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Abstract. New drilling techniques have been studied to increase the penetration rate in hard rock 
formations. One approach, that appears suitable for off shore drilling in deep seas, uses harmonic 
loads and, in some cases, impacts. Hard rocks present a resistance to drilling that can be modeled 
as a dry friction on the drill bit, which is rotating under static loading. The drilling is therefore a 
percussive penetration phenomenon, allowing the forward motion (with a drift) but in stick-slip 
condition due to the rock resistance and may be considered with and without impact. This paper 
focuses on numerical investigations and presents results using a novel way to change between the 
several phases that are possible in this nonlinear problem with two discontinuities. It is also shown 
that the behavior may vary from periodic to chaotic motion. Some engineering aspects are also 
analyzed.  
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1. INTRODUCTION  

 
Drilli ng hard rocks with three cone lobed bits produces a sinusoidal surface with an amplitude of 

3 to 7 mm and frequency three or six times the speed of rotation [1]. This is a result of the 
interaction with the axial vibration of bottom hole assembly and may be used to create a self-excited 
vibration in this element. There is still some basic research needed to physically understand all the 
aspects of this phenomenon, on the other hand it is useful to know if this additional effect can 
increase the rate of penetration (ROP). 

This paper uses a model for the resistance of the media in hard rocks coming from the literature 
[2,3], represented by a dry friction, resulting in a percussive penetration due to the possible stick-
slip effect. The ROP is a consequence of the static loading (WOB – weight on bit), the dynamic 
loading due to the mentioned self-excitation and also the possible vibro-impact force. Shortly, the 
excitation coming from the lobes at the surface may resonate an internal hammer mass vibrating in 
clearances, where impacts are possible, to interact with the stick-slip of the percussive motion. 

Several parameters have to be adjusted for an optimisation of the procedure and this is best done 
through a numerical simulation, after the selected model is validated. This is presented in [4]; in the 
actual work we focus the numerical technique which was used and analyse some results.. 

 
2. MATHEMATICAL MODEL  

 
In this work we considered a physical model according to Fig. 1. The dynamics of the system 

corresponds to a progressive oscill atory movement along the drift. The mass m1 is connected to the 



mass m2, through a spring K and a viscous damper C. A preload B and a harmonic force are present 
in the external excitation applied to m1. 
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Figure 1 – Physical model. 
 

As in the stick-slip phenomenon, the progressive movement occurs when the sum of the elastic 
and viscous forces applied on m2 overcomes the friction force, Fat, between mass m2 and the drift. 
Therefore, the system presents two different motion phases: stick-phase, without progression and 
slip-phase, with progression.  

Then, for Fat ≥ K (Xb - Xs) + C ( sb XX �� − ), we don’ t have the progression and the system just 

corresponds to a spring-damper-mass (stick-phase): 
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where B is the static load or preload, A the dynamic load amplitude and ω the excitation 
frequency. The phase angle, ϕ, is a phase shift between the overall drilling force and the progressive 
stationary motion. 

On the other hand, when Fat < K (Xb - Xs) + C ( sb XX �� − ), we have progression and the system 

equations are written as (slip-phase): 
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The dry friction force is defined through a simple continuous model described as: 
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where FN is the normal force, µe and µd are, respectively, the static and kinetic friction 
coeff icients and γ is the decay parameter. 

However, the m1 displacement is limited in positive direction by the gap R. Thus, when 
numerically Xb − Xs > R, we have impact or contact. Note that the impulsive force resulting from the 
impact will only have a consequent penetration if the stick force is overcome and, therefore, it is 
necessary to know the contact force at each time. We use Hunt & Crossley’s model [5]: 
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where, δ is the indentation, m the relative mass (m1m2/m1+m2), Kc the contact spring constant, λ 
the damping constant and the exponent n, which is often close to one, depends on the contact 



surface geometry . In addition there is a coupling between the impact and the dry friction, and the 
contact force can only be used to generate progression if it exceeds the damping force. The 
following discrete model, with the knowledge of the contact force is used in this paper: 
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where Vrel (t) = ++ − sb XX �� is the relative progression speed and timp  the final impact time. 

The ordinary differential equations of second order (1) and (2) can be transformed in a first 
order system of differential equations in an autonomous system, 5–Dim, through the following 
change of variables: 
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Therefore, 
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where,   
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When impact is identify, (x1 – x3) > r, the initial conditions of velocity are change, conform Eq. 
(5):  
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Here, P is Heaviside functions with respect to progression, which characterize the variable 
structure of the problem: 
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3. NUMERICAL SIMULATION 
 
Numerical simulations are done using the fourth order Runge-Kutta method for numerical 

integration with fixed step. However, when a progressive movement is identified, a sub-routine 
(bisection) determines the exact instant of the progression start, τp (error=10-6). The same procedure 
is applied when a contact is identified. In this case, the contact force profile (Fig. 2) is determined 
and applied in the system, identifying the new velocities. A typical steady-state time history, with 
impact and penetration, is presented in Fig. 3a, where: µe/µd = 0.6, γ’  = 3.0, ε = 1.0, ϕ = π/2, ξ1 = 
0.12, λc = 0.6, n = 1.0, k’= 12 105 m-1, a = 0.25, b = 0.7, η = 0.8 and r = 1.0. Because of the drift, 
the displacements of x1 and x3 are oscill atory with progression and stick-slip, respectively, Fig 3b. In 
the instant of impact the initial conditions are changed. Moreover due to the determination of the 
force profile and the determination of the final impact time (timp), these changes are done after this 
period of time. Fig. 2b presents a zoom of the impact zone, where one can see how the impact time 
was included in the problem.  
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Figure 2. Force profile: impact force x time. 
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Figure 3: Period-1: a) penetration x time; b) speed x time: a = 0.25, b = 0.7, η = 0.8 and r = 1.0. 
 
One way to perform the analysis in nonlinear dynamic systems is through the phase space and 

the Poincaré map. The Phase space and Poincaré map of the relative motions (x1 – x3,x2) obtained 



with same condition of Fig. 3, are presented in Fig. 4. It is observed a discontinuous phase space, 
when x1 – x3  = r = 1.0, being the principal characteristic of impact problems.  
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Figure 4. Phase space and Poincaré map: a = 0.25, b = 0.7, η = 0.8 and r = 1.0. 

 
The behavior of the system can be changed by the action of a control parameter. Using η 

(frequency rate) as control parameter, a condition of period two is obtained with η = 0.6. In this 
case, we observe two points in Poincaré map and two impacts per cycle of external loading. With η 
= 0.63, the behavior of the system is period four, i.e., four points in Poincaré map, Fig. 5b. 
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Figure 5. Phase space and Poincaré map: a = 0.25, b = 0.7 and r = 1.0: a) period two –η = 0.6; 

b) period four – η = 0.63. 
 

Fig. 6a presents the phase space with η = 0.448. In this case, the behavior is chaotic and the 
strange attractor in Poincaré map is presented in Fig. 6b. However, the Lyapunov exponents could 
be a better indicator of chaos. 
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Figure 6. Chaotic behavior, a = 0.25, b = 0.7 η = 0.448 and r = 1.0: a) phase space; b) Poincaré 
map. 



 
CONCLUSIONS 
 
This paper is concerned with a drilli ng problem using a self-excited vibro-impact mechanism acting 

on a penetration model represented by dry friction. Due to the coupling of both nonlinearities there is 
used a hybrid impact model. The results are consistent with experimental validations to be published 
[4]. The method showed a great eff iciency in investigating as well periodic (period-1, period –2,…) as 
chaotic behavior, possible solutions for the percussive motion. 
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