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Abstract. Laminar forced convection of power-law non-Newtonian fluids inside ducts with
arbitrarily shaped cross-sections is analytically studied by extending the Generalized Integral
Transform Technique (GITT). The analysis is illustrated through consideration of right-angularly
triangular duct subjected to constant wall temperature boundary condition. Reference results are
established for quantities of practical interest (as dimensionless average temperature and Nusselt
numbers) within the thermal entry region for different values of power-law behavior index and apex
angles of the duct. Critical comparisons are also made with results available in the literature
obtained through numerical and analytical-numerical approaches.
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1. INTRODUCTION

Analytical and numerical heat transfer solutions for thermally fully developed and thermally
developing laminar flow inside non-circular ducts are of considerable interest, mainly, to the design
of compact heat exchangers and several other low Reynolds number flow heat exchange devices, as
pointed out in different articles and textbooks (Shah and London, 1978; Sundén and Faghri, 1998).
Industrial applications in which processing of materials behaving as non-Newtonian fluids are those
commonly encountered in the chemical, food processing and pharmaceutical industries (Shah and
Focke, 1988) which undergo thermal processing in heat exchange equipment, and in these
applications the power-law model can describe adequately the rheology of such fluids. In this
context, the establishment of benchmark results through analytical-numerical solutions for power-
law fluids inside non-circular ducts is desirable for reference purposes and validation of direct
numerical schemes, and in addition, a survey of the literature reveals a limited amount of works
about heat and fluid flow of non-Newtonian fluids in right-angularly triangular ducts is available,
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and most contributions deal with purely numerical or approximate approaches (Shah and London,
1978; Haji-Sheikh et al., 1983).

Particularly, the case of a non-circular duct constitutes an example of the difficulties associated
with solving multidimensional convection problems, requiring costly numerical solutions limited to
regions away from the inlet (longer ducts). The exact solution of such a problem, through classical
analytical methods (Mikhailov and Ösizik, 1984) is inhibited due to the non-separable nature of the
related eigenvalue problem. The present work aims at applying the so-called Generalized Integral
Transform Technique (GITT) (Cotta, 1993) in order to avoid the difficulties associated with the
non-separable eigenvalue problem, consequently to give an accurate and reliable analysis to allow
for the solution of this formally transformable but non-separable problem, providing an efficient
algorithm for numerical computations.

The problem considered is that of a right-angularly triangular duct subjected to a constant wall
temperature to illustrate the powerfulness of this hybrid approach. An analysis of  convergence is
made and a set of benchmark results established for quantities of practical interest, such as
dimensionless average temperature, local Nusselt numbers, within a wide range of the
dimensionless axial coordinate, different power-law indices and apex angles. Comparisons are then
critically performed with previously reported results (Shah and London, 1978) from direct
numerical approaches, from Galerkin-type functions (Haji-Sheikh et al., 1983) and from hybrid
analytical-numerical approach (Aparecido and Cotta, 1992) for both, fully developed and thermally
developing regions.

2. ANALYSIS

Laminar flow of a non-Newtonian power-law fluid inside a right-angularly triangular duct of
sides a and b, according to Fig. 1, is considered. The velocity profile is taken as fully developed and
the duct walls are subjected to a constant temperature, so that the dimensionless energy equation for
constant property flow, neglecting axial conduction and viscous dissipation, in thermally
developing flow is written as:
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with inlet and boundary conditions given, respectively, as follows:
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where in Eqs. (1) above the following dimensionless groups were employed:
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Figure 1 - Geometry and coordinates system for thermally developing right triangular duct flow.

The main dimensionless groups in Eqs. (2) above are: Pe (Péclet number), γ (aspect ratio), Re
(Reynolds number) and Pr (Prandtl number). Dh is the hydraulic diameter defined as






 γ++γ+γ= 2

h 11a2D . The dimensionless velocity profile is given from the solution of

momentum equations, for a non-Newtonian power-law fluid flowing within right triangular ducts,
as an infinite series in the form (Chaves, 2001; Chaves et al., 2001):
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In Eqs. (3), the quantities )Y(u~k  represent the transformed potentials for the velocity field,
which were numerically obtained by the application of the GITT approach (Chaves, 2001; Chaves
et al., 2001), so that the integral in Eq. (3.c) must also be numerically obtained through appropriate
subroutines to evaluate integrals of a cubic spline such as the CSITG from the IMSL Library
(1989).

Due to the non-separable nature of the velocity profile given in Eq. (3.a) and consequently, of
the related eigenvalue problem needed to solve the energy equation through well-known analytical
methods such as the classical integral transform technique (Mikhailov and Ösizik, 1984), an exact
solution of problem (1) is not possible. On the other hand, with the advances on the so-called GITT
approach for the hybrid analytical-numerical solution of this class of non-separable eigenvalue
problem, it is possible to avoid these difficulties as now demonstrated (Aparecido and Cotta, 1992;
Cotta, 1993). For this purpose, in order to alleviate the difficulties related to the eigenvalue problem
and to permit the employment of the generalized integral transform technique, the following
auxiliary eigenvalue problems are chosen:
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which are readily solved to yield eigenfunctions, eigenvalues, and normalization integrals as
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Eigenvalue problems (4) and (5) allow the development of the following integral transform pair:
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while the transformed inlet condition becomes
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In Eq. (7.b) each summation is associated with the eigenfunction expansion in a corresponding
spatial coordinate, for computational purposes, the series solution given by Eq. (7.b) is, in general,
truncated to a finite number of terms for it summation, in order to compute the potential )Z,Y,X(θ .
The solution convergence is verified by comparing the values for the potential obtained with the
truncated series for different numbers of retained terms. Such number of terms is commonly user-
supplied and even taken as the same for each summation.

Then, the indices i and m related to the temperature field are reorganized into the single index p,
while the indices j and n are collapsed into the new index q. The associated double sums are then
rewritten as:
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where

i = int[(p–1)/N] + 1, j = int[(q–1)/N*] + 1, m = p – (i–1) N and n = q – (j–1) N* (9.c-f)

The truncated version of system (8) is now rewritten in terms of these new indices as:
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The coupled system of ordinary differential equations (10) is solved by efficient numerical
algorithms for initial value problems, such as in subroutine IVPAG from the IMSL package (1989),
with high accuracy. Then, after the transformed potentials are obtained, quantities of practical
interest are determined from the analytic inversion formula (7.b), such as the dimensionless average
temperature
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and the local Nusselt number can be calculated by making use of the temperature gradients at the
wall integrated over the perimeter, or utilizing the axial gradient of the average temperature,
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3. RESULTS AND DISCUSSION

Now, results are presented in terms of dimensionless average temperature and Nusselt numbers
along the axial coordinate, within the range of Z = 10-4 – 1, for apex different angles (θ = 10, 30 and
45°) and different power-law indices. System (10) was numerically solved with NT ≤ 400 and a
relative user-prescribed tolerance of 10-8 in subroutine IVPAG from the IMSL package (1989).

To illustrate the convergence behavior of the present approach, Tab. (1) brings the convergence
of the Nusselt number in thermal entry region (i.e., Z = 10-1 and 1) for different power-law indices
and θ = 45°. It is observed in this table an excellent convergence ratio, with practically three digits
converged for both positions studied. The comparisons among the values of average temperatures
and Nusselt numbers for n = 1.0 calculated in the present work and the values of Aparecido and



Cotta (1992) are graphically shown in Figs. 2 and 3, respectively, and it can be noticed that the
values are in good agreement with each other, indicating that the numerical code developed here is
well established.

Table 1. Convergence of the local Nusselt number for a right triangular duct (θ = 45°)

Nu(Z)
Z = 0.01

NT n = 0.50 n = 1.00 n = 1.50
25 2.5529 2.4052 2.3578
100 2.5514 2.4030 2.3549
255 2.5510 2.4027 2.3546
400 2.5509 2.4026 2.3546

a NA 2.4 NA
Z = 1

25 2.5124 2.3599 2.3089
100 2.5096 2.3568 2.3055
255 2.5094 2.3567 2.3054
400 2.5093 2.3567 2.3053

a NA 2.34 NA
          NA -  Not available,  a - Shah and London (1978)
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Figure 2. Comparison of dimensionless average temperature for different apex angles.
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Figure 3. Comparison of local Nusselt numbers for different apex angles.

Figure 4 shows fully developed Nusselt numbers for n = 1.0 from this work and the results
available in Haji-Sheikh et al. (1983) and Aparecido and Cotta (1992), where an excellent
agreement was obtained for the full range of apex angles 0 ≤ θ ≤ 45°.
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Figure 4. Comparison of fully developed Nusselt numbers with literature for n = 1.0 and
different apex angles.

In Fig. 5 results of axial distribution of the dimensionless average temperature along the thermal
entry region of a right triangular isosceles duct are presented for different power-law indices. It can
be noticed a small influence of the power-law index in the dimensionless average temperature along



the thermal entry region. In Fig. 6, it is also observed a little influence of the power-law index in the
Nusselt numbers in the thermal entry region. The effect of power-law index in the average
temperature is small, as can be verified in Fig. 6 by a slight increase in the average temperature
when n > 1. However, in Fig. 6, it is observed an opposite behavior for the Nusselt numbers. These
aspects can be explained by the fact when n > 1 the viscous effects near the wall diminish and,
consequently, the thermal exchange is less intensified resulting in lower values for the Nusselt
numbers when compared with those values for n < 1.

0.0001 0.0010 0.0100 0.1000 1.0000
0.0

0.2

0.4

0.6

0.8

1.0

θ = 45o

 n = 0.5
 n = 1.0
 n = 1.5

θ a
v(Z

)

Z

Figure 5. Dimensionless average temperature for different power-law indices.
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4. CONCLUSIONS

The present approach demonstrated to be relatively cheap, within the range of NT considered.
Numerical results were tabulated and graphically presented providing sets of benchmark for the
local Nusselt numbers and dimensionless average temperature. The next step in the application of
the present methodology involving the flow of non-Newtonian fluids will be concerned to the case
of others irregularly shaped duct geometries as described by Cotta (1993) and Chaves (2001).
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