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Resumo. Uma nova avaliação do corte tri-dimensional é proposta utilizando-se o 
Teorema do Limite Superior e o Princípio do Trabalho Virtual. As velocidades 
ocorridas no cavaco durante o processo são avaliadas e suas relações são obtidas 
através do diagrama de velocidades. Com as velocidades obtidas é desenvolvido um 
modelamento matemático do processo através do Teorema do Limite Superior. A teoria 
é desenvolvida utilizando-se a hipótese da condição de incompressibilidade, ou seja, 
não há variação de volume durante o processo, ocorrendo apenas variação de forma. É 
definidos o trabalho virtual e o trabalho plástico necessário para que ocorra a 
deformação do cavaco, ou seja, o trabalho de deformação plástica no cisalhamento. 
Através do Limite Superior, é definido uma relação entre as forças durante o processo 
com as velocidades. 
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1-INTRODUÇÃO. 
 

Conforme (Astakhov, 2001), durante muito tempo, as pesquisas voltadas para o 
processo de fabricação por usinagem tem sido direcionadas à redução de custos, uma 
melhoria no acabamento superficial das peças e no desgaste das ferramentas de corte. 
Porém, um número muito pequeno de pesquisas tem sido realizadas no sentido de 
conhecer as bases teóricas do processo, fazendo com que fique muito difícil uma 
avaliação teórica do processo. Essa avaliação do processo é de extrema importância 
para um melhor acompanhamento do processo e assim se possa antecipar aos problemas 
inerentes do processo. Assim, é extremamente difícil uma previsão antecipada do 
processo, já que a maioria das pesquisas são direcionadas para o lado prático do 
processo, ficando o lado teórico desconhecido. 

O presente trabalho apresenta um modelamento através de um Método de Energia 
pelo Teorema do Limite Superior, utilizando-se de diagramas de velocidades e o 
princípio do Trabalho Virtual aplicados na Zona de Corte para que se obtenha melhores 
relações com o processo de corte por usinagem. 
 
2-O MÉTODO DO LIMITE SUPERIOR. 

 
No método do limite superior, o principal objetivo é encontrar uma geometria de 

fluxo expressa através de um campo de velocidades que descreva cinematicamente o 
processo em estudo. As únicas restrições impostas ao campo de velocidades são as de 
satisfazer a condição de incompressibilidade, ou seja, é admitida a hipótese do volume 
ser constante e que a descontinuidade na velocidade de fluxo ocorram somente 
tangenciais aos limites do campo de velocidades cinematicamente admissível. 

O método do limite superior baseia-se em um teorema da Mecânica do Contínuo, 
que estabelece que: “existindo um campo de velocidades cinematicamente admissível, 
as cargas necessárias para a implantação deste campo de velocidades constituem um 
limite superior para a solução real”. 



Obviamente existem vários campos de velocidades possíveis para a descrição 
aproximada do processo, sendo assim o campo mais adequado será o que conduzir ao 
menor limite superior. 
 
3-MECANISMO DE CORTE. 

 
Toda a Teoria do Corte gira em torno do mecanismo de formação do cavaco. O 

modelo mais usado é o modelo do Plano de Cisalhamento Primário. O mecanismo do 
Plano de Cisalhamento Primário pode ser explicado considerando a Fig. (1). 

A ação da ferramenta recalca o volume “ABCD”, nesse ponto, o metal começa a 
sofrer deformações elásticas. Com o prosseguimento do processo, o limite de 
escoamento do material é vencido e o material passa a se deformar plasticamente 
(Machado, 1996). Deformações plásticas continuam acontecendo até que as tensões não 
sejam mais suficientes para manter este regime. Assim fica definida uma zona de 
cisalhamento que é chamada de zona de cisalhamento primária e é representada pela 
linha “OX” da figura. Conforme (Astakhov, 2001), o processo de formação do cavaco é 
cíclico e possui três estágios distintos: 1-compressão do material da peça pela 
ferramenta, 2-formação de uma superfície de descontinuidade na velocidade e 3-fratura 
e deslizamento do cavaco. 
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Figura 1. Mecanismo da Cunha de Corte. 

 
Após o material entrar no regime plástico, o avanço da ferramenta faz com que as 

tensões ultrapassem o limite de resistência do material, ainda dentro da zona de 
cisalhamento primária, promovendo o cisalhamento que se inicia no ponto “O” e se 
estende até o ponto “X” (Machado, 1996). Ao passar pela linha “OX”, o material sofre 
um cisalhamento, passando de uma espessura t1  (profundidade de corte), para uma 
espessura t 2  (espessura do cavaco). Assim, por geometria o ângulo de cisalhamento 
( )φ  pode ser definido por: 
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O termo β  é definido como sendo a razão entre a espessura do cavaco e a 
profundidade de corte, ou seja: 
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Após passar pela região de cisalhamento primária, o volume “ABCD” movimenta 

sobre a superfície de saída da ferramenta e sai como um componente ou lamela do 
cavaco. No entanto ao atravessar a zona de cisalhamento primária ele se deforma para 
um novo formato “A’BC’D’”, com velocidade diferente da velocidade anterior.  

 
 
4-O CORTE OBLÍQUO. 
 

Estudos do processo de usinagem geralmente tem sua atenção voltada para um caso 
simplificado que é o corte ortogonal. O corte ortogonal é uma forma simplificada do 
corte tridimensional, sendo o ângulo de inclinação da ferramenta (λ) é igual a zero. O 
cavaco é formado em condições de deformações planas com fluxo na direção normal  a 
aresta de corte, ou seja, o ângulo de saída do cavaco (nc) é igual a zero. O modelo do 
corte ortogonal é muito utilizado, devido a complexidade existente na análise do corte 
tri-dimensional. 
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Figura 2. O corte oblíquo. 

 
A FIG. 2 mostra o modelo do corte oblíquo utilizado neste trabalho, onde o ângulo 

de inclinação da ferramenta é diferente de zero e o fluxo do cavaco não é perpendicular 
a aresta de corte. Em virtude disso, teremos três componentes de forca, no corte 
ortogonal tínhamos apenas duas componentes. A largura (w) e a espessura do cavaco (t) 
também variam.  
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5-CAMPO DE VELOCIDADES. 
 

Pelo plano normal temos o campo de velocidades da FIG. 2 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figura 3. Campo de velocidades no plano normal. 
 

Pelo ∆ ABC da FIG 3, temos: 
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Considerando o volume constante, conforme a FIG 3, temos: 
 
 
 
 
 
 
 
 
 
 

Figura 3. Fluxo do cavaco. 
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Substituindo 2 em 3, temos: 
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Novamente no plano normal, temos: 
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Igualando 4 com 5, temos o valor de cV . 
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Assim, definimos as outras velocidades: 

 
cccn nVV cos=                                                                                                       (7) 

λcosVVn =                                                                                                        (8) 
 

Substituindo 6 em 7, temos: 
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Substituindo 7 e 8 3m 1, temos: 

 
 

)cos(
coscos

nn

n
sn VV

αφ
αλ

−
=                                                                                         (10) 

 
 Sendo  
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Substituindo 10 em 11, temos 
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LSSL VV φsen=                                                                                (13) 

 
Substituindo 12 em 13, temos 
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Substituindo 6 em 15, temos 
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Sendo, VSL→Velocidade de cisalhamento lateral. 
 VCL→ Velocidade lateral do cavaco. 
 φL→ Ängulo de cisalhamento lateral. 

 
 
6-FORÇAS.  

 
As forças principais XF , YF  e ZF  podem ser medidas. 
Transformação em coordenadas: 
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 Coeficientes: 
 

λcos1 =a  λα sencos2 na =  λα sensen3 na −=  
λsen1 −=b  λα coscos2 nb =  λα cossen3 nb −=  

01 =c  nc αsen2 =  nc αcos3 =  
 
 

ZYXX FcFbFaF 111 ++=′                                                                                         (18) 

ZYXY FcFbFaF 222 ++=′                                                                                         (19) 

ZYXZ FcFbFaF 333 ++=′                                                                                         (20) 
 

λλ sencos YXX FFF −=′                                                                                         (21) 

nZnYnXY FFFF αλααλ sensencoscossen ++=′                                          (22) 

nZnYnXZ FFFF αλααλ coscossencossen +−−=′                                          (23) 
 

Força ao longo da ferramenta: 
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Força de cisalhamento: 
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Força de cisalhamento normal: 
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7-PRINCÍPIO DO TRABALHO VIRTUAL. 
 

Aplicando a Engenharia da Plasticidade e utilizando o método de energia durante o 
segundo e terceiro estágios de formação do cavaco, os problemas podem ser 
considerados quase estáticos, desde que se assuma que as forças de inércia do fluxo 
plástico possam ser desprezadas. Assim, de uma forma geral o trabalho virtual do 
elemento usada em muitas aplicações da teoria da plasticidade nas soluções de limite 
superior e linha de deslizamento, pode então ser expresso através da equação abaixo, 
(Al-Qureshi, 1991) 
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A equação definida acima assume que as tensões e as velocidades são contínuas na 

zona de deformação, o que não é verdade. As descontinuidades nas tensões e nas 
velocidades são inevitáveis durante a deformação plástica (segundo e terceiro estágios 
de formação do cavaco), se fazendo necessário uma melhor definição para a equação 
27. O Trabalho realizado pela tensão agindo na superfície de cisalhamento é dado pela 
Eq. (28). 
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Assim, podemos redefinir a Eq. (27) incluindo na mesma o trabalho realizado na 

superfície onde ocorre a descontinuidade da velocidade e então a equação do trabalho 
virtual se tornará: 
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8-TEOREMA DO LIMITE SUPERIOR APLICADO AO CORTE TRI-
DIMENSIONAL. 
 
 

Considerando o trabalho externo realizado no fluxo de material, temos 
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O trabalho realizado no plano de cisalhamento é dado por 
 
 

ssi VFw =                (31) 
Igualando se os dois trabalhos, temos 
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Substituindo a equação 12 na equação 32, temos 
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Analisando a equação 33, se o ângulo de inclinação da ferramenta (λ) for igual a 

zero, teremos o corte ortogonal e se for igual a 90°, a forca de corte será igual a zero. A 
foca de cisalhamento pode ser definida em função do material, da profundidade de corte 
e do avanço, assim podemos calcular a forca de corte. 

 
No plano normal podemos então definir a forca de cisalhamento normal (Fsn) 

conforme a equação 34 e na equação 35 temos a forca de cisalhamento lateral (Fsl). 
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 No plano lateral, temos 
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9-CONCLUSÕES. 
 

Um modelo para o Corte Oblíquo é proposto utilizando o Teorema do Limite 
Superior. Através deste modelamento é possível uma previsão antecipada da forca de 
core em função dos ângulos da ferramenta e do ângulo de cisalhamento. Através desta 
previsão os parâmetros do processo podem ser melhor previstos, bem como uma melhor 
escolha de ferramentas. Em um processo pouco conhecido do ponto de vista teórico 
(grande maioria dos estudos são realizados de forma prática) é de extrema importância 
estudos teóricos do fenômeno para juntamente com dados práticos tornar o processo 
mais eficiente. 
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APICATION OF  UPPER BOUND THEOREM IN OBLIQUE 
CUTTING  
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Abstract: This paper re-evaluates the oblique metal cutting through Upper Bound 
Theorem and Virtual Work. For re-evaluates, the velocity relationships of the ship 
formation through velocity diagram is proposed. Through relations of velocity diagram 
is developed the mathematic model with Upper Bound Theorem. The material is 
incompressible. The cut forces and the shear angle was argued. 
 
Keywords: oblique cutting, upper bound theorem, machining 


