SYSTEM FOR PERCUSSIVE DRILLING WITH ROCK MODEL
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Abstract. New drilling techniques have been studied to increase the penetration rate in hard rock
formations. One approach, that appears suitable for off shore drilling in deep seas, uses harmonic
loads and, in some cases, impacts. Hard rocks present a resistance to drilling that can be modeled
as a dry friction on the drill bit, which is rotating under static loading. The drilling is therefore a
percussive penetration phenomenon, allowing the forward motion (with a drift) but in stick-slip
condition due to the rock resistance and may be considered with and without impact. This paper
focuses on numerical investigations and presents results using a novel way to change between the
several phases that are possible in this nonlinear problem with two discontinuities. It is also shown
that the behavior may vary from periodic to chaotic motion. Some engineering aspects are also
analyzed.
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1. INTRODUCTION

Drilli ng hard rocks with three @ne lobed hits produces a sinusoidal surfacewith an amplitude of
3 to 7 mm and frequency three or six times the speed o rotation [1]. This is a result of the
interadionwith the aial vibration d baottom hole assembly and may be used to creae aself-excited
vibration in this element. Thereis dill some basic reseach neaded to physicadly understand all the
aspeds of this phenomenon, onthe other hand it is useful to know if this additional effed can
increase the rate of penetration (ROP).

This paper uses amodel for the resistance of the mediain hard rocks coming from the literature
[2,3], represented by a dry friction, resulting in a percussve penetration die to the possble stick-
dip effed. The ROP is a consequence of the static loading (WOB — weight on hit), the dynamic
loading due to the mentioned self-excitation and also the possble vibro-impad force Shortly, the
excitation coming from the lobes at the surfacemay resonate an internal hammer massvibrating in
cleaances, where impads are possble, to interad with the stick-dlip o the percussve motion.

Severa parameters have to be aljusted for an optimisation d the procedure and thisis best dore
through anumericd simulation, after the seleded model is validated. Thisis presented in [4]; in the
adua work we focus the numerica tednique which was used and analyse some results..

2. MATHEMATICAL MODEL

In this work we @nsidered a physicd model acwrding to Fig. 1. The dynamics of the system
corresponds to a progressve oscill atory movement along the drift. The massmy is conreded to the



mass m, through a spring K and a viscous damper C. A preload B and a harmonic force are present
in the external excitation applied to my.

Figure 1 — Physicd model.

Asin the stick-slip phenomenon, the progressve movement occurs when the sum of the dastic
and viscous forces applied onm, overcomes the friction force, F4, between massm, and the drift.
Therefore, the system presents two dfferent motion preses: stick-phase, withou progresson and
dip-phase, with progresson.

Then, for Fy = K (X, - Xg) + C (X, - X_), we don't have the progresson and the system just
corresponds to a spring-damper-mass(stick-phase):

m, X, +C(X, — X.) +K(X, - X,) = Acos@t +¢) + B M
X, =0 '
where B is the static load or preload, A the dynamic load amplitude and w the excitation

frequency. The phase angle, ¢, is a phase shift between the overall drilling force and the progressive
stationary motion.

On the other hand, when F4 < K (X, - X9 + C (X, — X.), we have progression and the system
equations are written as (slip-phase):

m X, +C(X, = X_)+K(X, - X.) = Acos(wt +¢) + B

. : . 2
m, X, +C(X, - X,)+K(X,-X,)=F, @
Thedry friction force is defined through a simple continuous model described as:
Fa = Fulig + (1 = Hy) eXp_yxs] 3

where Fy is the norma force e and gy are, respedively, the static and kinetic friction
coefficients andy is the decgy parameter.

However, the my displacement is limited in pcsitive diredion by the gap R Thus, when
numericdly X, — Xs > R, we have impad or contad. Note that the impulsive force resulting from the
impad will only have a ©nsequent penetration if the stick force is overcome and, therefore, it is
necessry to knaw the contad force d eat time. We use Hunt & Crosdey’s model [5]:

F.(5,8)=md =k 8" ~C,8"5 =~k 5" (1+Ad); ) :%; 4

where, dis the indentation, m the relative mass (m;my/m+my), K. the mntad spring constant, A
the damping constant and the exporent n, which is often close to ore, depends on the mntad



surfacegeometry . In addition there is a cugding between the impad and the dry friction, and the
contad force ca only be used to generate progresson if it exceeals the damping force The
foll owing discrete model, with the knowledge of the cntad forceis used in this paper:

o EX* M X + M, X+ MV, (fir)

Fomax < Fa O, or Femax > Fou O m +m, . (5
EXS - EXQ = Xt: _Vrel (tin‘p)

where Viq (t) = X — X! istherelative progresson speed and tiny, the final impad time.

The ordinary differential equations of second ader (1) and (2) can be transformed in a first

order system of differentia equations in an autonomous system, 5-Dim, through the following
change of variables:

T= wpt; dX/dT = X

X1 = Xp, X =dx/dT = Xp;
e N e’ N
X3 = Xs, X4 =dxs/dT = X.; Xs = NT. (6)
e N I'le N
Therefore,
D4 =X,
%'2 = a+beos + §) - 26,(%, = X,) ~ (%~ X,)
O = Px, (7
K = P(-28,(%, = %) — €0 = %) = &f ;)
B =n
where,
w A B TN . Yw,uF
Wy = n=—,a= ,b: ’f — d_(l__d) Xpm’y: 0Me' N
\/ w, " uFy MR % n'B K
C C
&= e= L and &, = =& (8)
2m, m, 2m,w,

When impad is identify, (x; — X3) > r, the initial condtions of velocity are change, conform Eq.

5):

Ik = f < f

0 2 \& c max at or @(Z = O, fc max. < fat (9)

Q. , T, + ’

0 = mXx, +mx, I'TIZV’ f.max.> f, 5(2 =X, —V f. max.> f,

0 m +m,

where,

r= K = K" (1-A3), K =—_ andv=—R_5 . (10
U Fy HFy HcFy



Here, P is Heaviside functions with resped to progresson, which charaderize the variable
structure of the problem:

[0, f,2b+2& (X, —X,)+(X —X%;)
P(X X, X..X,) = 11
(%01 %51 %5, X4) a f, <b+2 (X, —%,)+ (X —X;) ()

3. NUMERICAL SIMULATION

Numericd simulations are dore using the fourth order Runge-Kutta method for numericd
integration with fixed step. However, when a progressve movement is identified, a sub-routine
(bisedion) determines the exad instant of the progresson start, 1, (error=10 ®). The same procedure
is applied when a mntad is identified. In this case, the wntad force profile (Fig. 2) is determined
and applied in the system, identifying the new velocities. A typicd stealy-state time history, with
impad and penetration, is presented in Fig. 3a, where: uJ/uy = 0.6,y =3.0,6=1.0,¢ =2, & =
0.12,A=0.6,n=1.0,k=12 10 m*, a=0.25,b = 0.7,17 = 0.8 and r = 1.0. Because of the drift,
the displacaments of x; and x3 are oscill atory with progresson and stick-dlip, respedively, Fig 3b.In
the instant of impad the initial condtions are changed. Moreover due to the determination d the
force profile and the determination d the final impad time (tinp), these danges are dore dter this
period d time. Fig. 2b pesents a zoom of the impad zone, where one can seehow the impad time
was included in the problem.
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Figure 2. Forceprofile: impad forcex time.
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Figure 3: Period-1: @) penetration x time; b) speed x time: a=0.25,b=0.7,n=0.8andr =1.0.

One way to perform the analysis in norlinea dynamic systems is through the phase space ad
the Poincaré map. The Phase space ad Poincaré map of the relative motions (x; — x3,x2) obtained



with same oondtion d Fig. 3, are presented in Fig. 4. It is observed a discontinuows phase space
when x; —x3 =r = 1.0, keing the principal charaderistic of impad problems.
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Figure 4. Phase space ad Poincaré map: a=0.25,b=0.7,n=0.8andr = 1.0.

The behavior of the system can be dhanged by the adion d a @ntrol parameter. Using n
(frequency rate) as control parameter, a wndtion d period two is obtained with n = 0.6. In this
case, we ohserve two pantsin Poincaré map and two impads per cycle of external loading. With n
= 0.63,the behavior of the system is periodfour, i.e., four pointsin Poincaré map, Fig. 5b.
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Figure 5. Phase space ad Poincaré map: a=0.25,b=0.7andr = 1.0 a) periodtwo —n = 0.6,
b) period four —n =0.63.

Fig. 6a presents the phase spacewith n = 0.448.In this case, the behavior is chaotic and the
strange dtrador in Poincaré map is presented in Fig. 6b. However, the Lyapunos exporents could
be abetter indicator of chaos.
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Figure 6. Chaotic behavior, a=0.25,b=0.7 n = 0.448 and r = 1.0: &) phase space; b) Poincaré
map.



CONCLUSIONS

This paper is concerned with adrilli ng problem using a self-excited vibro-impad medanism ading
on a penetration model represented by dry friction. Due to the wuging of bath norineaities thereis
used a hybrid impad mode. The results are consistent with experimental validations to be pulished
[4]. The method showed a gred efficiency in investigating as well periodic (period-1, period-2,...) as
chaotic behavior, passble solutions for the percussve motion.
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