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Abstract. Shape memory and pseudoelastic effects are thermomechanical phenomena associated with 
martensitic phase transformations, presented by shape memory alloys. This contribution concerns with 
the response of coupled shape memory oscillators. Equations of motion are formulated assuming 
polynomial constitutive model to describe the restitution force of oscillators. Since equations of motion 
are associated with a five-dimensional system, the analysis is performed considering subspaces 
associated with each mass. 
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1. INTRODUCTION  
 

Shape memory alloys (SMAs) have been found in a great number of applications in different fields 
of sciences and engineering. They are ideally suited for use as fastener, seals, connectors and claps (van 
Humbeeck, 1999; Kibirkstis et al., 1997; Borden, 1991). Self-actuating fastener, thermally actuator 
switches and several bioengineering devices are some examples of these applications (Duerig et al., 
1999; Lagoudas et al., 1999). The use of SMAs can help solving many important problems in 
aerospace technology, in particular those concerning with space savings achieved by self-erectable 
structures, stabilizing mechanisms, solar batteries, non-explosive release devices and other possibilities 
(Denoyer et al., 2000). Micromanipulators and robotics actuators have been built employing SMAs 
properties to mimic the smooth motions of human muscles (Garner et al., 2001; Webb et al., 1999; 
Fujita & Toshiyoshi, 1998; Rogers, 1995). Moreover, SMAs are being used as actuators for vibration 
and buckling control of flexible structures. In this particular field, SMAs wires embedded in composite 
materials have been used to modify mechanical characteristics of slender structures (Pietrzakowski, 
2000; Birman, 1997; Rogers, 1995). The main drawback of SMAs is their slow rate of change. 

Since the phenomena associated with martensitic transformation are intrinsically nonlinear, its 
dynamical response may present some characteristics not observed in linear systems. Chaotic motion is 
one of these possibilities, considering both proper mathematical and geometrical aspects. 

The dynamical analysis of intelligent systems and structures that use SMA as actuators involves 
multi-degrees of freedom systems. High dimensional dynamical systems have intricate behavior either 
on temporal or on spatial evolution properties. In the past, most of the work on chaotic dynamics has 
been concentrated on temporal behavior of low-dimensional systems. Recently, spatiotemporal chaos 
has attracted much attention due to its theoretical and practical applications (Lai & Grebogi, 1999; 
Shibata, 1998; Barreto et al., 1997; Thompson & Van der Heijden, 1997; Umberger et al., 1989). The 
present contribution concerns with the nonlinear dynamics of coupled shape memory oscillators. The 
dynamical response of shape memory systems is also considered in other studies (Savi & Pacheco, 
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2002; Machado & Savi, 2001a,b). Here, the prospect of chaotic response is of concerned. Equations of 
motion are formulated using polynomial constitutive model to describe the restitution force of the 
oscillator. Since the equations of motion of the two-degree of freedom oscillator are associated with a 
five-dimensional system, the analysis is performed, considering two subspaces associated with each 
mass.  

 
2. EQUATIONS OF MOTION 

 
Consider a two-degree of freedom oscillator, depicted in Fig. 1. It consists of two masses, mi (i = 

1,2), supported by SMA elements and linear dampers with coefficient ci (i = 1,2,3). Two forces excite 
the system harmonically )t(sinFF iii Ω=  (i = 1,2).  

 
 

Figure 1 - Two-degree of freedom shape memory oscillator. 
 

Shape memory behavior is described considering polynomial constitutive model (Falk, 1980). This 
is a one-dimensional model of which represents the shape memory and pseudoelastic effects 
considering a polynomial free energy that depends on the temperature and on the one-dimensional 
strain, E. Therefore, the restoring force of the oscillator is given by,  
 
 53)(),( ueubuTTaTuKK M +−−==  (1) 
 
where a , b  and e  are positive constants, while TM is the temperature below which the martensitic 
phase is stable. Variable u represents the displacement associated with the SMA element. By 
establishing the equilibrium of the system, non-dimension equations of motion are presented as follows 
(Savi & Pacheco, 2002), 
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3. NUMERICAL SIMULATIONS 
 

Numerical simulations are performed employing a fourth-order Runge-Kutta scheme with time 
steps chosen to be less than ∆τ = 2π/200ω. In all simulations, similar mechanical properties are 



 

regarded for all elements of the system. It is assumed a unitary mass and ϖ1 = ϖ2 = 1, ξ1 = ξ2 = ξ3 = 
0.2, β1 = β2 = β3 = 1.3e3 and ε1 = ε2 = ε3 = 4.7e5. These information allows one to conclude that α21 = 
α32 = µ = 1 and θA1 = θA2 = θA3 = 1.9.  Moreover, δ2 = 0, while δ1 may vary on the analysis. 

Since equations of motion are associated with a five-dimensional system, the visualization of the 
entire phase space became difficult. Therefore, the analysis of the phase space is performed splitting 
the space into two subspaces, each of which associated with each mass. The characterization of chaotic, 
hyperchaotic, quasi-periodic and periodic motion is done regarding Lyapunov exponents, and its 
estimation employs the algorithm proposed by Wolf et al. (1985). 

The analysis is developed considering different temperature sets for shape memory elements. At 
first, consider a situation where all shape memory elements have a low temperature, i.e., only 
martensitic phase is stable (θ1 = θ2 = θ3 = 0.7). After that, the temperature of the connection element, 
θ2, is changed. Figure 2 shows the bifurcation diagrams for three different situations: (θ1, θ2, θ3) = (0.7, 
0.7, 0.7), (θ1, θ2, θ3) = (0.7, 1.5, 0.7) and (θ1, θ2, θ3) = (0.7, 3.5, 0.7).  
 

 
(a) (b) 

 
(c) 

 
Figure 2 – Bifurcation diagrams for: (a) (θ1, θ2, θ3) = (0.7, 0.7, 0.7); (b) (θ1, θ2, θ3) = (0.7, 1.5, 0.7), 

and (c) (θ1, θ2, θ3) = (0.7, 3.5, 0.7).  
 

These diagrams of Fig. 2 show how the response of the system is sensitive to temperature changes. 
For δ1 = 0.06 and (θ1, θ2, θ3) = (0.7, 0.7, 0.7), the system presents a chaotic response with Lyapunov 
exponents λi = (+0.19, −0.02, −0.46, −0.86)  (Figure 3). Increasing the temperature connection to θ2 = 
1.5, the response becomes hyperchaotic with λi = (+0.34, +0.05, −0.55, −1.0) (Figure 4). On the other 
hand, for θ2 = 3.5, the system presents a periodic response. 



 

 
 

 
 

Figure 3 – Response for δ1 = 0.06 and (θ1, θ2, θ3) = (0.7, 0.7, 0.7). 
 
 

 
 

Figure 4 – Response for δ1 = 0.06 and (θ1, θ2, θ3) = (0.7, 1.5, 0.7). 
 
 
 

Now, consider a situation where all shape memory elements have an intermediate temperature, 
where both martensitic and austenitic phases are stable (θ1 = θ2 = θ3 = 1.5). Likewise to the first 
example, the temperature of the connection element, θ2, is changed. Figure 5 shows bifurcation 
diagrams for three different situations: (θ1, θ2, θ3) = (1.5, 0.7, 1.5), (θ1, θ2, θ3) = (1.5, 1.5, 1.5) and (θ1, 
θ2, θ3) = (1.5, 3.5, 1.5).  
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Figure 5 – Bifurcation diagrams for: (a) (θ1, θ2, θ3) = (1.5, 0.7, 1.5); (b) (θ1, θ2, θ3) = (1.5, 1.5, 1.5) 

and (c) (θ1, θ2, θ3) = (1.5, 3.5, 1.5). 
 
 

For δ1 = 0.06 and (θ1, θ2, θ3) = (1.5, 0.7, 1.5), the system presents a periodic response. Increasing 
the temperature connection to θ2 = 1.5, the response becomes chaotic with λi = (+0.22, −0.13, −0.30, 
−0.94) (Figure 6). On the other hand, for θ2 = 3.5, the system presents a quasi-periodic response with λi 
= (0.00, −0.15, −0.41, −0.66) (Figure 7). 

 

 
 

Figure 6 – Response for δ1 = 0.06 and (θ1, θ2, θ3) = (1.5, 1.5, 1.5). 



 

 

 
 

Figure 7 – Response for δ1 = 0.06 and (θ1, θ2, θ3) = (1.5, 3.5, 1.5). 
 
 

Figure 8 shows the response for δ1 = 0.02 and (θ1, θ2, θ3) = (1.5, 0.7, 1.5). A chaotic attractor 
appears on the phase space, indicating the presence of chaotic motion. Lyapunov exponents for this 
situation, λi= (+0.23, −0.38, −0.44, −0.56), assure this conclusion. Increasing the temperature 
connection to both intermediate and high one, a periodic motion of period-1 appears to replace the 
chaotic one.  

 

 
 

Figure 8 − Response for δ1 = 0.02 and (θ1, θ2, θ3) = (1.5, 0.7, 1.5). 
 
 

4. CONCLUSIONS 
 

This article reports an analysis of the response of a two-degree of freedom shape memory oscillator. 
A polynomial constitutive model was assumed to describe the constitutive behavior of the restitution 
force. The system response analysis was performed assessing Lyapunov exponents and phase spaces. 
Since the high dimension of the system, the phase space was split into two subspaces, each of which 
related to each mass. The analysis of the temperature of elements, through bifurcation diagrams, shows 
how its variation can modify the system response. Several routes of responses are observed just 
changing the temperature connection. Variations like hyperchaos → chaos → periodic and periodic → 
quasiperiodic → chaotic may occurs. These several routes show how intricate and rich is the system 
behavior. 
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