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Abstract. In this paper, the numerical simulations of the non-linear control method using internal
resonance and saturation phenomenon to suppress the steady-state vibrations of a non-ideal system
are presented. An engineering application is presented, namely: a portal frame foundation of an
unbalanced rotating machine (limited power supply).The control scheme is implemented by
introducing controllers, which are coupled dynamically with the portal frame through a nonlinear
feedback control law. At 1:2 internal resonance, the nonlinear coupling generates an energy link
between the portal frame and the controllers. Thus, energy is transferred from the portal frame to
the controllers where the active damping mechanisms subsequently dissipate it. Here the response
of the structure is regulated with a single input torque applied to the portal frame coordinates.
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1. INTRODUÇÃO

In the present work, the behavior of the control method applied to a portal frame foundation of
an unbalanced rotating machine (limited power supply) is presented.

On the use of the saturation phenomenon and internal resonance have been investigated by many
researchers (see, e.g., Nayfeh et al., 1973; Haddow et al., 1984; Nayfeh and Zavodney, 1988;
Nayfeh and Balachandran, 1989).

Recently, the use of the saturation phenomenon and internal resonance on nonlinear oscillations
of a portal frame under a single ideal harmonic excitation was studied by ( Brasil and Balthazar,
2001). In the case of a portal frame under a non-ideal excitation, the saturation phenomenon appears
in ( Palacios, Balthazar and Brasil, 2001; Brasil, Garzeri and Balthazar, 2001)

On the active control strategies based on the saturation phenomenon and internal resonance to
suppress the motions of the system have been investigated by the following researchers (Mook,
1985; Golnaraghi, 1991; Queini, Nayfeh and Golnaragui, 1997; Pai et al, 1998; Pai and Schulz,
2000).

The application of this control in the portal frame under a harmonic excitation has see
theoretically studied by (Palacios, Balthazar and Brasil, 2001).

CONEM UFPB




In this paper, we investigated the behavior of the non-ideal vibrating system (portal frame
foundation and energy source with limited power supply) near of the resonance region (the
frequencies of the first and second modes are in resonance with the average frequency of the energy
source) and the physical and geometric properties of the frame are chosen to tune the natural
frequencies of these two modes into a 1:2 internal resonance. In this case, we observe of the modal
interactions of the foundation (the saturation appear in the energy transference from a higher
frequency mode to a lower frequency mode) and interaction between foundation and energy source.

Considering a DC motor as energy source and its characteristic has been taken as linear.
Finally, we investigate the implementation of a control strategy based the saturation phenomenon

due the internal resonance (modal and physical coupling between the non-ideal vibrating system
and the controllers) to suppress the motions of a portal frame foundation of an unbalanced rotating
machine (limited power supply). In the theoretical context of (Pai, et al., 1998) we may summarize
non-linear control method as follow: The so-called saturation control method uses the saturation
phenomenon to suppress system vibrations, and it can be described by the following two ordinary
equations,
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where 1u  denotes the response of a second-order controller, 1ω  is its natural angular frequency,
and 1ς  is its damping ratio, 2u  represents the response of the dynamical system to be controlled,

2ω  is its natural frequency and is close to 12ω , and 2ς  is its damping ratio. Moreover, 11g  and 12g
are positive gain constants, )cos( tF Ω  is the external excitation force with amplitude F  and
frequency Ω . If the excitation frequency Ω  is close to 2ω  and the excitation amplitude F  is larger
than a critical value cF , the amplitude of 2u  saturates and all additional energy added to the system
by increasing F  flows into the controller 1u  due to the quadratic coupling terms 21uu  and 2

1u ,
which act as an energy bridge to establish a state of exchange of energy between the system and the
controller.

2. THE NON-IDEAL SYSTEM

The dimensionless equations of motion of the portal frame foundation of an unbalanced rotating
machine model are similarly given by (Brasil and Balthazar, 2001)
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where  )(1 τq  is horizontal response with natural frequency 1ω̂ , )(2 τq  is vertical response with
natural frequency 2ω̂ , )(3 τq′  is angular velocity response of the rotor, jµ̂  are the non-dimensional
damping coefficients, jα̂  are the non-dimensional parameters.

 Considering the characteristic of the motor of the form
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that has a corresponding regulating control in the energy source, in this case, the constant â  will be
the control parameter and b̂  a fixed constant depending of the type of motor.

In the numerical simulation, the nonlinear ordinary differential equation solver selected is the
MATLAB variable-step solver ODE45, which uses a fourth-five-order Runge-Kutta integration
method from now on.

The physical values adopted are: EI =128Nm2 for both the columns and the beam, h =0.36m,
L=0.52m, M=2.0Kg, m=0.5Kg, m0=0.1Kg, Im=0.00017Kgm2, r=0.01m, c1=1.55Ns/m and
c2=2.14Ns/m. Passage through resonance with the first and second natural frequency of the beam in
the first vibration modes ( 1ω =74rad/s , 2ω =148.0rad/s), is considered. These values were also
chosen to allow for a 1:2 internal resonance condition for the foundation.

We consider, from now on, the following values for the dimensionless parameters in the
SIMULINK solution corresponding to the system (2): 1µ̂ =0.01, 2µ̂ =0.03, 1ω̂ =1, 2ω̂ =2,

1α̂ =9.26×10-4, 2α̂ =9.61×10-4, 3α̂ =13.33, 4α̂ =19.26, 5α̂ =4.61, 6α̂ =1.657, 7α̂ =0.066,

8α̂ =3.45×10-3. Moreover, the initial conditions are chosen, from now on, to be )0(1q =0.0018,
)0(1q′ =0.0, )0(2q =0.0012, )0(2q′ =0.0, and )0(3q =0.0, )0(3q′ =0.5.

In the Fig. 1, we show the numerical results for the values of control parameter â , namely,
â =1.6, â =3.4  and b̂ =1.5.

                                        (a)                                                                       (b)

                                        (c)                                                                        (d)

Figure 1. Time history of the vertical response )(2 τq in (a),(c) and horizontal response )(1 τq in
(b),(d) with average )(3 τq ′ ≈  1ω  ( â =1.6; in (a),(b)) and average )(3 τq ′ ≈  2ω  ( â =3.4; in (c),(d)).

 When the average angular velocity 3q ′  is in resonance with 2ω̂ , on sees that the oscillation of 2q
stop of increasing and reaches its steady-state (see Fig 1c) at the same time the oscillation of 1q is
increasing and reaches its steady-state (see Fig 1d). In this case with the energy is transferred from a
higher frequency mode to a lower frequency mode due to internal resonance, and with the effect of



the nonlinear coupling between the two modes is manifest the saturation phenomenon. The
complete dynamics of this saturation phenomenon in a non-ideal system is analyzed through a
frequency-amplitudes diagram as is shown in Fig. 2 (Palacios, 2002), this graph is estimated by
numerical simulation defining the amplitudes as the maximum absolute value of the amplitudes of
the first vibration modes of the portal plane frame, and the frequency as the mean value of the
rotational speed of motor.

Figure 2. Frequency-Amplitudes diagram: Saturation phenomenon and jump in a non-ideal
system. (Line +++) are the amplitudes of 1q  and (line ooo) are the amplitudes of 2q  in function of

the average angular velocity 3q! .

 In the following section, the non-linear control technique will be applied in the passage through
resonance and with the saturation phenomenon condition.

3.  CONTROL OF THE PORTAL FRAME

In this section, we present the dynamic behavior of the controlled non-ideal vibrating system
with the controllers acting on the first and second mode of the portal frame foundation. The plant
under consideration consists of the portal frame foundation under a non-ideal excitation and we
rewrite the equations of motion of this controlled system in the form,
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and we introduce the nonlinear controllers and its of control laws in the form
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where 4q  denotes the response of one of the two second-order controllers, 4ω  is its natural angular

frequency with 
2
ˆ1

4
ωω = , and 4µ  is its damping constant, 5q  denotes the response of the other

second-order controller, 5ω  is its natural angular frequency with 
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constant. Moreover, ijg  are positive gain constants, and 1T  and 2T  are the control signal applied to
the mode first and second, respectively.

To perform numerical simulation of Eqs. (4) and (5) we built the SIMULINK model shown in
Fig. 3. Hence the “ 4114 ** qqG ” and “ 5225 ** qqG ” are the direct excitations to “ 4q ” and “ 5q ”
respectively. On the other hand, “ 2^* 444 qG ” and “ 2^* 555 qG ” are indirect excitation to “ 1q ” and
“ 2q ” respectively. The definitions of the right-hand side of Eq. (5) enables the modal coupling
between the non-ideal system and the controllers. The physical coupling required between the non-
ideal system and the controllers are achieved by defining the torque by 2

444qg  and 2
555qg .

3.1 Control Applied to the Vertical Displacement

In this section, we present the dynamic behavior of the controlled non-ideal vibrating system
when the controller 5q  is acting only in the vertical displacement 2q .

We consider the following parameters values of the controllers in the SIMULINK solution:
14g =0.0, 24g =0.0, 44g =0.0, 4ω =0.5, 15g =0.0, 25g =10.0, 55g =10.0, 5µ =0.01, 5ω =1.0 and â =3.4.
The positive gain constants mng  in Eqs. (4)-(5) are exactly the same as the positive gain

constants mnG  in the SIMULINK block diagram (see Fig. 3).
Moreover, the initial conditions are chosen to be

{ }0.0)0( ,0014.0)0( ,0.0)0( ,0010.0)0( 5544 =′==′= qqqq                            (6)

Figure 4 shows the numerical simulation of Eq. (4)-(5) when average angular velocity is near of
the second natural frequency 2ω̂ (see Fig. 4a). When the controller is activated in τ =500 one sees
that the controller suppress the oscillation of the horizontal and vertical response (see Figs. 4b, c).
Fig. 4d shows the  controller response 5q . In this case the energy is transferred from the plant to the
controller 5q , and the effect of the nonlinear coupling between the plant and controller is verified.

Figure 4c shows that the controller has more effective suppression on the response 1q .



                                               Controller  5q

                                                          Controller  4q

Figure 3. Controllers in SIMULINK block diagram applied to the non-ideal vibrating system



Figure 4. The response of Eqs. (4) and (5) with 14g =0.0, 24g =0.0, 44g =0.0, 4ω =0.5, 15g =0.0,

25g =10.0, 55g =10.0, 5µ =0.01, 5ω =1.0, where the controller 5q  is activated on τ =500,
(a) )(3 τq ′ , (b) )(2 τq , (c) )(1 τq , and (d) )(5 τq

3.2  Control Applied to the Horizontal Displacement

In this section, we present the dynamic behavior of the controlled system of Eqs. (4) and (5)
when the controller 4q is acting only of the first mode of the non-ideal portal frame. The parameters
values adopted in the diagram of the SIMULINK configuration for this model are: 14g =4.0,

24g =0.0, 44g =4.0, 4µ =0.01, 4ω =0.5, 15g =0.0, 25g =0.0, 55g =0.0, 5ω =1.0, and â =1.6.
Moreover, the initial conditions are chosen to be Eq. (6).
Figure 5 shows the numerical simulations of Eqs. (4)-(5) when average angular velocity is near

of the first natural frequency 1ω̂ (see Fig. 5a). When the controller is activated in τ =500 one sees
that the controller 4q  suppress the oscillation of the horizontal and vertical response (see Figs. 5b,
c). Fig. 5d show the controller response 4q . In this case the energy is transferred from the plant to
the controller 4q , and the effect of the nonlinear coupling between the plant and controller is
verified. Fig. 5b shows that the controller has more effective suppression on the response 2q .



Figure 5. The response of Eqs. (4) and (5) with 14g =4.0, 24g =0.0, 44g =4.0, 4µ =0.01, 4ω =0.5,

15g =0.0, 25g =0.0, 55g =0.0, 5ω =1.0, where the controller 4q  is activated on τ =500,
(a) )(3 τq ′ , (b) )(2 τq , (c) )(1 τq , and (d) )(5 τq .

3.3 Control Applied To The Two Displacements

In this section, we present the dynamic behavior of the controlled system of Eqs. (4) and (5) when
the controllers 4q and 5q  are acting in the two modes of the portal frame foundation.

To perform numerical simulation of Eqs. (4) and (5) we built the SIMULINK model shown in
Fig. 3.

We consider the following values for the parameters of the controllers in the SIMULINK
solution: 14g =4.0, 24g =0.0, 44g =3.0, 4µ =0.0, 4ω =0.5, 15g =0.0, 25g =17.0, 55g = 7.0, 5µ =0.0,

5ω =1.0.
Moreover, the initial conditions are chosen to be Eq. (6).
Figure 6 shows the results of a numerical simulation of Eq. (4)-(5) when average angular

velocity is near of the second natural frequency (see Fig. 6a), one sees that the controllers suppress
the oscillations of the horizontal and vertical displacement (see Figs. 56, c). Figs. 6d and e shows
the controllers response 4q and 5q . In this case the energy is transferred from the plant to the
controllers, and the effect of the nonlinear coupling between the plant and controllers is verified.



Figure 6. The response of Eqs. (4) and (5) with 14g =4.0, 24g =0.0, 44g =3.0, 4µ =0.0, 4ω =0.5,

15g =0.0, 25g =17.0, 55g = 7.0, 5ω =1.0, where the controllers 4q and 5q  are activated on τ =500,
 (a) )(3 τq ′ , (b) )(2 τq , (c) )(1 τq , and (d) )(5 τq .

3. CONCLUSIONS

 We have investigated the dynamic behavior of the non-ideal vibrating system ( portal frame
foundation of an unbalanced rotating machine with limited power supply) in the resonance region

2ω≈Ω  and condition internal resonance 12 2ωω ≈  and considering the saturation phenomenon.
 A control technique based on the saturation phenomenon due the internal resonance was

proposed for suppress the motion of the non-ideal vibrating system defining the modal and physical
coupling between the generalized coordinates of the non-ideal vibrating system and the controllers.
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