéncia de parametros para acionamento do comando, tanto em quantidade
como tipos. Na listagem abaixo podemos observar a defini¢ao da classe comando que criar uma esfera.

template <class T>
class TCmdSphere : public TCommand<T> {
protected:
typedef TCmdSphere* TCmdSpherePtr;
TCmdSphere () ;
~TCmdSphere() { };

public:
static TCmdSpherePtr pp;
static TCmdSpherePtr & instance();

virtual bool verify();
virtual void run(char *command) ;
virtual void run();

A fungdo verify contém a ldgica que permite a execu¢do do comando, inclusive verificando se os
parametros foram corretamente definidos. A fun¢do run(char* command) interpreta a linha de
comando fornecida pelo usudrio, e por ultimo a fungao run (void) executa efetivamente o comando.

4.2. Mediator

Complementando a classe Command, o Mediator tem o papel de criar os menus e janelas de
opgcdes, para que o usuario utilize o USPDesigner. A hierarquia de menus deve ser intuitiva para que o
usuario possa encontrar facilmente as fungdes que procura. E importante ressaltar que a hierarquia hoje
utilizada ¢ apenas sugestiva e pode ser alterada, até porque quando forem criadas novas fungdes, serd
possivel inclui-las em menus existentes ou posiciona-la em novos itens de menu. Para incluir um
comando na estrutura de menus, basta definir uma classe Mediator. No construtor dessa classe deve ser
informado em qual menu e sub-menu o comando deve ser incluso. Na listagem abaixo ¢ ilustrado o
Mediator do comando “sphere”. A fung¢do run(void) é que cria os elementos graficos para que os
parametros para a execu¢do do comando sejam fornecidos. Esta fun¢do também associa os elementos
graficos criados para que o comando “sphere”, ao ser executado, recupere os parametros corretamente.

template <class T>
class TMedSphere : public TMediator<T> ({

protected:
typedef TMedSphere* TMedSpherePtr;
TMedSphere () : TMediator<T>("Primitives", "Sphere") {};
~TMedSphere () {1}’

public:

static TMedSpherePtr pp;
static TMedSpherePtr & instance() ;
virtual void run(void) ;

};

4.3. Pick-Select

No USPDesigner, muitas operagdes requerem a selecdo de um sélido, de uma face, de uma aresta
ou de um vértice para que a operagdo possa ser executada. Por exemplo, para executar uma operagao
booleana ¢ necessario que dois solidos sejam fornecidos. Outro exemplo ¢ que o comando para
rotacionar um solido pode ter o eixo de rotacdo definido pela aresta de um soélido. O recurso de pick-
select permite selecionar um sdélido, face, aresta ou vértice pelo uso do mouse, e utilizar esse elemento
como parametro para executar uma operacao.

O proprio OpenGl ja possui associado a cada elemento um identificador préprio. Assim, foi
necessario criar um mapeamento entre o sistema de identificagdo utilizado pelo OpenGl e o sistema de
identificacdo adotado pelo USPDesigner. No OpenGl todo elemento possui um identificador tnico,
independendo de seu tipo (s6lido, face, aresta ou vértice). No USPDesigner cada elemento ¢ definido
por dois identificadores: o identificador do elemento e o identificador do sélido ao qual pertence o
elemento. A classe pick-select conta com algumas fung¢des que utilizam esse mapeamento para criar as
listas do OpenGl, exibi-las na tela em modo visualizacdo, exibi-las na tela em modo de selecdo e até
destrui-las. Essa classe também ¢ responsavel pelo tratamento dos cliques de mouse. Cada vez que o
usudrio aciona o botdo do mouse em cima de um objeto, a fun¢do pick (int x, int y) tem como
tarefa interpretar o clique do mouse e reagir a ele.

5. FUNCTORS - UNDO E REDO

O Functor é uma abstragdo que permite desacoplar a comunicagao entre objetos. No USPDesigner,
a implementacdo dos Operadores de Euler foi realizada utilizando-se Functors. Os comandos de
usuario (classe Command) também foram implementados através de Functors. Com isso, ¢ possivel
agrupar os Operadores de Euler em listas (listas de UNDO e REDO). Os parametros para executar os
Operadores de Euler também estdo embutidos nos objetos Functors. Assim, é possivel executar o
UNDO ou REDO sem a necessidade de sabermos quais sdo os Operadores de Euler que serdo
executados.

6. SMART-POINTERS

O SmartPointer (Alexandrescu, 2001) ¢ um objeto em C++ que simula um ponteiro. Ele imita a
sintaxe de uso do ponteiro, em particular os operadores -> e *. A vantagem no uso do SmartPointer é
que ele permite executar fun¢des de gerenciamento de memoria e travamento de forma transparente ao
programador, utilizando a sintaxe a qual ele ja estad acostumado. O SmartPointer gerencia de certa
forma o objeto que estd sendo apontado por um ponteiro, e através disso consegue implementar
funcionalidades adicionais.

Como o USPDesigner serd utilizado por outros desenvolvedores que queiram criar suas proprias
fungdes, ¢ imprescindivel proteger o ambiente contra falhas de programacdo. Um erro bastante comum
¢ esquecer de deletar um objeto depois que o ponteiro passa a apontar para outro objeto. Outra falha
bastante freqiiente ¢ a cdpia de objetos sem necessidade, causando aumento no uso da memoria.

Através da implementacdo do SmartPointer podemos também criar um gerenciamento proprio de
memoria. E possivel agrupar uma determinada quantidade de elementos para serem colocados em um
bloco de memodria. Evita-se dessa forma a fragmentacdo de memoria bastante comum em aplicagdes
onde existe uma grande quantidade de pequenos elementos sendo criados, como é o caso do
USPDesigner.

7. EXEMPLO PRATICO

A seguir listamos o algoritmo para calcular o volume de um solido. Ele se baseia no teorema de
Green, onde uma integral de volume pode ser transformada em uma integral de superficie se a
superficie for coerentemente orientada (Méntylé, 1988). No algoritmo abaixo, o s6lido foi dividido em
tetraedros orientados, tendo o seu volume associado a um sinal. Desta forma sélidos concavos possuem
alguns dos tetraedros com volume negativo, e varios outros positivos.

Template <class T>

T TVolume<T>: :run (PtrLoop 1) {
PtrHalfEdge he = l->getFirstHalfEdge() ;
PtrVertex vl = he->Vtx();
tnVector<T,4> aa, bb, cc, vvl;

T soma=0;
He = he->Nxt();
do {

vvl = vl->getCoord() ;
aa.setDifference (he->Vtx () ->getCoord(), vvl);
bb.setDifference (he->Nxt () ->Vtx () ->getCoord (), vvl);
cc.setCross(aa, bb);
soma += vvl.dot(cc);
} while ((he = he->Nxt()) '= l->getFirstHalfEdge())
return soma / 6;

8. CONCLUSAO

Desta maneira foram ilustrados varios conceitos de programacdo genérica que estdo sendo
utilizados na implementacdo desta nova versdao do USPDesigner.

9. REFERENCIAS BIBLIOGRAFICAS

Alexandrescu, Andrei. Modern C++ Design: Generic Programming and Design Patterns Applied -
Addison Wesley Professional, 2001

Berti, Guntram, Generic programming for mesh algorithms: Implementing universally usable
geometric components, Fifth World Congress on Computational Mechanics, July 7-12, 2002,
Vienna, Austria.

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

Kettner, Lutz, Using generic programming for designing a data structure for polyhedral surfaces, In:
Computational Geometry - Theory and Applications 13, pp. 65-90, Elsevier, 1999.

Mintyld, M., An Introduction to Solid Modeling. Computer Science Press, Rockville, Maryland, 1988.

The CGAL Consortium, The CGAL home page, http://www.cgal.org, 1999.

10. DIREITOS AUTORAIS

Os autores sao os Unicos responsaveis pelo contetido do material impresso incluido neste trabalho.

DEVELOPMENT OF A SOLID MODELLER B-REP USING GENERIC
PROGRAMMING

Marcos de S. G. Tsuzuki
Nelson Vogel
Escola Politécnica da Universidade de Sao Paulo

Departamento de Engenharia Mecatronica e de Sistemas Mecanicos
CEP 05508-900, Sao Paulo, SP, Brasil. E-mail: mtsuzuki@usp.br

Abstract. We are presenting in this work the USPDesigner, a solid modeler based in the B-Rep
structure (Boundary Representation) that uses many elements of the generic programming and STL
C++. Our goal is to make this modeler a reusable tool, in which a programmer will be able to easially
create new features. Therefore, we will be creating a framework in witch it will be possible to deal with
most geometric problems. The user (programmer) will have that to be worried only with the logic
related to his specific problem, using all the other existing functions in the USPDesigner. Our main
contribution with this work is related to the features of the modeller: similar works, such as the CGAL
(The CGAL Consortium, 1999) and the GrAL (Berti, 2002; Kettner, 2003), offers an effective
reutilization, however none of them offers a data-structure as complete as the one that we are
considering. An interesting example for this capacity of the USPDesigner is the volume calculation
presented in chapter 8, which becomes extremely simple and efficient with the use of the B-Rep data-
structure and the generic programming.

Keywords: Generic Programming, CAD, solid modeling

