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Abstract: Acoustic modal analysis employs concepts of the traditional structural modal analysis in the 
study of resonance phenomena in acoustic systems. The major task here is to obtain the so called 
acoustic mode shapes, that result from the resonance of the medium fluid in a given acoustic system. In 
the present work the three-dimensional reduced wave equation (Helmholtz equation) is solved using 
finite element and variational techniques in order to obtain the equivalent mass and stiffness matrix 
that will be used in the solution of the eigenvalue problem for the acoustic natural frequencies and 
mode shapes in filters. This theoretical framework is used in numerical simulations in order to provide 
a comparison basis for the results obtained via experiments. Reactive filters can be constructed with 
simple changes in the acoustical system. This work presents the theory, simulation and experimental 
analysis for one type of filter high-pass in a piping system. Although the modal characteristics of low-
pass filters have already been discussed in recent publication, there is still a lack of research on the 
modal characterization of high-pass filters. This paper focuses on this type of filter, discussing how the 
acoustic modal parameters of such filters are altered when the characteristics of branches is varied. 
The eigenvalue is formulated and solved for the system without fluid resistance, the natural frequencies 
and mode shapes are compared. The results obtained experimentally and via simulation are presented 
and discussed.  
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1. INTRODUCTION 
 
 There are two ways of attenuating frequencies in a pipe system: adding sections or branches and 
introducing acoustic absorptive materials. The filter generated through the addition of sections is called 
reactive and the filter obtained through the introduction of absorptive materials is called absorptive. 
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The ability of a side branch to attenuate the sound energy transmitted in a pipe is the basis of a class of 
acoustic filters. Depending on the input impedance of the side branch, such systems can act as low-
pass, high-pass or band-pass filters. In this paper we study several types of high-pass filters. This type 
of device is used for attenuate the sound generated by explosion motors without introduce excessive 
pressure in the motor. Another application is the study of  wind musical instruments, whose behavior is 
the same of a high-pass filter. 
 Arruda (Arruda, 1999) studied theoretically and experimentally the modal characteristics of a low-
pass filter but it has been found that there is a lack of research on the modal characterization of high-
pass filters. The presence of a single orifice converts a pipe into a high-pass filter. As the radius of such 
orifice is increased, the attenuation of the low frequencies is increased. The filtering action of an orifice 
does not result from the transmission of acoustic energy out of the pipe, but rather from the reflection  
of energy back toward the source (Kinsler, 1982). Employing combinations of branches, we have a 
filter network. The design of such networks is made by using a combination of reactances of different 
types of impedances in line. Davis et alli, 1948 performed a complete study about mufflers and Munjal, 
1987 summarized the theory for low-pass and high-pass filters. 
 
2. THEORETICAL FORMULATION 
 
2.1. Lumped Formulation 
 
 The resonance frequencies for a pipe driven at x=0 and open-ended at x=L are given as: 
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 The cutoff frequency of a high-pass filter is given as: 
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 where M is called the fluid inertance, and C is called the fluid capacitance. They are given by: 
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and A is the area of the cross-section of the tube, L is the length of the pipe, ρ  is the density of the 
fluid and c is the sound speed.  

Through these fluid characteristics and using the conservation of mass and neglecting resistance 
(friction) influence, we can obtain the lumped model of the system, but this theoretical formulation is 
very limited. For the high-pass filter studied, with two branches, we can find only the first two natural 
frequencies of the system, while through finite element analysis we can obtain a much larger number of 
natural frequencies. Therefore, we will adopt the finite element formulation to develop the major 
theoretical concepts concerned with this paper.  
 
 



 

 

2.2. Finite Element Formulation 
 

For the simulation of modal analysis of the high-pass filter, we use the finite element formulation. 
For didactic purposes, the two-dimensional discretization of the wave equation, which is sufficient for 
the solution of the problem is adopted here. However, for visualization purposes, the results are 
presented in a three-dimensional shape. The two-dimensional discretization can be easily expanded to 
the three-dimensional formulation. The two-dimensional wave equation is given as  
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on a domain D.  This equation has the following initial and boundary conditions: 
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Developing the weak formulation by multiplying the differential Eq. (5) by an arbitrary test 

function v(x,y) and manipulating the Eq. (5) using the divergence theorem described by Bickford 
(1990), we obtain: 
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where ]N[  is the so-called matrix of shape. The finite element model can then be expressed as: 
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For the present problem, we neglect the terms [ ] [ ]ee f,a  and [ ]eq . In the above equations, the index e 

means elemental formulation and G global formulation. For the discretization of the three-dimensional 
wave equation, we use the element FLUID30, 3D Acoustic Fluid, with 8 nodes, 4 degrees of freedom 
(ux, uy, uz and pressure), with structure present at interface, reference pressure 20e6. The model has a 
total of 602 nodes and 2172 elements for the first type of filter and 955 nodes and 3437 elements for 
the second type. It was used the unsymmetric method for parameters extraction. Boundary conditions 
are: zero pressure in the ends of the filter and non-zero pressure in the ends of the filter. We use sound 
velocity of s/m343  and mass density by 3m/kg21.1  (density at C20o ). The results obtaining with the 
simulation will be compared with the practical results presented in next section.  
 
3. EXPERIMENTAL SETUP 
 

Figure 1 presents the experimental setup that was built for acoustic modal tests. The filter is built 
from PVC pipes that have a nominal diameter of 38 mm. The acoustic excitation system is composed 
of a nylon piston that is positioned close to the left end of the filter and that is driven by an 
electrodynamic vibration exciter (MB Dynamics Modal 50 A). The force applied to the piston as well 
as its acceleration is measured by an B&K impedance head model 8001 (100 mV/g and 340 pC/N) that 
is mounted through a stinger between the piston and the exciter head.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Experimental Setup 
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The piston acceleration signal is further used along with the piston cross sectional area in order to 
get an estimate of the acceleration of the fluid volume, that represents an important acoustic parameter 
in the acoustic FRF calculations for the filter.  

The exciter was driven by a white noise random signal and the data was processed by a 2630 
Tektronix analyzer in the 0-2000 Hz frequency range. Hanning windows were used in all acquisition 
channels in order to reduce filter leakage.  The response signals were gathered at different locations by 
G. R. A. S., ½” prepolarized free field, type 26 CA microphones (49,49 mV/Pa). The acoustic FRF 
were estimated by considering the acoustic pressure from the microphones as the output variable and 
the acceleration of the fluid volume as the input variable. The piston was considered to be light enough 
so that the acceleration signal from the impedance head could be directly used. The microphones were 
positioned inside the branches, as illustrated in Fig. (1) in three different locations, respectively at the 
upper end, mid point and opposite lower end. Two filters were tested: one with short branches and open 
ends and the second with long branches and closed ends. The corresponding finite element models of 
each filter were generated as it will be described in the next section.  
 
4. RESULTS AND DISCUSSION 
 
 Figure 2 presents the experimental results obtained for the first filter, which has the following 
characteristics: Length of 316 mm, branches with length equal to 20 mm, the first one located at 30 mm 
of the end and the second at 178 mm of the same end, diameter 38 mm. The acoustic FRF presented in 
Fig. (2) relates the output acoustic pressure at location 4 to the acceleration of the fluid volume at 1. It 
can be seen from Fig. (2) that the filter has the capability of attenuating frequencies up to 600 Hz since 
the first acoustic resonant frequency occurs at 799 Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 – Experimental FRF result for the first filter 

 



 

 

Figure 3 shows the results obtained via the Finite Element simulation for the same filter and 
illustrates the first acoustic mode or the pressure distribution inside the filter. 

 

 
 

Figure 3 – Finite Element results for the first type of filter 
 

 
 

Figure 4 – Finite Element results for the first type of filter 



 

 

 From Fig. (2), we can see that the three first experimental natural frequencies of the filter are 799 
Hz, 1122 Hz and 1666 Hz. The natural frequencies obtained by finite element formulation, according to 
Figs.  (3) and (4) are 794 Hz, 1107 Hz and 1639 Hz. Thus, we can conclude that there is a reasonable 
agreement between the FE results and the experimental data. Using equation (1), we can find the 
natural frequencies of the pipe without branches: 542 Hz and 1085 Hz. 
 Figure (5) presents the experimental result for the second type of filter, which has the following 
characteristics: Length – 316 mm; branches with length equal to 200 mm, the first one located at 30 
mm of the end and the second at 178 mm of the same end, diameter 38 mm. Again, the acoustic FRF 
presented in Fig. (5) relates the output acoustic pressure at location 4 to the acceleration of the fluid 
volume at 1. 
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Figure 5 – Experimental result for the second type of filter – FRF 

 
 From Fig. (5), we can see that the experimental natural frequencies obtained for the second high-
pass filter are: 209 Hz, 536 Hz and 744 Hz. We present only the three first natural frequencies because, 
as it is well known, one filter with two branches will change only the first two natural frequencies. If 
the filter has three braches, the first three natural frequencies will be modified and so on. 

Figure (6) presents the Finite Element results for the second high-pass filter obtained via Ansys® 
software for the first acoustic mode. 



 

 

 
 

Figure 6 – Finite Element results for the second type of filter 
 
 Figure 7 shows the second acoustic modal shape for the same filter. 
 

 
 

Figure 7 – Finite Element results for the second type of filter 



 

 

 The first type of filter works as a high-pass filter, increasing the first natural frequency, from 542 
Hz to 794 Hz. The second frequency has a small change, from 1085 Hz to 1107 Hz. This filter has all 
open ends, with zero pressure. The second filter has closed ends, and works as a low-pass filter. This 
happens also because of the length of the branches. A reasonable agreement was found between the 
results obtained from the experimental results and the FE simulation.  
 Comparing the two types of high-pass filter, the pressure distribution inside the first filter differs 
from the second. Observing Figures (3) and (6), we can notice, for example, that the largest values of 
the acoustic pressure migrates to a branch of the filter, instead of being located in the pipe. The same 
behavior can be seen if comparing the second acoustic mode, Figures (4) and (7). 
 In the experimental case, it was used an actuator to obtain the acceleration of the fluid volume, 
which is an acoustic variable, and some remarks could be made. If we simulate a low-pass filter 
(Arruda, 1999), the piston is located in a cavity. Here, considering the high-pass filter, the piston was 
located in an end of the filter. If the piston is inserted inside the pipe, then we have the closed-end 
boundary condition. For the condition with both ends open (null pressure), the piston must be located in 
a certain distance from the end of the pipe and not be inserted inside the pipe in order to satisfy the 
corresponding boundary condition.  
 Finally, Figure (8) depicts experimental results for the acoustic FRF between points 1 and 4 for the 
two types of filters studied. We can observe the superior efficiency of the first filter since its first 
natural frequency is higher than the corresponding frequency for the second filter.  
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Figure 8 – Comparison between the two types of low-pass filter 
 
5. CONCLUSIONS 
 
 The natural frequencies of the filter and consequent attenuation depend of the length and the 
distance between the branches, but it is more sensitive to the distance between the branches. We can 
measure the pressure in any point to obtain the FRF of the system since it resulted essentially the same, 
with small variations on the natural frequency values.  
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The smallest the length of the branch, the more effective is the filter and the two first natural 
frequencies occur at higher values. The branch behaves as a capacitance and not as an inertance, as 
desired in the high-pass filter, if we maintain the diameter constant. According to theory, if we decrease 
the length of the branches, we also decrease the capacitance and consequently the natural frequency of 
the filter increases, increasing also the efficacy of this filter. The location of the microphone is not 
essential, but it can not be located in nodal points, as it is also required in standard modal testing 
procedures, if we wish to fully assess the dynamics of the system.   
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