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Abstract. The present work approaches the problem of identification of the elastic and damping
fields of a medium by means of a time domain technique. This technique is within the inverse
problems scope, i.e., the solution of the problem is sought by means of the minimization of
a suitable error function which includes data from both the system model and the experiment
setup for the same input excitation. In order to assess the effectiveness of the proposed method,
simulations on a bar-like structure have been performed under impact loading and considering
the corrupting effects of noise.
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1. INTRODUCTION

Aiming at taking advantage of the dynamical properties of each material in a system design,
it is required the fully understanding of the mechanical behavior of these materials. This
behavior can be described by different models such that the designer has some freedom to choose
the most suitable one for a certain type of application that the material will be part of. Once
one has in hands the chosen model that will be used to describe the mechanical behavior of the
material under study, the next step usually consists in determining the set of parameters that
characterizes this model. The identification of these parameters provides a mathematical model
which enables one to simulate and predict the response of the material when it is subjected to
a certain excitation. In particular, the mechanical behavior of viscoelastic materials is of great
interest in engineering sciences such as mechanical, civil, aerospace and biomechanical.

The technical literature concerned with the identification of viscoelastic materials is very
extensive and it presents different approaches to the problem (Gavrus, 1996;Dietrich, 1998;
Rusovici, 1999; Haupt, 2000; Mossberg, 2000; Sarron, 2000; Janno, 2001 and Mossberg, 2001)
can be cited as the most recent ones.

The present work is built on the use of a constitutive equation for viscoelastic materials
parameterized by a set of unknown constitutive parameters and makes use of a time domain
technique to identify this set of parameters. The solution technique is within the inverse
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problems scope, i.e., the solution is sought by means of the minimization of a suitable error
function which includes data from both the system model and the experiment. The technique
takes into account the constraint associated to the system evolution equation as being part of
an extended error function what naturally gives rise to the Lagrange multiplier variables which
are obtained via solution of an adjoint problem. The effectiveness of the technique is assessed
on simulations performed on a bar-like structure, where strains or displacements are measured
at a subset of the system degrees of freedom. The simulated experiment consists on a bar under
dynamic loading excitation and in order to furnish realism to the simulations, it is considered
the corrupting effects of filtering, sampling and the analyses are performed for different levels
of signal-to-noise ratio.

2. DIRECT PROBLEM

Consider an n−DOF linear dynamic system such that its discretized evolution equation is
given by





Mẍ(t) + Dẋ(t) + Kx(t) = f(t)
y(t) = Cx(t)
x(0) = x0

ẋ(0) = ẋ0

(1)

where M, D and K are nxn matrices describing the mass, damping and stiffness properties
respectively and the n dimensional vectors x and f correspond to the system displacement field
and to the external loading applied to the system. The matrix C associates the system DOF
to the measured observable variables y, which in turn, can be displacements or strains. The
direct problem consists basically in determining the transient displacement field x(t) when the
external load is known. It should be emphasized that the direct analysis assumes a priori that
the material behavior is known, fact that, for the present problem, means that one has in hands
the constitutive equation between stress and strain for the material under study and moreover,
the actual value of the parameters of this constitutive equation is available . In equation (1) it
is implicity that the property matrices D and K are in some way functions of the parameters
that characterize the material constitutive equation, viz.

K = K(p) and D = D(p) (2)

where the vector p contains both elastic and damping parameters upon which the material
constitutive equation is defined.

3. INVERSE PROBLEM

For the inverse problem, the elastic and damping parameters p are considered to be
unknown. It is also assumed that there is set of experimental data available yE(t), t ∈ [0, tf ],
which can be used as the additional information for the estimation of the parameters p and
consequently the matrices K and D. The idea is to minimize a suitable error function which
consists basically of the norm of the difference between the measured data yE(t) and the data
obtained from the system model y(t) for the same input excitation. The error function Ĵ1(p)
is defined as follows

Ĵ1(p) =

∫ tf

0

[y − yE]T [y − yE] dt (3)



Therefore, the goal of the inverse problem step is to estimate the Np-dimensional vector of

unknown parameters p through the minimization of Ĵ1(p). The search step size determination
will be presented later.

3.1. Parameter Estimation

The technique used for parameter estimation is the Conjugate Gradient Method, which is
a powerful iterative technique for solving linear and nonlinear inverse problems of parameter
estimation (Özisic, 2000). In the iterative procedure of the conjugate gradient method, at each
iteration a suitable step size is taken along a direction of a descent in order to minimize the
error function as follows

p(k+1) = p(k) − β(k)d(k) (4)

where k indicates the current iteration, β(k) is the search step size, d(k) is the direction of
descent which is defined as follows

d(k) = ∇Ĵ (k) + γ(k)d(k−1) (5)

For the conjugation coefficient γ(k), among some possibilities, one has chosen

γ(k) =
∇Ĵ (k) · [∇Ĵ (k) −∇Ĵ (k−1)]

∇Ĵ (k−1) · ∇Ĵ (k−1)
(6)

Further details about the previous choice may be found in (Daniel, 1971).

3.2. Sensitivity Problem

The sensitivity function ∆x(t), which is the solution of the sensitivity problem, is defined
as the directional derivative of the displacement field x(t) in the direction of the perturbation
of the unknown parameter vector p (Özisic, 2000). The presentation of the sensitivity problem
is required in order to obtain the search step size β(k). Aiming at obtaining the sensitivity
problem one assumes that the displacement field x(t) is perturbed by an amount ∆x(t) when
the unknown vector of parameters p is perturbed by ∆p such that





x(t,p) 7→ x(t,p + ∆p) = x(t,p) + ∆x(t,p)

D(p) 7→ D(p + ∆p) = D(p) + ∆D(p)

K(p) 7→ K(p + ∆p) = K(p) + ∆K(p)

(7)

The evolution equation for the system under this new set of parameters casts as follows





M[ẍ + ∆ẍ] + [D + ∆D][ẋ + ∆ẋ] + [K + ∆K][x + ∆x] = f

y + ∆y = C[x + ∆x]
(8)

Where x = x(t,p) e y = y(t,p). Rearranging the equation in a more suitable form one gets





M∆ẍ + D∆ẋ + K∆x = (f −Mẍ + Dẋ + Kx)− (∆Dẋ + ∆Kx)− (∆D∆ẋ + ∆K∆x)

∆y = [Cx− y] + C∆x



(9)

Applying the initial conditions to the new solution x(t,p + ∆p) leads to





x(0,p + ∆p) = x0 = x(0,p) + ∆x(0,p)

ẋ(0,p + ∆p) = ẋ0 = ẋ(0,p + ∆p) = ẋ(0,p) + ∆ẋ(0,p)
(10)

Since the solution x(t,p) also fulfills the initial conditions of the problem, the previous equations
lead to the following initial conditions of the sensitivity problem

∆x(0,p) = 0 ∆ẋ(0,p) = 0 (11)

Hence, disregarding the second order terms of the evolution equation and considering that
the first terms on the right in both equations presented in (9) are automatically satisfied,
inasmuch as they constitute the direct problem itself, the sensitivity problem is described as





M∆ẍ + D∆ẋ + K∆x = −(∆Dẋ + ∆Kx)

∆y = C∆x

∆x(0) = 0 ∆ẋ(0) = 0

(12)

3.3. Adjoint Problem

The adjoint problem naturally appears when one considers that the displacement field x(t)
needs to satisfy the evolution equation described in (1), which is the solution of the direct
problem. Therefore, instead of considering the evolution equation as an additional constraint
of the minimization problem, one may consider it naturally inherent to the own functional to
be minimized. The price that has to be paid is the inclusion of a new set of variables into
the problem under study, which are simply the well known Lagrange Multipliers λ(t). The
Lagrange multipliers λ here belong to the n-dimensional vector space. So, the new functional
that has to be minimized Ĵ(p) encompasses the one defined in (3) and a new one Ĵ2(p) which
is defined as follows

Ĵ2(p) =

∫ tf

0

λT [Mẍ + Dẋ + Kẋ− f ]dt (13)

Therefore the identification problem becomes the minimization of the functional Ĵ(p) which
casts as

Ĵ(p) = Ĵ1(p) + Ĵ2(p) (14)

The concrete definition and presentation of the adjoint problem will be possible only after the
determination of the functional variation which is addressed in the next subsection.



3.4. Functional Variation

In order to perform the iterative process of parameter updating described in (4) it is clear
that one has to determine the gradient of the functional ∇Ĵ(p) at each iteration. The point
is that the gradient determination is not an easy task since the functional depends on the
system response y(t) which, in general, does not possess an analytic expression as a function
of time t and the parameters p. Aiming at overcoming this drawback one may determine
the variation of functional ∆Ĵ(p) when the parameter vector p suffers a variation of ∆p and
based on some suitable assumptions, try to extract, if it is feasible, the gradient out of this
functional variation. The functional variation demands the calculation of the functionals Ĵ1

and Ĵ2 evaluated at p + ∆p. For the functional Ĵ1 one has

Ĵ1(p + ∆p) =

∫ tf

0

[(y + ∆y)− yE]T [(y + ∆y)− yE] dt =

∫ tf

0

[y − yE]T [y − yE] dt +

+ 2

∫ tf

0

[y − yE]∆y dt (15)

where the second order terms have been disregarded. For the second functional Ĵ2 one has

Ĵ2(p + ∆p) =

∫ tf

0

λT [M(ẍ + ∆ẍ) + (D + ∆D)(ẋ + ∆ẋ) + (K + ∆K)(ẋ + ∆x)− f ] dt (16)

such that after expanding the terms and disregarding the second order ones, one obtains the
following resulting equation

Ĵ2(p + ∆p) =

∫ tf

0

λT [Mẍ + Dẋ + Kx− f ] dt +

∫ tf

0

λT [M∆ẍ + D∆ẋ + K∆x] dt +

+

∫ tf

0

λT ∆Dẋ dt +

∫ tf

0

λT ∆Kx dt (17)

Subtracting Ĵ(p) from Ĵ(p + ∆p) and integrating by parts the terms containing the time
derivatives of the variation ∆x,one reaches to the variational of the functional Ĵ

∆Ĵ(p) =

∫ tf

0

[Mλ̈ + Dλ̇ + Kλ]∆x dt +

∫ tf

0

2(y − yE)T ∆y dt +

∫ tf

0

λT ∆Dẋ dt + Å +

+

∫ tf

0

λT ∆Kx dt(18)

where Å corresponds to

Å = λ(t)TM∆ẋ(t)− λ̇
T
(t)M∆x(t) + λ(t)TD∆x(t)

∣∣∣
t=tf

t=0
(19)

It is clear that the term of Å associated to t = 0 is null due to the initial conditions of the
sensitivity problem and one may choose the Lagrange Multipliers such that it is null at t = tf
as well its first time derivative inasmuch as the user has this freedom in hands. Hence the term
Å containing data at the final and initial instants of time disappears from equation (18).



Considering that the variation of the output ∆y has a straightforward relation with the
variation of the displacement vector ∆x as shown in equation (1) one may write rewrite equation
(18) as follows

∆Ĵ(p) =

∫ tf

0

[Mλ̈−Dλ̇+Kλ+2CT (y−yE)]∆x dt+

∫ tf

0

λT ∆Dẋ dt+

∫ tf

0

λT ∆Kx dt (20)

As it has already been mentioned, the goal is to obtain an expression for ∆Ĵ(p) as a
straightforward function of the parameter variation ∆p and it is clear that it cannot be achieved
in equation (20) since there is one term containing the variation ∆x which is likely to have a
very complicated relation with ∆p. In order to obtain a simpler relation between ∆Ĵ(p) and
∆p one can make use of an adjoint problem defined as follows

Mλ̈−Dλ̇ + Kλ = 2CT (yE − y) (21)

under the following conditions

λ(tf ) = 0 λ̇(tf ) = 0 (22)

It should be emphasized that the problem stated by equations (21) and (22) can be changed
to a problem with initial conditions rather than with final conditions with a suitable change of
variables.

3.5. Gradient Equation

To obtain the gradient of the functional Ĵ(p) it is necessary to obtain the matrices D and
K as functions of the variations of the parameters ∆p. This task is accomplished by expressing
the damping and stiffness matrices as functions of the parameters and then evaluating their
variations as follows

K = K(p) ⇒ ∆K(p) =

j=Np∑
j=1

∂K

∂pj

∆pj (23)

and

D = D(p) ⇒ ∆D(p) =

j=Np∑
j=1

∂D

∂pj

∆pj (24)

Hence, the variation of the functional Ĵ casts as

∆Ĵ(p) =

j=Np∑
j=1

∆pj

∫ tf

0

λT (t)
[∂K

∂pj

x(t) +
∂D

∂pj

ẋ(t)
]
dt = ∆pT ∇Ĵ(p) (25)

where each component of the gradient vector is given by

[∇Ĵ(p)]j =

∫ tf

0

λT (t)
[∂K

∂pj

x(t) +
∂D

∂pj

ẋ(t)
]
dt ; j = 1, 2, ..., Np (26)

where Np is the number of parameters that characterize the constitutive equation of the mate-
rial.



3.6. Search Step Size

The search step size β(k) that appears in equation (4) is obtained through the minimization
of the functional Ĵ1 at the iteration k + 1, viz.

min
β(k)

Ĵ(p(k+1)) = min
β(k)

∫ tf

0

[y(t,p(k+1))− yE]T [y(t,p(k+1))− yE] dt (27)

such that p(k+1) is defined in equation (4). After linearizing the measured field y(t,p(k+1))
around the point p(k) and performing the corresponding minimization one gets

β(k) =

∫ tf
0

∆yT (t,p(k))[y(t,p(k))− yE(t)] dt∫ tf
0

∆yT (t,p(k))∆y(t,p(k)) dt
(28)

4. CONSTITUTIVE EQUATION

It should be emphasized that the starting point of the present technique is the constitutive
equation of the material, i.e., it is out of it that one is able to define the matrices K and
D as being functions of the parameters p that characterize the constitutive equation. For
the first trial one may consider a material which possesses a simple one-dimensional localized
constitutive relation between stress σ and strain ε that is given by

σ(x, t) = E(x)ε(x, t) + G(x)ε̇(x, t) (29)

where E(x) and G(x) represent the elastic and the damping parameters over the entire body
respectively. A material whose constitutive equation is given as a funcion od parameters that
vary over its domain corresponds to a Functionally Graded Material (Paulino, 2001). Difer-
ent types of constitutive equations could have been used, or even proposed, (Rusovici, 1999),
(Haupt, 2000) and (Janno, 2001), to cite some recent articles.

5. NUMERICAL ILLUSTRATIONS

5.1. Noise

In order to introduce a more realistic scenario to the simulation one may introduce some
Gaussian noise to the experimental data. The level of noise in the analyzed signal can be
quantified by means of the signal-to-noise ratio, which is defined as follows

SNR = 10 log
σs

2

σn
2

(30)

where σs and σn are the variances of the signal and the noise respectively (Oppenhein, 1999).
In the present work the signals considered as being noise are stationary random signals with
zero mean.

5.2. Examples

In order to assess the effectiveness of the proposed approach to identify mechanical
system properties from a certain set of experimental data, a bar-like structure will be considered.



Figure 1: Virtual experiment sketch and its 4 strain sensor locations.

The virtual experiment consists basically of a bar instrumented with four strain sensors (strain
gages) along its length and which is subjected to a dynamic loading such as an impact.

A brief sketch of the virtual experiment is depicted in figure (1) and it has been chosen
four equally spaced positions at which strain measures will be taken during the experiment.
The properties of the bar has been chosen as follows: cross-section area A = 2.84 10−4 m2,
length L = 2.03 m, specific mass ρ = 4408.2 kg/m3. The simulation data have been obtained
from a finite element element model of the bar. The one-dimensional finite element model has
82 elements and it has been considered that a compressive force P (t) has been applied at the
boundary x = L as shown in picture (2). The force P (t), in Newtons, is defined as follows

P (t) = 125 [1− cos(Ωt)] t ∈ [0, Timp]; (31)

where Ω = 2.52 105 rad/s and Timp = 2.50 10−5 s and the impact force is zero for t ∈ (Timp, tf ].
All the experimental data possess 8192 points and the sampling frequency 4 MHz. For the

first example (S1) it has been considered that the elastic field is a linear distribution defined
by its values at the nodes 1 (0.00 m), 20 (0.48 m), 40 (0.98 m), 60 (1.48) and 82 (2.03 m ),
which were set to be 113.8, 92.2, 72.8, 55.7 and 40.9 respectively, in GPa. The damping field is
defined similar to the elastic field and at the same nodes such that its nodal values were set to
be 3.71 103, 3.18 103, 2.65 103, 2.12 103 and 1.59 103 in Ns/m2. The strain sensors are located
at the nodes 20 (0.45 m), 40 (0.95 m), 60 (1.45 m) and 80 (1.95 m).
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Figure 2: Impact force applied to the bar.

It is assumed for the iteration process that the initial damping field is null and that the
elastic field is uniform over the bar and its value is equal to a characteristic value that is assumed
to be obtained by means of a static test on the bar. The signal-to-noise ratio adopted here is
30 dB. The result obtained for the elastic and damping fields are depicted in Fig.(3) on the left
and on the right respectively and the term “original” refers to the original finite element model
of the system. It is clear from the picture on the left in Fig.(3) that the elastic field has been
determined quite accurately and that although the obtained damping has some oscillations it
is also an effective result. The number of iterations for this case is 75.
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Figure 3: Elastic and damping field for case S1.

For the second case to be analyzed (S2) everything has been maintained equal to the first
case (S1) but the damping field. The damping field has been defined at the same set of nodes
as the previous example but its nodal values have been changed to: 1.59 103, 2.12 103, 2.65 103,
3.18 103 and 3.71 103 in Ns/m2. The result obtained for the elastic field is graphed in the
picture on the left in Fig.(4) and the obtained damping field is graphed in the picture on the
right in Fig.(4) on the right. As in the previous example the elastic field has been perfectly
determined and the obtained damping field presented some oscillations and it was effective.
The number of iterations for this case is 56. It should be remarked that the results presented
for the two examples have been determined taking into account real-like limitations such as few
measurement sensors and measured signals polluted with noise.
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Figure 4: Elastic and damping field for the case S2.

6. CONCLUDING REMARKS

A time domain technique aiming at identifying the unknown parameters that characterize a
viscoelastic model for a certain material has been presented. In order to assess the effectiveness
of the approach some simulations have been performed on a bar-like structure subjected to an
impact loading. It was considered that the constitutive law of the material for stress and strain
is characterized by distributed elastic and damping fields. The measured signals have been
polluted with white noise to furnish more realism to the simulations and the results provided
by the present approach has shown to be effective for the examples that have been analysed.
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