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Abstract. This work examines the performance of linear and non-linear eddy-viscosity models when 
used to predict turbulent flow in a periodically sinusoidal-wave channel. The geometry of a channel 
with converging-diverging walls is investigated for a Reynolds number of 40000. The numerical 
method employed for the discretization of the equations is the control-volume method applied in a 
boundary-fitted non-orthogonal coordinate system. The SIMPLE algorithm is used for correction of 
the pressure field. The classical wall function or a low Reynolds model is used to describe the flow 
near the wall. Comparisons among those two approaches using the linear and non-linear 
turbulence models are done. Here, an implicit numerical treatment is proposed for handling the 
non-linear diffusion terms of the momentum equations. Such a procedure aims at the increase of the 
robustness of the solution method. 
 
Keywords: Turbulence modeling; Non-linear models; sinusoidal-wave channels; Control-volume 
method; Implicit treatment. 
 
1. INTRODUCTION 
 

The analysis of flow over wave boundaries is of great interest in the engineering field. Several 
phenomena involving wave boundaries occur in the nature, as: generation of wind waves on water; 
evolution of sand dunes in deserts and sediment dunes in rivers, etc (Patel et al., 1991). Some 
industrial devices make use of sinusoidal walls. Development of high-performance thermal system 
has received much attention in the last years. Modified surfaces are required to reduce the size and 
weight of heat exchanging devices such as those encountered in electronic cooling, air-conditioning, 
automobiles, aircrafts and spacecrafts, etc. In accordance with Habib et al. (1998) there are many 
different ways of increasing heat and mass transfer, using generating surfaces of turbulence (zigzag-
type, cavity-type, grooved-type, staggered ribs-type, etc). Various researchers studied 
experimentally the turbulent flow over wave boundaries. Hsu and Kennedy (1971) investigated  the 
axisymmetric flow in a circular pipe, where the diameter varies sinusoidally along its length. Zilker 
et al. (1977), Buckels et al. (1984) measured the shear stress and velocity profile in a channel with 
sinusoidally varying, wavy wall bottom. Saniei and Dini (1993) measured the pressure drop, 
velocity profile and local heat transfer. They presented the friction factor and local Nusselt number 
for the periodically converging-diverging rectangular channel using three different aspect ratios, 
and Reynolds number ranging from 410  to 510 . Hanratty et al. (1983) studied numerically the 
turbulent flow in a channel with sinusoidal bottom surface and Patel et al. (1991) investigated a 
rectangular channel using different amplitudes. Habib et al. (1998) simulated the geometry of 
sinusoidally converging-diverging channel. They used the two-equation (linear ε−k ) eddy-
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viscosity model and presented the velocity and streamline distributions, the kinetic energy of 
turbulence, pressure drop, friction factor, and local, average and maximum Nusselt number 
distribution for Reynolds numbers from 410x4  to 510 . 
 It is well established in the literature that linear eddy-viscosity turbulence models (LEVM) do 
not, on the whole, cope well with strong streamline curvature whether it arises from flow over 
curved surfaces or imparted swirling. And yet, turbulence-driven secondary motion and directional 
effects due to buoyancy cannot, due to absence of information on individual stresses, be fully 
simulated with LEVMs. In spite of that, they are often used for engineering computations due to the 
numerical robustness obtained via its linear stress-strain rate relationship (Jones and Launder, 
1972). This diffusion-like approach makes the numerical solution stable, with the model easily 
adaptable to existing computer code architectures. 
 Models involving other types of constitutive equations have been lately developed with the 
perspective of applying CFD to complex flows. These techniques aim at a wider range of 
applicability, similar to that of Reynolds Stress Models (RSM, Launder et al., 1975) while keeping 
computational costs down to LEVM cost levels. Theories employing other type of representation of 
individual Reynolds Stresses/Fluxes, including addition of non-linear terms to the basic constitutive 
equation, try to capture the sensitivity to flow curvatures and buoyancy, a feature missing in basic 
LEVMs. 
 To the best of the authors' knowledge, most published work on non-linear models (Speziale, 
1987, Nisizima and Yoshizawa, 1987, Rubinstein and Barton, 1990, Shih et al., 1993, Gatski and 
Speziale, 1993) are either written for Cartesian coordinates and/or treat additional non-linear terms 
in a fully explicit manner. The literature has commented on the difficulties of convergence of the 
solution when non linear turbulence models are used in complex flows, such as the numerical works 
by  Abid et al. (1995), Rahman et al. (1997) and Bauer et al. (2000). Here, a new numerical 
treatment is proposed to handle a general non-linear constitutive equation into a boundary-fitted 
computer code. The numerical methodology proposed herein contributes to the robustness of the 
solution method and increases the applicability of such non-linear models to numerical grids fully 
complacent with irregular computational domains. The treatment consists in splitting the non linear 
diffusive fluxes in an implicit term in the coefficients matrix and explicit gathering in the source 
term. In the literature, there aren’t specific information  on the numerical treatment of these non 
linear terms. 
 This work has two objectives: (i) to analyse the performance of linear and non-linear eddy-
viscosity models in a generalized coordinate system in the prediction of turbulent flow in 
periodically sinusoidal-wave channels using the classical wall function and low Reynolds damping 
functions for handling wall proximity. (ii) to investigate the computational robustness of implicit 
numerical treatment proposed by authors. 
 
2. TWO-EQUATION MODEL FOR VELOCITY FIELD 
 
 The governing equations to be solved are the continuity and the Reynolds-averaged Navier-
Stokes equations which take the form 
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where iU  is the mean velocity component in the i-direction, ρ  is the density of the fluid. For easy 
of computation, the total pressure kpP ρ3

2+=  involves also a term containing the turbulent kinetic 

energy 2/ii uuk ′′=  where iu ′  is the fluctuating part of the instantaneous velocity in the i-direction. 



 

The stress ijτ  represents the sum of the turbulent stress, t
ijτ , plus the laminar viscous stress, 

ijij Sµτ =l , where the deformation tensor is given by, 
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 Different constitutive equations for the Reynolds stress will be discussed later and they shall be 
classified basically as Linear and Non-Linear relationships. 
 The modeled transport equations for the turbulent kinetic energy k, and its dissipation rate ε, 
respectively, are given by: 
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 The symbols kP  and tµ , respectively, represent the turbulence kinetic energy production rate 
and the eddy viscosity, and are defined as: 
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 In the present work, both high and low Reynolds models are compared. Their basic difference 
lies in the distinct form of the damping functions 2f  and µf  referred in Eqs. (5) and (6). 
Expressions for them are shown in Tab. (1). These functions and a slightly different set of constants 
were used in conjunction with the k-ε equations. 
 In calculating the wall shear stress with the high Reynolds method (Launder and Spalding, 
1974), E in Tab. (1) may be varied to simulate the surface roughness and 41.0=κ  is the von 
Kármán constant. Subscript P refers to the node next to the wall. Thus Pu  and Pk  are, respectively, 
the value of the velocity and turbulent kinetic energy in this point, and Py  is the normal distance to 
the wall. The symbol n in the low Reynolds model represents the normal distance to the wall. The 

Table  1. High and Low Reynolds Models 
 High Reynolds model 

proposed by Launder and 
Spalding (1974) 

Low Reynolds model proposed by Abe et al (1992)  
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constants µc , 1c , 2c , kσ  and εσ  for the high Reynolds model are set as 0.09, 1.44, 1.92, 1.0 and 
1.33, respectively, and for the low Reynolds model given by 0.09, 1.5, 1.9, 1.4 and 1.3, 
respectively. 
 In this work, the linear and non-linear eddy-viscosity models are analyzed. For the linear ε−k  
model of turbulence, the Reynolds stress tensor is assumed to be of the form 
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 As mentioned before, the last term in (7) was compacted into an expression for the total pressure. 
 Non-linear eddy-viscosity models originated in a general proposal done by Pope (1975). 
However, only in the past two decades such models have had great progresses with the works of 
Speziale (1987), Nisizima and Yoshizawa (1987), Rubinstein and Barton (1990), Shih et al (1993), 
among others. In these works, quadratic products were introduced involving the strain and vorticity 
tensors with different derivations and calibrations for the models. These quadratic forms produce a 
certain anisotropy degree among the normal tensions, which make possible to predict, among other 
processes, the presence of secondary motion in non-circular ducts. 
 A general non-linear expression for the Reynolds stress, kept to second order, can be written as: 
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where the c’s are constants or coefficients, jiδ  is the Kronecker delta; the superscripts in Eq. (8) 
indicate Linear and Non  Linear contributions, ijS  is the deformation tensor given by (3) and jiΩ  
represents the vorticity tensor written as 
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 Equation (8) already assumes that the term kijρδ3

2  is combined into the total pressure P.  In this 
work the non-linear model proposed by Shih et al (1993) was used and has the following 
expressions: 
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3. NUMERICAL METHOD AND IMPLICIT TREATMENT  
 
 The numerical method employed for discretizing the governing equations is the control-volume 
approach in a generalized coordinate system with a collocated grid. For a solution of pressure linked 
through continuity equation, SIMPLE algorithm is used. A hybrid scheme, Upwind Differencing 



 

Scheme (UDS) and Central Differencing Scheme (CDS), is used for interpolating the convection 
fluxes. 
 Figure 1 shows a typical control-volume with detailed notation, distances and indexing used 
when transforming the original equations into the ξη −  coordinate system. With the help of this 
figure, the following operators can be identified: 
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 The vector form of the area of the control-volume at east and north faces, respectively, are given 
by 
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Semi-implicit treatment of the diffusive terms. The whole numerical treatment and discretization 
process of convection/diffusion linear/non-linear terms of the momentum equation, as well as the 
equations for k and ε , are shown in detail in the work by Assato and de Lemos (1998). The 
numerical treatment presented there for non-linear diffusive terms was totally explicit, 
accommodating all terms into the source term. In the work by Assato and de Lemos (2001), these 
same terms were rewritten identifying implicit and explicit parts with the purpose of improving the 
numerical stability. Thus, the non-linear diffusive terms are rewritten in the following way: 
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 The first terms on the right hand side of Eqs. (14)-(15) are here treated implicitly (in coefficients 
matrix) whereas the other ones are handled explicitly (in the source term). The coefficients ( )yx

eD ,  
are the same for the equations in x and y and are given by: 
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Figure 1- Control-volume and notation 
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 The parts treated explicitly ( )x

eS *  make use of velocity values at grid points calculated at the 
previous iteration. For the east face and x-direction one has: 
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 The superscript “°” of velocity differences indicates that these values are taken from the 
previous iteration. Coefficients π’s and Π’s are also calculated with velocities from previous 
iteration. 
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 It is important to notice that for orthogonal grids some geometric distances given by Eqs. (11) 
and (12) are null, for instance, 0yxyx nnee ==== ηξξη ∆∆∆∆ . Thus, the equations (16)-(19) for east 
face become, 
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 Only the linear and first non-linear terms are added in coefficient matrix. 
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4. RESULTS  
 
 The geometry analyzed is shown in Fig. 2. The geometrical parameters are the channel height, 

cm16.10H max = , the wavelength, cm667.6=λ  and aspect ratio 27.0/a2 =λ , where a  represents 
the wave-amplitude. 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Geometry of periodically symmetric converging-diverging channel. 

 
 The results presented in this section were obtained using a total of four different models. The 
following turbulence closures were applied: the linear and non-linear k-ε models using the high 
Reynolds approach, designated here by L_HRN and NL_HRN, respectively, and the same models 
applying the low Reynolds model, named respectively by L_LRN and NL_LRN. The periodic 
boundary condition was applied until the fully developed regime was simulated The non-linear 
model employed was the Shih et al (1993) closure. Figure 3 shows the computational grids used for 
the High and Low Reynolds formulations. 
 
 
 
 
 

 

 

 

 
 
  (a)             (b) 

Figure 3: Computational grids of symmetric converging-diverging channel for 27.0/2 =λa . 

(a) High Reynolds model (50x22), (b) Low Reynolds model (50x46). 
 
 Comparisons for the pressure drop in converging-diverging channel among the present models 
with experimental data by Saniei and Dini (1993) are shown in Table 2. It can be noticed that 
smaller deviations are presented by the low Reynolds number formulation with the best prediction 
obtained by the NL_LRN model. In this work, calculations were performed only for Reynolds 
number based on hydraulic diameter of Re=40000. 
 Figure 4 shows the mean velocity field avgU/U  in several stations along the channel. All 
models present small differences, except in first and last station. Included in Fig. (4) are the 
distributions obtained numerically by Habib et al. (1998). 
 Figures 5 and 6 show, respectively, dimensionless axial velocity and turbulent kinetic energy 
distributions using the four turbulence models. It can be noticed that bigger deviations among the 
results occur when changing the wall treatment from high to the low Reynolds number approach. 
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Figure 4 – Normalized axial velocity profiles. 

Table 2: Pressure drop in periodically symmetric converging-diverging channel. 

Results Pressure drop:  [ ]2/ mNP∆  Deviations [%]: [ ]2/ mNP∆
Saniei and Dini (1993) 12.5 - 

L_HRN 9.824 21.4 
NL_HRN 10.016 19.87 
L_LRN 11.243 10.06 

NL_LRN 13.553 -8.42 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. CONCLUSIONS 
 
 In this work four models were investigated. The analysis was conducted to predict the turbulent 
flow field at Reynolds number of 40000 in a periodically symmetric converging-diverging channel. 
The low Reynolds number formulation utilized in the linear and non-linear k-ε models presented 
better agreement (for pressure drop) with the experimental data by Saniei and Dini (1993), as shown 
in Table 2. The smaller deviation was obtained by NL_LRN model. 
 An analysis of residue for the velocity component U along the solution relaxation process was 
done. It has been observed that for the present problem, the semi-implicit treatment of non-linear 
diffusive terms did not benefit the stability characteristics of the solution in relation to the fully 
explicit treatment when using either the High or the Low Reynolds formulation. Both treatments 
converged at the same rate. The semi-implicit treatment is relevant only when we make use of 
computational grids with control-volumes according to Fig. 1. Or say, for grids having the 
geometric distance 0x e =η∆ (see Figure 3), the semi-implicit treatment did not contribute to the 
robustness of the solution method. 
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Figure 6 - Dimensionless +k  distribution: (a) L_HRN; (b) NL_HRN; (c) L_LRN; (d) NL_LRN. 
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Figure 5 - Dimensionless velocity distribution, ×U : (a) L_HRN; (b) NL_HRN; (c) L_LRN; 
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