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Abstract. This work reports an analysis of penalty method application to imposing no-slip boundary
condition. The approach used herein consists to express the vorticity boundary condition through
the natural boundary condition depending on the solid wall tangential velocity component. The
penalty parameter is introduced in this boundary condition and its influence in the numerical
solution is analyzed.  Two numerical examples are considered, lid driven cavity flow and natural
convection both in a square cavity. The results show the behavior of numerical solution taking into
account the mesh density necessary to achieve an error limit in the mesh refinements context, the
accuracy of solution when the penalty parameter is varied. The results shown that as long the
penalty parameter tends to infinity the accuracy is improved but the solution process become
slower.
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1. INTRODUCTION

One of the most popular form used in CFD for writing the Navier-Stokes equations is the
stream- function vorticity formulation, examples are Manoj and Sengupta (1996), Anagnostopoulos
et al (1996); Barragafy and Carey (1996). However, a computational difficulty, which arises in
solving the coupled stream-function vorticity equations, is the vorticity conditions at the walls. The
reason is that each equation involves a Laplacian operator and there are two boundary conditions
associated with stream function while none associated with vorticity.

There are many works in finite difference and finite elements techniques to overcome the
velocity no-slip boundary condition problem in the stream-function vorticity approach. A method
that relates the vorticity at the boundary to the normal derivate of the stream function was presented
by Glowinski and Pironneau (1979). Huang and Seymour (1996) had described an approach that
involves decoupling the boundary vorticity from the computation of the interior flow field. Souli
(1996) describes a vorticity boundary condition based on the Green’s formula and Green’s function
for Laplace operator. Gresho and Shany (1998) suggest the application of natural boundary
conditions to vorticity at all frontiers of computational domain. Napolitano et al (1999) had
presented a review of vorticity boundary conditions in CFD, discussing coupled and uncoupled
formulations of the problem as well as steady state and unsteady equations.

According to Layton (1999), there are at least three natural ways of imposing zero tangential
velocities value along the boundary:
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(i) Lagrange multiplier of tangential velocity component equal to zero as a constraint;
(ii) Penalty term imposing tangential velocity component equal to zero approximately;
(iii) Replacing “no-slip” with “slip with friction”.
The purpose of this work is to present and analyses a technique to impose the tangential velocity

component along the surface by penalization of the vorticity boundary condition. Such method
consists to obtain the wall vorticity throughout the stream function values, similar approach was
used in Chouikh et al (1999), Manoj and Sengupta (1996), Guo et al (1998) and shown to be
adequate to simulate problems of flow around cylinders. This approach can be used not only to
specify no-slip boundary condition but also to specify moving wall boundary condition.

The Poisson equation for stream function, the vorticity transport equation, and the energy
equation were solved simultaneously to obtain a numeric solution of the mathematical model for
steady state incompressible fluid flow, without the direct use of the continuity equation. The
equations were solved using iterative-coupled algorithm. The discretization of stream function,
vorticity and temperature equations was done independently with equal order interpolation
functions (2th order).

The resulting system of non-linear differential equations was solved by finite element method
using adaptative refinement and unstructured mesh with six nodes triangular elements. The
Newton-Raphson method (Heinrich and Pepper, 1999) is applied to linearize the algebraic systems
of non-linear equations resultants of the discretization and solved in each iterative step through the
conjugated gradient method (Axelsson, 1996).

2. MATHEMATICAL FORMULATION

2.1. Conservation Equations

The two-dimensional steady-state, laminar, incompressible constant properties fluid flow
mathematical model consist of stream function (ψ)-vorticity (ζ) and energy equations. The vorticity
transport equation is:
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where the stream function Poisson equation is:
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The energy equation is:
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where the stream function and vorticity are given by:
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and T is the temperature, f
ρ

is the body force term, )(⋅∇
ρ

 is the divergent operator, )(∇
ρ

 is the

gradient operator, )(×∇
ρ

 is the curl operator, µ is the viscosity, α is the thermal diffusivity, and V
ρ

is the velocity vector with u and v components.
The curl operator results a vector with potentially three components; the meaning of two

dimensional curl operator must take into account a couple of possible situations:



(1) The curl operator has only one component perpendicular to the plane of computation
( V

ρρ
×∇=ζ );

(2) The curl operator is a two-components vector in the plane of computation ( ψ×∇=
ρρ

V ).

2.2. Boundary conditions

It was assumed the expression given by Eq. (5) to vorticity boundary condition at moving wall
and the Eq. (6) to vorticity boundary condition in the wall where there is zero velocity in the wall.
This approach consist to employ natural boundary to vorticity as:
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where: φ is the penalty parameter, t
ρ

 represents the oriented tangential unit vector, wV
ρ

is the

velocity boundary condition and n)( ∂∂ is the boundary outward normal derivative.
According to the penalty method, when the penalty parameter increases the vorticity normal

derivative should adjust to impose [ ] 0tVw =⋅+ψ×∇
ρρρ

.

3. NUMERICAL EXAMPLES

In this section, two examples are presented to demonstrate and evaluate the application of
penalty term in the vorticity boundary condition. The first example considers forced convection and
the second one analyzes a natural convection problem both in a square cavity.

3.1. Lid Driven Cavity

The lid driven cavity problem has been used in the literature as an incompressible flow
benchmark to test and evaluate numerical methods. This problem was included here to show the
behavior of velocity field and vorticity values take into account the degree of boundary condition
penalization. The Reynolds Number is defined as Re = ρ.uw.L / µ, where uw is the velocity of the
moving wall, L is the length of the side and ρ is the density.

Figure 1. Mesh at Reynolds number 1000 and boundary conditions.



The simulations were performed at Reynolds number 1000 varying the penalty parameter (φ)
from 1 to 5000. In the Fig. 1 there is an example of mesh (6572 nodes, 3153 cells) employed to
achieve an error less than 1.e-5 with φ = 1000.

Figure (2) gives an indication of the way that the velocities meet the correct value when the
penalty parameter increases. In the AB boundary segment the velocity value must be equal unit and
are null anywhere. The case that φ = 1, the penalization is weak and it is clear that the no-slip
condition is not satisfied. The progressive increase of velocity magnitude in the segment AB  and
decrease in CD , DA  and BC  is achieved with increase of φ, although with high φ values there is
still a residual in the left top corner (DA  segment).

Figure 2. Influence of penalty parameter in velocity magnitude along wall at Reynolds 1000.

The velocity components u and v, in the horizontal and vertical cavity centerline, respectively,
are shown in the Fig. (3). The results of Guia et al (1982) to lid driven cavity flow were assumed as
benchmark solution to check the present results at Reynolds number equal to 1000. There is no
visible differences between the velocity profiles when the penalty parameter is set to φ = 500 or to φ
= 5000. Furthermore they are in good agreement with benchmark results, although in the Fig. 3 is
clear that φ = 500 does not provide corrects velocity values at the boundary.
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Figure 3. Velocity profile at the cavity center.



Figure (4) shows the comparison of present results to vorticity with literature benchmark results
for the moving wall. This data confirm that, only to high values of φ, the solution to furnish accurate
values. When φ = 1, practically there is no vorticity in the wall and the slipping at walls is visible.

Figure 4. Influence of penalty parameter in vorticity value along wall at Reynolds 1000.

3.2. Natural Convection in a Square Cavity

A natural convection problem is considered in this section. The vertical walls are kept to be
isothermal at Th and Tc. The top and bottom are kept to be adiabatic. In Fig. (5) there is an example
of the finest mesh (11,843 nodes, 6,584 cells) employed in this simulations to achieve an error less
than 1.e-5 with φ = 1000.

It was assumed in this work the Boussinesq approach, them the density in the body force term of
the vorticity transport equation varies linearly with temperature as )]TT(1[ o0 −β−ρ=ρ  with ρo

equal to density at average temperature. The Boussinesq approach results only depends on the
Rayleigh number and Prandtl number defined as:
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=
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where: g is the gravity acceleration, L is the length of the cavity, the coefficient of volumetric
expansion is β  = 1/ To and To is the vertical walls average temperature, ν = µ / ρ is the viscosity, ρ
is the density, Cp is the specific heat and k is the thermal conductivity.

The simulations were carried out to air flow (Pr=0.71) in the range 1.103 ≤ Ra ≤ 1.106. The
penalty parameter in this problem varies from 1 to 1000.

In the present work the average Nusselt number is defined on the vertical mid-plane of the
cavity and is given by:
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Figure 5. Mesh at Ra = 1.106  with φ = 1000 and boundary conditions.

Table (1) summarizes the present work results to natural convection and shows a comparison
with numerical results provided by Davis (1983).  The symbol I (u,v)D represents the magnitude of
velocity integral along the cavity boundary. For each Rayleigh number and φ there is a
correspondent indication of mesh refinement needful to obtain the numerical solution with error
limit equal to 1.10-5. It could be noted that the increase in the mesh nodes number come together
with the increase in the φ parameter, fixing the Ra number. Such fact is related with the control
error in the context of adaptive mesh refinement.

Table 1. Comparison of present results with literature for natural convection in a square cavity.

Present work
Ra φ = 1 φ = 10 φ = 100 φ = 1000

Davis, V.G.,
(1983)

Differences
(%)

Nu 1.213 1.119 1.116 1.117 1.117 0
umax 4.447 3.647 3.628 3.652 3.634 -0.501.103

vmax 4.567 3.783 3.749 3.761 3.667 -2.56
Nodes 313 461 696 1677 - -

Nu 2.434 2.248 2.237 2.241 2.235 -0.27
umax 17.007 16.117 16.072 16.076 16.182 0.65
vmax 20.698 19.480 19.439 19.495 19.509 0.07

1.104

Nodes 1153 1403 1917 2912 - -
Nu 4.780 4.516 4.508 4.513 4.512 -0.02
umax 36.019 34.626 34.557 34.626 34.81 0.53
vmax 70.970 67.582 67.489 67.582 68.22 0.94

1.105

Nodes 3191 3391 4455 5627 - -
Nu 9.167 8.813 8.803 8.807 8.816 0.10
umax 66.6 64.4 64.37 64.41 65.33 1.41
vmax 224.3 217.3 217.2 217.8 216.75 -0.48

1.106

Nodes 7695 8233 10 335 11843 - -
I (u,v)D 0.1 0.01 0.002 0.0005 - -



As the φ parameter is increased, the relative error associated with vorticity near the boundary
domain is amplified; consequently there is need for a finest mesh to comply with error limit
requirements. This implies in a decrease in the convergence rate and more computational time
effort, however the numerical solution accuracy is improved as shown in Tab. (1)

The maximum velocity values and the average Nusselt number were compared with Davis V.G.
(1983). The differences column presented in Tab. (1) was obtained with φ = 1000. Very small
differences were found, mainly for the Nusselt number values.

4. CONCLUSIONS

At the present study the penalty technique was applied to impose vorticity boundary conditions
at no-slip wall. This approach is an approximate method to establish the actual boundary condition
but provides suitable results when the values at the boundary are checked.

Results obtained in this work showed that the boundary condition specified error decreases as
the penalty parameter increases but this is accomplished with a computational effort penalization.
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