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Abstract. Shape memory, pseudoelasticity and thermal expansion are phenomena related to the 
behavior of shape memory alloys (SMAs). Constitutive models consider phenomenological aspects 
of these phenomena. The present contribution discusses the thermo-plastic-phase transformation 
coupling in the modeling of SMA behavior. Numerical results show that this coupling is important 
in order to describe the two-way shape memory effect. 
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1. INTRODUCTION  

 
Metallurgical studies have revealed the microstructural aspects of the behavior of SMAs 

(Otsuka & Ren, 1999; Shaw & Kyriakides, 1995). Basically, there are two possible phases on 
SMAs: austenite and martensite. In martensitic phase, there are plates that may be internally twin-
related. Hence, different deformation orientations of crystallographic plates constitute what is 
known by martensitic variants. On SMAs there are 24 possible martensitic variants which are 
arranged in 6 plate groups with 4 plate variants per group (Zhang et al., 1991). Schroeder & 
Wayman (1977) have shown that when a specimen is deformed bellow a temperature where only 
martensitic phase is stable, with increasing stress, only one of the 4 variants in a given plate group 
will begin to grow. This variant is the one that has the largest partial shear stress. On the other hand, 
because the crystal structure of martensite is less symmetric than the austenite, only a single variant 
is created on the reverse transformation (Zhang et al., 1991). For one-dimensional cases, it is 
possible to consider only three variants of martensite on SMAs: the twinned martensite (M), which 
is stable in the absence of a stress field, and two other martensitic phases (M+, M−), which are 
induced by positive and negative stress fields, respectively. 

The thermomechanical behavior of shape memory alloys may be modeled either by microscopic 
or macroscopic point of view. There are many different works dedicated to the constitutive 
description of the thermomechanical behavior of shape memory alloys, however, this is not a well 
established topic (James, 2000; Birman, 1997; Bertram, 1982; Souza et al., 1998; Auricchio & 
Lubliner, 1997; Auricchio & Sacco, 1997; Auricchio et al., 1997; Tanaka & Nagaki, 1982; Liang & 
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Rogers, 1990; Brinson, 1993; Boyd & Lagoudas, 1994; Ivshin & Pence, 1994; Fremond, 1987, 
1996; Abeyaratne et al., 1994). 

Plastic strains are concerned in different articles in order to evaluate either effects of these 
strains in phase transformations or the description of the two-way shape memory effect (Bo & 
Lagoudas, 1999; Dobovsek, 2000; Govindjee & Hall, 2000; Zhang & McCormick, 2000a,b; 
Lexcellent et al., 2000; Miller & Lagoudas, 2000). The loss of actuation through repeated cycling 
due to plastic strain development is one of the import aspects related to the effect of plastic strains 
in SMAs. 

This article discusses the thermo-plastic-phase transformation coupling which is incorporated 
into a model allowing a correct description of the thermomechanical behavior of SMAs. The 
proposed model is based on the Fremond’s theory and includes four phases in the formulation: three 
variants of martensite and an austenitic phase. Hardening effect is represented by a combination of 
kinematic and isotropic behaviors. An iterative numerical procedure based on the operator split 
technique (Ortiz et al., 1983), the orthogonal projection algorithm (Savi & Braga, 1993b) and the 
return mapping algorithm (Simo & Taylor, 1986; Simo & Hughes, 1998) is developed. Numerical 
results show that the thermo-plastic-phase transformation is important to describe the 
thermomechanical behavior of shape memory alloys. 

 
2. CONSTITUTIVE MODEL 

 
Fremond (1987, 1996) has proposed a three-dimensional model for the thermomechanical 

response of SMA where martensitic transformations are described with the aid of two internal 
variables. These variables represent volumetric fractions of two variants of martensite (M+ and 
M−), and must satisfy constraints regarding the coexistence of three distinct phases, the third being 
the parent austenitic phase (A). It has been noted that Fremond’s original model present some 
limitations in the description three-dimensional problems (Savi & Braga, 1993a), however, one-
dimensional results are qualitatively good. Here, an alternative one-dimensional model is 
considered introducing a fourth variant of martensitic phase: twinned martensite.  

Modeling of SMA behavior can be done within the scope of the standard generalized material 
(Lemaitre & Chaboche, 1990). With this assumption, the thermomechanical behavior can be 
described by the Helmholtz free energy, ψ, and the pseudo-potential of dissipation, φ. The 
thermodynamic state is completely defined by a finite number of state variables: deformation, ε, 
temperature, T, the volumetric fractions of martensitic variants, β1 and β2, which are associated with 
detwinned martensites (M+ and M−, respectively) and austenite (A), β3. The fourth phase is 
associated with twinned martensite (M) and its volumetric fraction is β4. The plastic phenomenon is 
described with the aid of plastic strain, ε p, and the hardening effect is represented by a combination 
of kinematic and isotropic behaviors, described by variables µ and γ, respectively. Additive 
decomposition is assumed and the total strain, ε, may be split into a phase transformation part,          
ε SMA, usually considered on SMA description, and a plastic part, ε p. 

 
 pSMA εεε +=  (1) 

 
With these assumptions, each phase have a free energy function as follows, 
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where α,  LM=LM(T) and LA=LA(T) are material parameters that describe martensitic transformation, 
EM and EA represents the elastic moduli for martesitic and austenitic phases, respectively; ΩM and 
ΩA represents the thermal expansion coefficient for martensitic and austenitic phases, respectively; 
KM and KA are the plastic moduli for martensitic and austenitic phases while HM and HA are the 
kinematic hardening moduli for martensitic and austenitic phases; TM is a temperature below which 
the martensitic phase becomes stable in the absence of stress while T0 is a reference temperature; ρ 
is the density. A free energy for the mixture can be written as follows, 
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where the volumetric fraction of the phases must satisfy constraints regarding the coexistence of 
four distinct phases: 

 
 10 ≤≤ iβ  (i=1,2,3,4) ;   14321 =+++ ββββ  (7) 

 
In the absence of stress, detwinned martensites, M+ and M−, do not exist. In order to include this 

physical aspect, an additional constraint must be written, 
 

 0  and0if0 2121 ===== SS ββσββ  (8) 
 

where S
1β and S

2β are the values of β1 and β2 , respectively, when the phase transformation begins to 
take place. With these considerations, Ĵ  is the indicator function of the convex τ (Rockafellar, 
1970):  
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 Using constraints (7), β4 can be eliminated and the free energy can be rewritten as: 
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where,  
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Now, J represents the indicator function of the tetrahedron π of the set (Figure 1),    
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Figure 1 - Tetrahedron of the constraints π. 

 
State equations can be obtained from the Helmholtz free energy as follows: 
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where Bi are thermodynamic forces and σ represents the uniaxial stress; i∂  is the sub-differential 
with respect to βi (Rockafellar, 1970). Lagrange multipliers offer a good alternative to represent 
sub-differentials of the indicator function (Savi & Braga, 1993b). Furthermore, the following 
definitions are considered: 
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In order to describe the dissipation processes, it is necessary to introduce a pseudo-potential of 
dissipation. This pseudo-potential can be written through its dual φ*. Considering the following 
type,  
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where If is the indicator function related to the yield surface defined as follows, 
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The parameter η is associated with the internal dissipation of the material while ηci and ηck are 

related to plastic-phase transformation coupling. The parameter ηci is associated with isotropic 
hardening coupling while ηck is associated with kinematic hardening. At this point, it is possible to 
write the following complementary equations: 
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where λ is the plastic multiplier. The irreversible nature of plastic flow is represented by means of 
the Kuhn-Tucker conditions. Another constraint must be satisfied when 0),,( =µγσf . It is referred 
as consistency condition and corresponds to the physical requirement that a stress point on the yield 
surface must persist on it. These conditions are presented as follows (Simo & Hughes, 1998): 

 
 0≥λ ; 0)  , , ( ≤µγσf ; 0)  , , ( =µγσλ f  ;  0)  , , ( =µγσλ f�  if 0)  , , ( =µγσf   (32) 

 
These equations form a complete set of constitutive equations. Since the pseudo-potential of 

dissipation is convex, positive and vanishes at the origin, the Clausius-Duhen inequality (Eringen, 
1967), is automatically satisfied if the entropy is defined as Ts ∂−∂= /ψ . 

Furthermore, it is important to consider the definition of the parameters LM=LM(T) and LA=LA(T), 
which is obtained assuming 01 =β�  and Rεε =  in a critical temperature, TC, below which there is no 
residual strain. With this aim, it is necessary to define, 
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Hence, using these conditions in Equation (26), the following expressions are obtained, 
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The parameter L may be evaluated as a function of TA, a temperature above which austenitic 

phase starts its formation in the absence of stress, as follows: 
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The operator split technique (Ortiz et al., 1983) associated with an iterative numerical procedure 

is developed in order to deal with the nonlinearities in the formulation. The procedure isolates the 
sub-differentials and uses the implicit Euler method combined with an orthogonal projection 
algorithm (Savi & Braga, 1993b) to evaluate evolution equations. Orthogonal projections assure 
that volumetric fractions of the martensitic variants will obey the imposed constraints. In order to 
satisfy constraints expressed in (12), values of volumetric fractions must stay inside or on the 
boundary of π, the tetrahedron shown in Figure 1. The elasto-plastic behavior is simulated with the 
aid of the return mapping algorithm proposed by Simo & Taylor (1986). 

 
3. NUMERICAL SIMULATIONS 

 
In order to evaluate the response predicted by the proposed model, a SMA specimen with 

typical properties of a Ni-Ti alloy (Table 1), is subjected to different thermomechanical loadings. 
Stress-driving or temperature-driving simulations are carried out.  

 
Table 1. Thermomechanical properties. 

EA (GPa) EM (GPa) α (MPa) η (MPa/K) 
67 26.30 89.42 0.07 

TM (K) TA (K) T0 (K) AΩ  (MPa/K) MΩ  (MPa/K) M
Yσ  (MPa) 

291.40 307.50 298 0.74 0.17 200 
iA

Y
,σ  (MPa) fA

Y
,σ  (MPa) KA (GPa) KM (GPa) HA (GPa) HM (GPa) 

690 257.72 1.40 0.40 0.40 0.11 
 
The yield limit σY has a linear variation with T, evaluated with the following expression: 
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where TF is used to determine the angular coefficient of the linear interpolation. Moreover, the 
following parameters are calculated with the aid of Equations (33, 36): εR = 0.0033, TC = 282.04 K 
and L = 9.18 MPa/K. 

The forthcoming analysis concerns with the effect of plastic strains in the thermomechanical 
behavior of shape memory alloys. The thermo-plastic parameter is ηc = ηci = ηck = 0.02. At first, an 
isothermal thermomechanical load is considered at T = 333K (T > TA) (Figure 2). Figure 2a shows 
stress-strain curve related to this load-unloading process. During the loading process, after phase 
transformation (A → M+), the yield limit is reached producing plastic strains. Upon unloading, 
reverse transformation (M+ → A) is completed and SMA experiences a linear unload. When the 
unloading process is finished, there are irreversible residual strains associated with plastification. 
The evolution of volumetric fractions shows the phase transformation related to these processes 
(Figure 2b).  
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Figure 2 - Pseudoelasticity with plastic strain. (a) Stress-strain curve; (b) Volumetric fraction. 
 
A discussion of the plastic-phase transformation coupling is now focused. With this aim, 

simulations with different values of the parameter ηc are performed. The plastic-phase 
transformation coupling is now focused considering pseudoelastic and shape memory effects 
(Figure 3). The alteration of plastic-phase transformation coupling parameter, ηc, shows how this 
effect tends to anticipate phase transformation. It should be pointed out that this behavior could 
promote the loss of actuation of the SMA, since the anticipation of phase transformation reduces the 
amount of phase transformation deformation that can be recovered by either a thermal or a 
mechanical loading. Figure 3a shows pseudoelastic behavior for different values of coupling 
parameter. This variation can decrease the internal dissipation of SMA passive actuators, for 
example. On the other hand, Figure 3b shows a shape memory test, with constant temperature, 
where this behavior is illustrated. In this situation, the variation of coupling parameter can reduce 
either the deformation recovery or the force generated by a thermal actuation. 
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Figure 3 - Effect of plastic-phase transformation coupling: Stress-strain curves. 
(a) Pseudoelasticity; (b) Shape Memory. 



 
A nine-cycle thermomechanical load process, depicted in Figure 4, is now considered. This 

process is a mechanical loading of the austenitic phase into the plastic region of strain followed by a 
temperature loading that promote phase transformation. Figure 5a presents stress-strain curves 
related to this load process while Figure 5c shows the strain-temperature response. The details in 
Figure 5c show the hysteretic characteristics of phase transformation driven by thermal expansion, 
indicating that the model is capable to describe the coupling between shape memory effects and 
thermal expansion. Figure 5b presents evolution of volumetric fractions. These results are in 
agreement with experimental data presented by Miller & Lagoudas (2000). Notice that the growth 
of plastic strains tend to enlarge hysteresis loops. This behavior is related to the two-way shape 
memory effect. 
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Figure 4 - Nine-cycle thermomechanical load process. 
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Figure 5 - Nine-cycle test.  
(a) Stress-strain curve; (b) Volumetric fractions; (b) Strain-temperature curve. 



Figure 6 presents strain-temperature curves associated with the three first cycles of the previous 
test. Notice that plastic-phase transformation coupling parameter tends to change the phase 
transformation temperature, moving the hysteresis loop. This behavior is related to the growth of 
hysteresis loops. 
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Figure 6 - Effect of plastic-phase transformation coupling: Strain-temperature curves.  
(a) Three cycles; (b) Enlargement. 

 
4. CONCLUSIONS 

 
Plastic strain description is a goal of the proposed model. Hardening effect is represented by a 

combination of linear kinematic and isotropic behaviors. A thermo-plastic-phase transformation 
coupling is incorporated into the model allowing a correct description of the thermomechanical 
behavior of SMAs. This coupling allows the description of the two-way shape memory effect and, 
furthermore, tends to anticipate phase transformation, also changing its temperature, after plastic 
strains occur. All these effects are in close agreement with experimental results. 
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