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Resumo. Em processos de corte descontínuos, como no Fresamento, onde a ferramenta passa por 
períodos ativos e inativos de remoção de material, as trincas de origem térmica se apresentam 
como um tipo de avaria particularmente importante, principalmente em ferramentas de metal duro, 
e que são extremamente prejudiciais à vida destas. Este trabalho apresenta um procedimento via 
redes neurais com o objetivo de estudar, em função dos parâmetros velocidade de corte, avanço 
por dente, percurso de avanço e penetração de trabalho, a pré-disposição para a ocorrência de 
trincas de origem térmica em ferramentas de metal duro. A metodologia de Redes Neurais utilizada 
mostrou-se eficiente em estimar com confiabilidade o número de trincas térmicas em ferramentas 
de corte, além de ser um importante instrumento no sentido de auxiliar no ajuste dos parâmetros do 
processo que conduzirão à redução da taxa de desgaste e de avarias nas ferramentas de corte. 
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1. INTRODUÇÃO 
 

Dentre os processos de usinagem aplicados na indústria moderna, o fresamento ocupa lugar de 
destaque, e isto se deve à sua grande versatilidade e capacidade de remoção de cavacos. Porém, este 
possui algumas peculiaridades que afetam diretamente o desempenho das ferramentas de corte nele 
utilizadas. Este processo caracteriza-se por ser interrompido, ou seja, durante a usinagem a 
ferramenta de corte passa por períodos ativos, onde trabalha removendo material da peça na forma 
de cavacos, e por períodos inativos, onde não existe contato da ferramenta com a peça usinada. A 
característica interrompida do fresamento submete a ferramenta de corte a flutuações de cargas 
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mecânicas e térmicas, que promovem o aparecimento de uma série de desgastes e avarias. Dentre as 
avarias, as trincas de origem térmica são particularmente importantes, principalmente em 
ferramentas de metal duro, onde se apresentam perpendiculares às suas arestas de corte e são 
consideradas extremamente prejudiciais à vida destes dispositivos. 

Diversos pesquisadores já fizeram estudos sobre as trincas de origem térmica, Boston e Gilbert 
(1947), Opitz e Fröhlich (1954), Lenz (1967), Kato et al. (1976), Ferraresi (1977) e muitos destes 
estudos têm mostrado que a seleção dos parâmetros de corte influencia diretamente no fenômeno, 
aumentando ou diminuindo a taxa de ocorrência do mesmo. Desta forma, o conhecimento prévio do 
comportamento de geração das trincas térmicas com a variação de parâmetros de corte tais como, 
velocidade de corte, avanço por dente e profundidade de corte, seria uma importante ferramenta 
para a otimização das variáveis do processo de modo a minimizar a formação tais trincas. 

Neste contexto, surgem as Redes Neurais Artificiais como uma ferramenta bastante útil e apta a 
relacionar a tendência de formação de trincas térmicas com os principais parâmetros de usinagem. 

No que segue, tem-se uma breve apresentação acerca das Redes Neurais Artificias, o 
procedimento experimental e por fim a apresentação dos resultados obtidos. 
 
2. REDES NEURAIS ARTIFICIAIS 
 

Devido ao grande número de variáveis envolvidas e a complexidade dos processos de usinagem, 
a confiabilidade do monitoramento do processo feito usualmente por meio de modelos analíticos é 
muito baixa. Com o advento dos discriminadores inteligentes (Dornfeld, 1990; Rangwala e 
Dornfeld, 1987), um grande número de pesquisadores vem obtendo excelentes resultados com a 
utilização de técnicas de inteligência artificial para a identificação, reconhecimento, classificação e 
modelagem de sistemas altamente não lineares, como o fresamento. 

Neste contexto, o emprego das Redes Neurais Artificiais vem se destacando em diversas áreas de 
atuação, demonstrando eficiência na estimação de parâmetros e otimização de modelos. Redes 
Neurais artificiais são modelos eletrônicos relativamente simples baseados na estrutura neural do 
cérebro, sendo capazes de resolver problemas matemáticos complexos. 

Uma das características, talvez a maior vantagem do uso de redes neurais , é que elas não 
requerem, a priori, um entendimento do comportamento físico do processo. Elas utilizam um 
procedimento sistemático para relacionar dados de entrada e de saída, substituindo modelos 
exigentes em termos computacionais. 

As Redes Neurais Artificiais consistem em um conjunto de neurônios que são logicamente 
arranjados em duas ou mais camadas. Há uma camada de entrada e uma camada de saída, cada uma 
contendo pelo menos um neurônio. Neurônios na camada de entrada são, de certa forma, 
hipotéticos, pois não têm entrada e não realizam qualquer processamento. Suas saídas (ativações) 
são as entradas da rede. Usualmente existem uma ou mais camadas “ocultas” comprimidas entre a 
camada de saída e a de entrada. As entradas dos neurônios em cada camada vêm exclusivamente 
das saídas dos neurônios das camadas prévias, e as saídas seguem exclusivamente para os neurônios 
das camadas posteriores, vide Fig. (1). Cada uma dessas entradas é multiplicada por um 
determinado fator de ponderação wi e são submetidas a uma determinada função comumente 
denominada Função de Ativação. 
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Figura 1. Esquema Genérico de uma Rede Neural. 



 
O processo de treinamento da rede inicia-se atribuindo-se pequenos valores não nulos aos pesos, 

geralmente gerados aleatoriamente. A seguir o conjunto de treinamento é apresentado à rede. Uma 
medida do erro incorrida é calculada e os pesos são atualizados de maneira a reduzir o erro. O 
processo é repetido tanto quanto necessário, procurando-se com isso, minimizar a influência do 
ponto de partida nos resultados do treinamento. Usualmente utiliza-se como medida, o erro 
quadrático médio, por ser facilmente calculável e permitir a obtenção explícita das suas derivadas 
parciais em relação aos pesos, uma característica de inestimável valor aos processos de 
minimização de acordo com Rumelhart et al. (1986). É praticamente impossível determinar a priori 
uma arquitetura efetiva para uma rede (número de camadas e de neurônios em cada camada), a 
partir das especificações de um problema. Isto deve ser feito experimentalmente. 

Para a estimativa do número de trincas térmicas geradas nas ferramentas de metal duro utilizadas 
neste trabalho, foi utilizada uma rede neural do tipo multicamadas com controle de erro por back-
propagation, composta por uma camada de entrada, uma camada de saída com um neurônio e uma 
camada intermediária, composta por oito neurônios. Quatro foram os parâmetros de entrada 
estudados: percurso de avanço “LBf B”, avanço por dente “fBzB”, profundidade de corte “aBp B” e velocidade 
de corte “v BcB”, os quais foram usados para estimar o número de trincas térmicas “NT” da ferramenta 
de corte (parâmetro de saída desejado). 
 
3. PROCEDIMENTO EXPERIMENTAL - TESTES DE FRESAMENTO FRONTAL 
 
 A metodologia adotada nos testes experimentais foi fixar um percurso de avanço (LBf B) e, após 
cada “passada” da fresa, a ferramenta de corte era minuciosamente observada em um microscópio 
eletrônico de varredura. As especificações, segundo ISO, da ferramenta são mostradas na Tab. (1). 
 

Tabela 1. Ferramenta de corte utilizada nos testes de fresamento. 
 

Classe da ferramenta P25 
Número de arestas 4 
WC (% em peso) 46,6 

TiC+TaC+NbC (% em peso) 40,9 
Co (% em peso) 12,5 

Condutividade térmica (W/m.K) 40 
Tamanho médio dos carbonetos (µm) 3 

 
 

Os testes foram realizados em fresamento frontal, onde se utilizou uma fresa R260 22-080-15 
(diâmetro externo de 80mm). Quando o inserto (ferramenta de corte) é montado junto à fresa, a 
seguinte geometria de corte é estabelecida: χ BrB = 45 P

o
P; λ Bs B = 17 P

o
P; γBo B = 9 P

o
P e αBo B = 20 P

o
P. 

Apenas um inserto por ensaio foi colocado na fresa, apesar da mesma ter capacidade para 
suportar até seis insertos de acordo com a Fig. (2). 

A máquina utilizada foi uma fresadora CNC marca ROMI, modelo INTERACT 4, com 
potência máxima de 16 KW, a qual usinou barras de aço de seção quadrada de 101,6 mm, ABNT 
1045, com dureza média de 273 HV. 
 Os testes foram divididos em baterias de ensaios de fresamento e correspondentes análises no 
microscópio eletrônico de varredura. Cada bateria correspondeu ao fresamento da barra de aço com 
cada uma das quatro arestas de corte da ferramenta, através de um percurso de avanço (LBf B) de 500 
mm e penetração de trabalho (aBeB) de 55 mm, conforme Fig. (3) abaixo. 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figura 2. Fresa usada nos ensaios mostrando um único inserto montado em uma de suas sedes. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 3. Geometria de corte praticada nos ensaios de fresamento. 

 
 A fim de se obter dados mais significativos, foram executadas três baterias de testes (3 
“passadas” da fresa), o que correspondeu a um percurso de avanço de 1500 mm. Ao final de cada 
passada, mediam-se os desgastes de flanco médio e/ou máximo na aresta ensaiada.  
 Adotou-se como critério de parada dos ensaios o valor de VBBB B ≅ 0,4 mm (em cada aresta de 
corte) que corresponde ao fim de vida da ferramenta. 
 Após cada bateria de ensaios, as amostras foram limpas com o auxílio de um limpador ultra-
sônico por um tempo de 1,5 minuto e em seguida foram analisadas em um microscópio eletrônico 
de varredura, (MEV) LEO 940 A - Zeiss. 
 A análise no MEV consistiu da observação e registro, através de arquivos de foto, da morfologia 
das trincas e de outras avarias geradas e/ou do desgaste em cada aresta testada. Fez-se também a 
contagem do número de trincas térmicas geradas em cada aresta. Neste caso, foram consideradas 
todas as trincas perpendiculares à aresta de corte observáveis com um aumento de 400X.  
 
4. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS 
 

Para a obtenção das curvas utilizando Redes Neurais usou-se a configuração dada pela Fig. (4), 
onde se tem uma rede do tipo MLFN (Multi Layer Feedforwad Network) com quatro variáveis de 
entrada (LBf B vBcB fBzB e a Bp B), uma única camada interna composta por quatro neurônios e uma camada de 
saída (NT).  

Usou-se como critério de parada do treinamento da rede neural o valor do erro médio quadrático, 
que neste trabalho foi escolhido como sendo 0.20. 
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Desta forma, de posse das medidas do número de trincas em cada aresta de corte da ferramenta 
em função dos parâmetros acima mencionados (LF VC FZ AP), foi criado um banco de dados que 
possibilitou o treinamento e a validação da Rede Neural proposta.  

Na Fig. (5) abaixo, tem-se os valores dos números de trincas observados nos diversos ensaios 
experimentais bem como o resultado obtido via Redes Neurais. Como pode ser observado, o 
resultado obtido quando se utilizou a Rede Neural foi bastante satisfatório e robusto uma vez que 
ela foi capaz de seguir a tendência da formação de trincas em quase todo o espaço de estudo sendo 
então uma ferramenta muito útil quando se deseja determinar este tipo de falha nestas condições de 
corte. 

Valores mais aproximados podem ser obtidos diminuindo-se o valor final do erro médio 
quadrático e fazendo-se uma melhor medição dos dados para serem treinados.  
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Figura 4. Configuração da Rede Neural na qual utilizou-se o algoritmo Back-propagation. 
 
 

 
 

Figura 5. Curvas de desgaste da ferramenta – Ensaios Experimentais e Redes Neurais Artificiais. 
 
5. CONCLUSÕES 
 

Neste trabalho, mostrou-se uma possível solução para o problema de determinação do número de 
trincas de origem térmicas que geralmente ocorrem em ferramentas de metal duro sujeitas ao 
processo de fresamento frontal utilizando as Redes Neurais Artificiais. 



De acordo com os resultados obtidos pode-se concluir que a utilização de Redes Neurais é uma 
ferramenta bastante poderosa e robusta para a solução deste problema, uma vez que estas foram 
capazes de predizer com considerável confiança o número de trincas térmicas finais que poderiam 
aparecer nas ferramentas sujeitas a este tipo de usinagem. 

Melhores resultados poderiam ter sido obtidos caso os experimentos usados para treinar e validar 
a Rede Neural fossem mais precisos e estatisticamente elaborados.  
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Abstract. In interrupted cutting process, as milling, thermal cracks causes a particular kind of 
failure, meanly in carbide cutting tool, decreasing the tool life. The present work proposes a neural 
network based procedure aiming to establish a relationship between the thermal cracks generated 
and the cutting parameters: cutting speed, feed per tooth, feed length and cutting width. The trained 
network was used to predict thermal cracks and the values used to verify its behavior against the 
studied parameters. The results showed that neural network is a promising technique to estimate 
the thermal cracks, besides being an important tool to aid in the choice of the adequated 
parameters, which will lead to a reduction of the wear rates and failure of the cutting tools. 
 
Keywords: Milling, Neural Network, Thermal Cracks 
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